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Stati
 Analysis of SPDIs for State-Spa
eRedu
tionGordon Pa
e∗ Gerardo S
hneider†April 2006Abstra
tPolygonal hybrid systems (SPDI) are a sub
lass of planar hybridautomata whi
h 
an be represented by pie
ewise 
onstant di�erentialin
lusions. The rea
hability problem as well as the 
omputation of 
er-tain obje
ts of the phase portrait, namely the viability, 
ontrollabilityand invarian
e kernels, for su
h systems is de
idable. In this paperwe show how to 
ompute another obje
t of an SPDI phase portrait,namely semi-separatrix 
urves and show how the phase portrait 
anbe used for redu
ing the state-spa
e for optimizing the rea
habilityanalysis.1 Introdu
tionHybrid systems 
ombining dis
rete and 
ontinuous dynami
s arise as math-emati
al models of various arti�
ial and natural systems, and as approxima-tions to 
omplex 
ontinuous systems. They have been used in various do-mains, in
luding avioni
s, roboti
s and bioinformati
s. Rea
hability analysishas been the prin
ipal resear
h question in the veri�
ation of hybrid systems,even if it is a well-known result that for most non-trivial sub
lasses of hybridsystems rea
hability and most veri�
ation questions are unde
idable. Vari-ous de
idable sub
lasses have, subsequently, been identi�ed, in
luding timed[AD94℄ and re
tangular automata [HKPV95℄, hybrid automata with linear
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ve
tor �elds [LPY01℄, pie
ewise 
onstant derivative systems (PCDs) [MP93℄and polygonal di�erential in
lusion systems (SPDIs) [ASY01℄.Compared to rea
hability veri�
ation, qualitative analysis of hybrid sys-tems is a relatively negle
ted area [ALQ+01b, DV95, KdB01, MS00, SP02,SJSL00℄. Typi
al qualitative questions in
lude: �Are there `sink' regionswhere a traje
tory 
an never leave on
e it enters the region?�; �Whi
h arethe basins of attra
tion of su
h regions?�; �Are there regions in whi
h everypoint in the region is rea
hable from every other point in the region withoutleaving it?�. To answer su
h questions one usually gives a 
olle
tion of ob-je
ts 
hara
terizing these sets, hen
e providing useful information about thequalitative behavior of the hybrid system. The set of all su
h obje
ts for agiven system is 
alled the phase portrait of the system.De�ning and 
onstru
ting phase portraits of hybrid systems has been dire
tlyaddressed for PCDs in [MS00℄, and for SPDIs in [ASY02℄. In this paper wepresent a a new element of the phase portrait for SPDIs, and dis
uss howthe phase portrait 
an be used to redu
e the size of an SPDI, as an aid toveri�
ation.Roughly speaking, an SPDI (Fig. 1) is a �nite partition P of the plane (into
onvex polygonal areas), and, for ea
h P ∈ P an asso
iated pair of ve
tors aPand bP . The SPDI behaviour is de�ned by the di�erential in
lusion ẋ ∈ ∠
bP

aPfor x ∈ P , where ∠
b

a
denotes the angle on the plane between the ve
tors aand b.In [ASY01℄ it has been proved that edge-to-edge and polygon-to-polygonrea
hability in SPDIs is de
idable by exploiting the topologi
al properties ofthe plane. The pro
edure is not based on the 
omputation of the rea
h-setbut rather on the exploration of a �nite number of types of qualitative be-haviors obtained from the edge-signatures of traje
tories (the sequen
es oftheir interse
tions with the edges of the polygons). Su
h types of signaturesmay 
ontain loops whi
h 
an be very expensive (or impossible) to explorenaively. However, it has been shown that loops have stru
tural propertiesthat are exploited by the algorithm to e�
iently 
ompute the e�e
t of su
hloops. In summary, the novelty of the approa
h is the 
ombination of severalte
hniques, namely, (i) the representation of the two-dimensional 
ontinuousdynami
s as a one-dimensional dis
rete dynami
al system, (ii) the 
hara
ter-ization of the set of qualitative behaviors of the latter as a �nite set of typesof signatures, and (iii) the �a

eleration� of the iterations in the 
ase of 
y
li
signatures.Given a 
y
le on a SPDI, we 
an speak about a number of kernels pertainingto that 
y
le. The viability kernel is the largest set of points in the 
y
le whi
hmay loop forever within the 
y
le. The 
ontrollability kernel is the largest setof strongly 
onne
ted points in the 
y
le (su
h that any point in the set may2
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Figure 1: An SPDI and its traje
tory segment.be rea
hed from any other). An invariant set is a set of points su
h that ea
hpoint must keep rotating within the set forever. The invarian
e kernel is thelargest of su
h sets. The information gathered for 
omputing rea
habilityturns out to be useful for 
omputing viability, 
ontrollability and invarian
ekernels of su
h systems. Algorithms for 
omputing these kernels have beenpresented in [ASY02, S
h04℄ and implemented in the tool set SPeeDI+[PS06℄.The 
ontribution of this paper is threefold. We start by giving an algorithmto 
ompute semi-separatrix 
urves (or simply, semi-separatri
es) of SPDIs.Separatri
es are 
onvex polygons disse
ting the plane into two mutually non-rea
hable subsets. The notion of separatrix 
an be relaxed, obtaining semi-separatrix 
urves, su
h that some points in one set may be rea
hable from theother set, but not vi
e-versa. We then show how the kernels 
an be used toanswer rea
hability questions dire
tly. We also show how semi-separatri
es
an be used to optimize the rea
hability algorithm for SPDIs by redu
ing thenumber of states of the SPDI graph. The optimization is based on topologi
alproperties of the plane (and in parti
ular, that of SPDIs).The paper is stru
tured as follows. In the next se
tion we introdu
e thene
essary theoreti
al ba
kground, in
luding the de�nition of SPDI, kernelsand semi-separatri
es as well as how to 
ompute su
h phase portrait obje
ts.In Se
tion 3 we show how the semi-separatri
es 
an be used for redu
ingthe state-spa
e of the rea
hability graph whereas in Se
tion 4 we present theoptimization done by using the kernels.
3



2 Theoreti
al Ba
kgroundA (positive) a�ne fun
tion f : R → R is su
h that f(x) = ax+ b with a > 0.An a�ne multivalued fun
tion F : R → 2R, denoted F = 〈fl, fu〉, is de�nedby F (x) = 〈fl(x), fu(x)〉 where fl and fu are a�ne and 〈·, ·〉 denotes an inter-val. For notational 
onvenien
e, we do not make expli
it whether intervalsare open, 
losed, left-open or right-open, unless required for 
omprehension.For an interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverseof F is de�ned by F−1(x) = {y | x ∈ F (y)}. The universal inverse of F isde�ned by F̃−1(I) = I ′ if and only if I ′ is the greatest non-empty intervalsu
h that for all x ∈ I ′, F (x) ⊆ I.It is not di�
ult to show that F−1 = 〈f−1
u , f−1

l 〉 and similarly that F̃−1 =
〈f−1

l , f−1
u 〉, provided that 〈f−1

l , f−1
u 〉 6= ∅. Noti
e that if I is a singleton then

F̃−1 is de�ned only if fl = fu. These 
lasses of fun
tions are 
losed under
omposition.A trun
ated a�ne multivalued fun
tion (TAMF) F : R → 2R is de�nedby an a�ne multivalued fun
tion F and intervals S ⊆ R
+ and J ⊆ R

+ asfollows: F(x) = F (x) ∩ J if x ∈ S, otherwise F(x) = ∅. For 
onvenien
ewe write F(x) = F ({x} ∩ S) ∩ J . For an interval I, F(I) = F (I ∩ S) ∩ Jand F−1(I) = F−1(I ∩ J) ∩ S. The universal inverse of F is de�ned by
F̃−1(I) = I ′ if and only if I ′ is the greatest non-empty interval su
h that forall x ∈ I ′, F (x) ⊆ I and F (x) = F(x).We say that F is normalized if S = DomF = {x | F (x) ∩ J 6= ∅} (thus,
S ⊆ F−1(J)) and J = ImF = F(S).The following theorem states that TAMFs are 
losed under 
omposition[ASY01℄.Theorem 1. The 
omposition of two TAMFs F1(I) = F1(I ∩ S1) ∩ J1 and
F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦ F1)(I) = F(I) = F (I ∩ S) ∩ J ,where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).2.1 SPDIAn angle ∠
b

a
on the plane, de�ned by two non-zero ve
tors a,b is the set ofall positive linear 
ombinations x = α a+β b, with α, β ≥ 0, and α+β > 0.We 
an always assume that b is situated in the 
ounter-
lo
kwise dire
tionfrom a.A polygonal hybrid system1 (SPDI) is de�ned by giving a �nite partition Pof the plane into 
onvex polygonal sets, and asso
iating with ea
h P ∈ P a1In the literature the names polygonal di�erential in
lusion and simple planar di�er-ential in
lusion have been used to des
ribe the same systems.4




ouple of ve
tors aP and bP . Let φ(P ) = ∠
bP

aP
. The SPDI is determined by

ẋ ∈ φ(P ) for x ∈ P .Let E(P ) be the set of edges of P . We say that e is an entry of P if forall x ∈ e and for all c ∈ φ(P ), x + cǫ ∈ P for some ǫ > 0. We say that eis an exit of P if the same 
ondition holds for some ǫ < 0. We denote byin(P ) ⊆ E(P ) the set of all entries of P and by out(P ) ⊆ E(P ) the set of allexits of P .Assumption 1. All the edges in E(P ) are either entries or exits, that is,
E(P ) = in(P ) ∪ out(P ).A traje
tory segment of an SPDI is a 
ontinuous fun
tion ξ : [0, T ] → R

2whi
h is smooth everywhere ex
ept in a dis
rete set of points, and su
h thatfor all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is de�ned then ξ̇(t) ∈ φ(P ). Thesignature, denoted Sig(ξ), is the ordered sequen
e of edges traversed by thetraje
tory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If
T = ∞, a traje
tory segment is 
alled a traje
tory.Example 1. Consider the SPDI illustrated in Fig. 1. For sake of simpli
itywe will only show the dynami
s asso
iated to regions R1 to R6 in the pi
ture.For ea
h region Ri, 1 ≤ i ≤ 6, there is a pair of ve
tors (ai,bi), where:
a1 = (45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 =
(−2,−3), a5 = b5 = (1,−15), a6 = (1,−2),b6 = (1,−1).A traje
tory segment starting on interval I ⊂ e0 and �nishing in interval
I ′ ⊆ e4 is depi
ted.De�nition 1. We say that a signature σ is feasible if and only if there existsa traje
tory segment ξ with signature σ, i.e., Sig(ξ) = σ.From this de�nition, it immediately follows that extending an unfeasiblesignature, 
an never make it feasible:Proposition 1. If a signature σ is not feasible, then neither is any extensionof the signature � for any signatures σ′ and σ′′, the signature σ′σσ′′ is notfeasible.Given an SPDI S, let E be the set of edges of S, then we 
an de�ne a graph
GS where nodes 
orrespond to edges of S and su
h that there exists an ar
from one node to another if there exists a traje
tory segment from the �rstedge to the se
ond one without traversing any other edge. More formally:De�nition 2. Given an SPDI S, the underlying graph of S (or simply thegraph of S), is a graph GS = (NG, AG), with NG = E and AG = {(e, e′) |
∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′}. We say that a sequen
e e0e1 . . . ekof nodes in GS is a path whenever (ei, ei+1) ∈ AG for 0 ≤ i ≤ k − 1.5



The following lemma shows the relation between edge signatures in an SPDIand paths in its 
orresponding graph.Lemma 2. If ξ is a traje
tory segment of S with edge signature Sig(ξ) =
σ = e0 . . . ep, it follows that σ is a path in GS .Remark. Noti
e that the 
onverse of the above lemma is not true in general.It is possible to �nd a 
ounter-example where there exists a path from node
e to e′, but it does not exist a traje
tory segment form edge e to edge e′ onthe SPDI.Lemma 3. If σ = e0 . . . ep is a feasible signature, then σ is a path in GS .2.2 Su

essors and prede
essorsGiven an SPDI, we �x a one-dimensional 
oordinate system on ea
h edgeto represent points laying on edges [ASY01℄. For notational 
onvenien
e, weindistin
tly use letter e to denote the edge or its one-dimensional representa-tion. A

ordingly, we write x ∈ e or x ∈ e, to mean �point x in edge e with
oordinate x in the one-dimensional 
oordinate system of e�. The same 
on-vention is applied to sets of points of e represented as intervals (e.g., x ∈ I or
x ∈ I, where I ⊆ e) and to traje
tories (e.g., �ξ starting in x� or �ξ startingin x�).Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e, Succe,e′(I) is theset of all points in e′ rea
hable from some point in I by a traje
tory segment
ξ : [0, t] → R

2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). It has beenshown [ASY01℄ that Succe,e′ is a TAMF.Example 2. Let e1, . . . , e6 be as in Fig. 1 and I = [l, u]. We assume aone-dimensional 
oordinate system. We have:
Fe1e2

(I) =

[
l

4
,

9

20
u

]
, S = [0, 10] , J =

[
0,

9

2

]

Fe2e3
(I) = [l + 1, u + 1] , S = [0, 9] , J = [1, 10]

Fe3e4
(I) =

[
3

2
l,

3

2
u

]
, S =

[
0,

20

3

]
, J = [0, 10]

Fe4e5
(I) =

[
2

3
l,

2

3
u

]
, S = [0, 10] , J =

[
0,

20

3

]

Fe5e6
(I) =

[
l −

2

3
, u −

2

3

]
, S =

[
2

3
, 10

]
, J =

[
0,

28

3

]

Fe6e1
(I) = [l, 2u] , S = [0, 10] , J = [0, 10]6



with Succeiei+1
(I) = Feiei+1

(I ∩ Si) ∩ Ji+1, for 1 ≤ i ≤ 5, and Succe6e1
(I) =

Fe6e1
(I ∩ S6) ∩ J1.Given a sequen
e w = e1, e2, . . . , en, Theorem 1 implies that the su

essor of

I along w de�ned as Succw(I) = Succen−1,en
◦ . . . ◦ Succe1,e2

(I) is a TAMF.Example 3. Let σ = e1 · · · e6e1. It results that Succσ(I) = F (I ∩ S) ∩ J ,where:
F (I) =

[
l

4
+

1

3
,

9

10
u +

2

3

] (1)
S = [37

25
e−16, 10] and J = [1

3
, 29

3
] are 
omputed using Theorem 1.For I ⊆ e′, Pree,e′(I) is the set of points in e that 
an rea
h a point in

I by a traje
tory segment in P . The ∀-prede
essor P̃re(I) is de�ned in asimilar way to Pre(I) using the universal inverse instead of just the inverse:For I ⊆ e′, P̃reee′(I) is the set of points in e su
h that any su

essor ofsu
h points are in I by a traje
tory segment in P . Both de�nitions 
an beextended straightforwardly to signatures σ = e1 · · · en: Preσ(I) and P̃reσ(I).Therefore, the su

essor operator has two inverse operators.Example 4. Let σ = e1 . . . e6e1 be as in Fig. 1 and I = [l, u]. Now,
Preeiei+1

(I) = F−1
eiei+1

(I ∩ Ji+1) ∩ Si, for 1 ≤ i ≤ 5, and Pree6e1
(I) = F−1

e6e1
(I ∩

J1) ∩ S6, where:
F−1

e1e2
(I) =

[
20

9
l, 4u

]
F−1

e2e3
(I) = [l − 1, u − 1]

F−1

e3e4
(I) =

[
2

3
l,

2

3
u

]
F−1

e4e5
(I) =

[
3

2
l,

3

2
u

]

F−1
e5e6

(I) =

[
l +

2

3
, u +

2

3

]
F−1

e6e1
(I) =

[
l

2
, u

]Besides, Preσ(I) = F−1(I ∩ J) ∩ S, where F−1(I) = [10
9
l − 20

27
, 4u − 4

3
].Similarly, we 
ompute P̃reσ(I) = F̃−1(I∩J)∩S, where F̃−1(I) =

[
4l − 4

3
, 10

9
u − 20

27

].2.3 Qualitative analysis of simple edge-
y
lesLet σ = e1 · · · eke1 be a simple edge-
y
le, i.e., ei 6= ej for all 1 ≤ i 6=
j ≤ k. Let Succσ(I) = F (I ∩ S) ∩ J with F = 〈fl, fu〉 (we suppose thatthis representation is normalized). We denote by Dσ the one-dimensionaldis
rete-time dynami
al system de�ned by Succσ, that is xn+1 ∈ Succσ(xn).7



Assumption 2. None of the two fun
tions fl, fu is the identity.Let l∗ and u∗ be the �xpoints2 of fl and fu, respe
tively, and S ∩J = 〈L, U〉.A simple 
y
le is of one of the following types [ASY01℄:STAY. The 
y
le is not abandoned neither by the leftmost nor the rightmosttraje
tory, that is, L ≤ l∗ ≤ u∗ ≤ U .DIE. The rightmost traje
tory exits the 
y
le through the left (
onsequentlythe leftmost one also exits) or the leftmost traje
tory exits the 
y
lethrough the right (
onsequently the rightmost one also exits), that is,
u∗ < L ∨ l∗ > U .EXIT-BOTH. The leftmost traje
tory exits the 
y
le through the left andthe rightmost one through the right, that is, l∗ < L ∧ u∗ > U .EXIT-LEFT. The leftmost traje
tory exits the 
y
le (through the left) butthe rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .EXIT-RIGHT. The rightmost traje
tory exits the 
y
le (through the right)but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.Example 5. Let σ = e1 · · · e6e1. We have S ∩ J = 〈L, U〉 = [1

3
, 29

3
]. The�xpoints of Eq. (1) are su
h that 1

3
< l∗ = 11

25
< u∗ = 20

3
< 29

3
. Thus, σ is aSTAY.The 
lassi�
ation above gives us some useful information about the quali-tative behavior of traje
tories. Any traje
tory that enters a 
y
le of typeDIE will eventually quit it after a �nite number of turns. If the 
y
le is oftype STAY, all traje
tories that happen to enter it will keep turning insideit forever. In all other 
ases, some traje
tories will turn for a while and thenexit, and others will 
ontinue turning forever. This information is 
ru
ial forproving de
idability of the rea
hability problem.Example 6. Consider the SPDI of Fig. 1. Fig. 2 shows part of the rea
h setof the interval [8, 10] ⊂ e0, answering positively to the rea
hability question:Is [1, 2] ⊂ e4 rea
hable from [8, 10] ⊂ e0? Fig. 2 has been automati
allygenerated by the SPeeDi toolbox we have developed for rea
hability analysisof SPDIs based on the results of [ASY01℄.2The �xpoint x∗ is 
omputed by solving the equation f(x∗) = x∗, where f(·) is positivea�ne.

8
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Figure 2: Rea
hability analysis.The above result does not allow us to dire
tly answer other questions aboutthe behavior of the SPDI su
h as determine for a given point (or set of points)whether: (a) there exists (at least) one traje
tory that remains in the 
y
le,and (b) it is possible to 
ontrol the system to rea
h any other point. In orderto do this, we need to further study the properties of the system aroundsimple edge-
y
les.2.4 KernelsWe 
an now present how to 
ompute the invarian
e, 
ontrollability and via-bility kernels of an SPDI. Proofs are omitted but for further details, refer to[ASY02℄ and [S
h04℄. In the following, for K a subset of R
2 and σ a 
y
li
signature, we de�ne Kσ as follows:

Kσ =

k⋃

i=1

(int(Pi) ∪ ei) (2)where Pi is su
h that ei−1 ∈ in(Pi), ei ∈ out(Pi) and int(Pi) is Pi's interior.2.4.1 Viability KernelWe now re
all the de�nition of viability kernel [Aub01℄.De�nition 3. A traje
tory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. Kis a viability domain if for every x ∈ K, there exists at least one traje
tory9



(a) (b)Figure 3: (a) Viability Kernels; (b) Controllability Kernels
ξ, with ξ(0) = x, whi
h is viable in K. The viability kernel of K, denoted
Viab(K), is the largest viability domain 
ontained in K.For I ⊆ e1 we de�ne Preσ(I) to be the set of all x ∈ R

2 for whi
h there existsa traje
tory segment ξ starting in x, that rea
hes some point in I, su
h that
Sig(ξ) is a su�x of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonalsubset of the plane whi
h 
an be 
al
ulated using the following pro
edure.We start by de�ning:

Pree(I) = {x | ∃ξ : [0, t] → R
2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}and apply this operation k times: Preσ(I) =

⋃k

i=1
Preei

(Ii) with I1 = I,
Ik = Preek,e1

(I1) and Ii = Preei,ei+1
(Ii+1), for 2 ≤ i ≤ k − 1.The following result provides a non-iterative algorithmi
 pro
edure for 
om-puting the viability kernel of Kσ on an SPDI:Theorem 4. If σ is not DIE, Viab(Kσ) = Preσ(S), otherwise Viab(Kσ) =

∅.Example 7. Fig. 3-(a) shows all the viability kernels of the SPDI given inExample 1. There are 4 
y
les with viability kernels � in the pi
ture two ofthe kernels are overlapping.
10



2.4.2 Controllability KernelWe say K is 
ontrollable if for any two points x and y in K there exists atraje
tory segment ξ starting in x that rea
hes an arbitrarily small neighbor-hood of y without leaving K. More formally:De�nition 4. A set K is 
ontrollable if ∀x,y ∈ K, ∀δ > 0, ∃ξ : [0, t] →
R

2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈ [0, t] . ξ(t′) ∈ K). The
ontrollability kernel of K, denoted Cntr(K), is the largest 
ontrollable subsetof K.For a given 
y
li
 signature σ, we de�ne CD(σ) as follows:
CD(σ) =





〈L, U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE (3)For I ⊆ e1 let us de�ne Succσ(I) as the set of all points y ∈ R

2 for whi
h thereexists a traje
tory segment ξ starting in some point x ∈ I, that rea
hes y,su
h that Sig(ξ) is a pre�x of e1 . . . ek. The su

essor Succσ(I) is a polygonalsubset of the plane whi
h 
an be 
omputed similarly to Preσ(I). De�ne
C(σ) = (Succσ ∩ Preσ)(CD(σ))We 
ompute the 
ontrollability kernel of Kσ as follows:Theorem 5. Cntr(Kσ) = C(σ).Example 8. Fig. 3-(b) shows all the 
ontrollability kernels of the SPDIgiven in Example 1. There are 4 
y
les with 
ontrollability kernels � in thepi
ture two of the kernels are overlapping.The following result whi
h relates 
ontrollability and viability kernels, statesthat the viability kernel of a given 
y
le is the lo
al basin of attra
tion of the
orresponding 
ontrollability kernel.Proposition 2. Any viable traje
tory in Kσ 
onverges to Cntr(Kσ).Let Cntrl(Kσ) be the 
losed 
urve obtained by taking the leftmost traje
-tory and Cntru(Kσ) be the 
losed 
urve obtained by taking the rightmosttraje
tory whi
h 
an remain inside the 
ontrollability kernel. In other words,

Cntrl(Kσ) and Cntru(Kσ) are the two polygons de�ning the 
ontrollabilitykernel. 11



A non-empty 
ontrollability kernel Cntr(Kσ) of a given 
y
li
 signature σpartitions the plane into three disjoint subsets: (1) the 
ontrollability kernelitself, (2) the set of points limited by Cntrl(Kσ) (and not in
luding Cntrl(Kσ))and (3) the set of points limited by Cntru(Kσ) (and not in
luding Cntru(Kσ)).De�nition 5. We de�ne the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) tobe the subset de�ned by (2) above if the 
y
le is 
ounter-
lo
kwise or to bethe subset de�ned by (3) if it is 
lo
kwise. The outer of Cntr(Kσ) (denotedby Cntrout(Kσ)) is de�ned to be the subset whi
h is not the inner nor the
ontrollability itself.Remark: Noti
e that an edge in the SPDI may be split into parts by the
ontrollability kernel � part inside, part on the kernel and part outside. Insu
h 
ases, we 
an generate a di�erent SPDI, with the same dynami
s butwith the edge split into parts, su
h that ea
h part is 
ompletely inside, on oroutside the kernel. Although the signatures will obviously 
hange, it is trivialto prove that the behaviour of the SPDI remains identi
al to the original. Tosimplify presentation, in the rest of the paper, we will assume that all edgesare either 
ompletely inside, on or 
ompletely outside the kernels. We notethat in pra
ti
e splitting is not ne
essary sin
e we 
an just 
onsider parts ofedges.Proposition 3. Given two edges e and e′, one lying 
ompletely inside a
ontrollability kernel, and the other outside or on the same 
ontrollabilitykernel, su
h that ee′ is feasible, then there exists a point on the 
ontrollabilitykernel, whi
h is rea
hable from e and from whi
h e′ is rea
hable.Proof. Let e ⊆ Cntrin(Kσ). Let us assume that e′ ⊆ Cntr(Kσ); sin
e ee′is feasible, by the Jordan 
urve theorem [Hen79℄, the traje
tory must 
ross
Cntrl(Kσ) or Cntru(Kσ) at least on
e. Assume the �rst holds, then thereexists x ∈ Cntrl(Kσ) su
h that exe′ is feasible. If e′ ⊆ Cntrout(Kσ) the proofis 
ondu
ted in a similar way as the previous 
ase by using the de�nitionof 
ontrollability kernel: every point inside the kernel is rea
hable from anyother point in the kernel.2.4.3 Invarian
e KernelIn general, an invariant set is a set of points su
h that for any point in theset, every traje
tory starting in su
h point remains in the set forever and theinvarian
e kernel is the largest of su
h sets. In parti
ular, for SPDI, givena 
y
li
 signature, an invariant set is a set of points whi
h keep rotating inthe 
y
le forever and the invarian
e kernel is the largest of su
h sets. Moreformally: 12



De�nition 6. A set K is said to be invariant if for any x ∈ K there exists atleast one traje
tory starting in it and every traje
tory starting in x is viablein K. Given a set K, its largest invariant subset is 
alled the invarian
ekernel of K and is denoted by Inv(Kσ).We need some preliminary de�nitions before showing how to 
ompute thekernel. The extended ∀-prede
essor of an output edge e of a region R is theset of points in R su
h that every traje
tory segment starting in su
h pointrea
hes e without traversing any other edge. More formally, let R be a regionand e be an edge in out(R), then the e-extended ∀-prede
essor of I, P̃ree(I)is de�ned as:
P̃ree(I) = {x | ∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.It is easy to see that P̃reσ(I) is a polygonal subset of the plane whi
h 
anbe 
al
ulated using the following pro
edure. First 
ompute P̃reei

(I) for all
1 ≤ i ≤ k and then apply this operation k times: P̃reσ(I) =

⋃k

i=1
P̃reei

(Ii)with I1 = I, Ik = P̃reeke1
(I1) and Ii = P̃reeiei+1

(Ii+1), for 2 ≤ i ≤ k − 1. We
ompute the invarian
e kernel of Kσ as follows:Theorem 6. If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(J)), otherwise Inv(Kσ) =
∅.Example 9. Fig. 4-(a) shows the unique invarian
e kernels of the SPDIgiven in Example 1.An interesting property of invarian
e kernels is that the limits are in
ludedin the invarian
e kernel, i.e. [l∗, u∗] ⊆ Inv(Kσ). In other words:Proposition 4. The set delimited by the polygons de�ned by the interval
[l∗, u∗] is an invarian
e set of STAY 
y
les.In [ASY02℄ it has been proved that for σ a STAY 
y
le, then (1) C(σ) isinvariant and (2) there exists a neighborhood K of C(σ) su
h that any vi-able traje
tory starting in K 
onverges to C(σ). From this, the de�nitionof invarian
e kernel and theorem 6 it follows the following result relating
ontrollability and invarian
e kernels.Proposition 5. If σ = e1 . . . ene1 is STAY then Cntr(Kσ) ⊆ Inv(Kσ).13



(a) (b)Figure 4: (a) Invarian
e Kernel; (b) All the KernelsExample 10. Fig. 4-(b) shows the viability, 
ontrollability and invarian
ekernels of the SPDI given in Example 1. For any point in the viability kernelof a 
y
le there exists a traje
tory whi
h will 
onverge to its 
ontrollabilitykernel (proposition 2). It is possible to see in the pi
ture that Cntr(·) ⊂ Inv(.)(proposition 5). All the above pi
tures has been obtained with the toolboxSPeeDI+ [PS06℄.In a similar way as for the 
ontrollability kernel, we de�ne Invl(Kσ), Invu(Kσ),the inner Invin(Kσ) and outer Invout(Kσ) of an invarian
e kernel.2.5 Semi-Separatrix CurvesIn this se
tion we de�ne the notion of separatrix 
urves, whi
h are 
urves on
R

2 disse
ting the plane into two mutually non-rea
hable subsets. We relaxthe notion of separatrix obtaining semi-separatrix 
urves su
h that somepoints in one set may be rea
hable from the other set, but not vi
e-versa.We de�ne �rst the above notions for the plane independently of SPDIs.De�nition 7. Let K ⊆ R
2. A separatrix in K is a 
losed 
urve γ parti-tioning K into three sets KA, KB and γ itself, su
h that KA ∩ KB ∩ γ = ∅,

K = KA ∪ KB ∪ γ and the following 
onditions hold:1. For any point x0 ∈ KA and traje
tory ξ, with ξ(0) = x0, there is no tsu
h that ξ(t) ∈ KB; and 14



2. For any point x0 ∈ KB and traje
tory ξ, with ξ(0) = x0, there is no tsu
h that ξ(t) ∈ KA.If only one of the above 
onditions holds then we say that the 
urve is asemi-separatrix. If only 
ondition 1 holds, then we say that KA is the innerof γ (written γin) and KB is the outer of γ (written γout). If only 
ondition2 holds, KB is the inner and KB is the outer of γ.Remark: Noti
e that, as in the 
ase of the 
ontrollability kernel, an edge ofthe SPDI may be split into two by a semi-separatrix � part inside, and partoutside. As before, we 
an split the edge into parts, su
h that ea
h part is
ompletely inside, or 
ompletely outside the semi-separatrix.The set of all the separatri
es of R
2 is denoted by Sep(R2), or simply Sep.The above notions are extended to SPDIs straightforwardly.Now, let σ = e1 . . . ene1 be a simple 
y
le, ∠

bi

ai
(1 ≤ i ≤ n) be the dynami
s ofthe regions for whi
h ei is an entry edge and I = [l, u] and interval on edge e1.Remember that Succe1e2

(I) = F (I∩S)∩J , where F = [a1l+b1, a2u+b2]. Let
l be the ve
tor 
orresponding to the point on e1 with lo
al 
oordinates l and
l′ be the ve
tor 
orresponding to the point on e2 with lo
al 
oordinates F (l)(similarly, we de�ne u and u′ for F (u)). We de�ne �rst Succ

b1

e1
(I) = {x | l′ =

αx+ l, 0 < α < 1} and Succ
a1

e1
(I) = {x | u′ = αx+u, 0 < α < 1}. We extendthese de�nitions in a straight way to any (
y
li
) signature σ = e1 . . . ene1,denoting them by Succ

b

σ(I) and Succ
a

σ(I), respe
tively; we 
an 
ompute themsimilarly as for Pre. Whenever applied to the �x-point I∗ = [l∗, u∗], we denote
Succ

b

σ(I∗) and Succ
a

σ(I∗) by ξl
σ and ξu

σ respe
tively. Intuitively, ξl
σ (ξu

σ) denotesthe pie
e-wise a�ne 
losed 
urve de�ned by the leftmost (rightmost) �x-point
l∗ (u∗).We show now how to identify semi-separatri
es for simple 
y
les.Theorem 7. Given an SPDI, let σ be a simple 
y
le, then the following hold:1. If σ is EXIT-RIGHT then ξl

σ is a semi-separatrix 
urve (�ltering tra-je
tories from �left� to �right�);2. If σ is EXIT-LEFT then ξu
σ is a semi-separatrix 
urve (�ltering traje
-tories from �right� to �left�);3. If σ is STAY, then the two polygons de�ning the invarian
e kernel(Invl(Kσ) and Invu(Kσ)), are semi-separatri
es.15



Proof. 1. By de�nition of EXIT-RIGHT, any traje
tory is bounded to theleft by ξl
σ, whi
h is a pie
e-wise a�ne 
losed 
urve, partitioning R

2 intothree disjoint sets: KB, the �right� part of ξl
σ; KA, the �left� part of

ξl
σ; and ξl

σ itself. By Jordan's theorem, any traje
tory may pass from
KB to KA if and only if it 
ross ξl

σ. However, by de�nition of EXIT-RIGHT, this is only possible from KA to KB but not vi
e-versa. Hen
e
ξl
σ is a semi-separatrix 
urve.2. Symmetri
 to the previous 
ase.3. Follows dire
tly from the de�nition of invarian
e kernel, sin
e any tra-je
tory with initial point in Inv(Kσ) ∪ Invin(Kσ) 
annot leave Inv(Kσ).If the traje
tory 
y
les 
lo
kwise it 
annot traverse Invl(Kσ) and if it
y
les 
ounter-
lo
kwise it 
annot traverse Invu(Kσ). In both 
ases nopoint on Invout(Kσ) 
an be rea
hed. Symmetri
ally, traje
tories start-ing in Inv(Kσ) ∪ Invout(Kσ) 
annot rea
h any point on Invin(Kσ).Remark: In the 
ase of STAY 
y
les, ξl

σ and ξu
σ are also semi-separatri
es.Noti
e that in the above result, 
omputing a semi-separatrix depends onlyon one simple 
y
le, and the 
orresponding algorithm is then redu
ed to �ndsimple 
y
les in the SPDI and 
he
king whether it is STAY, EXIT-RIGHTor EXIT-LEFT.Example 11. Fig. 5 shows all the semi-separatri
es of the SPDI given inExample 1. The small arrows traversing the semi-separatri
es show the in-ner and outer of ea
h semi-separatrix: a traje
tory may traverse the semi-separatrix following the dire
tion of the arrow, but not vi
e-versa.The following two results relate feasible signatures and semi-separatri
es.Proposition 6. If, for some semi-separatrix γ, e ∈ γin and e′ ∈ γout, thenthe signature ee′ is not feasible.Proof. Dire
tly from the de�nition of semi-separatrix.Proposition 7. If, for some semi-separatrix γ, and signature σ (of at leastlength 2), then, if head(σ) ∈ γin and last(σ) ∈ γout, σ is not feasible.Proof. The proof pro
eeds by indu
tion on sequen
e σ. The base 
ase, when

σ is of length 2, redu
es to proposition 6. Now, assuming that the propositionis true for signatures of length n, we are required to prove that it is also truefor signatures of length n + 1. Consider the signature σ′ = ee′σe′′, with
e ∈ γin and e′′ ∈ γout. Clearly, either e′ ∈ γin or e′ ∈ γout.16



Figure 5: Semi-separatri
esCase 1: e′ ∈ γin. The signature e′σe′′ satis�es the 
onditions and is of length
n. Therefore, the indu
tive property applies, and we 
an 
on
lude that
e′σe′′ is not feasible. However, sin
e any extension of an unfeasiblesignature is itself unfeasible, it follows that σ′ is not feasible.Case 2: e′ ∈ γout. The signature ee′ is unfeasible by proposition 6. There-fore, being an extension of ee′, σ′ is also unfeasible (proposition 1).

3 State-Spa
e Redu
tion Using Semi-Separatri
esSemi-separatri
es partition the state spa
e into two parts3 � on
e one 
rossessu
h a border, all states outside the region 
an be ignored. We present ate
hnique, whi
h, given an SPDI and a rea
hability question, enables us todis
ard portions of the state spa
e based on this information. The approa
his based on identifying inert states (edges in the SPDI) whi
h 
annot play arole in the rea
hability analysis.De�nition 8. Given an SPDI S, a set of semi-separatri
es Γ ⊆ Sep, asour
e edge e0 and a destination edge e1, an edge e is said to be inert if itlies outside a semi-separatrix inside whi
h lies e0, or it lies inside a semi-separatrix outside whi
h lies e1:3We don't 
onsider the semi-separatrix itself.17



inertΓe0→e1 = {e : E | ∃γ ∈ Γ · e0 ∈ γin ∧ e ∈ γout}

∪ {e : E | ∃γ ∈ Γ · e1 ∈ γout ∧ e ∈ γin}We 
an prove that these inert edges 
an never appear in a feasible signature:Lemma 8. Given an SPDI S, a set of semi-separatri
es Γ, a sour
e edge
e0 and a destination edge e1, and a feasible signature e0σe1 in S. No inertedge from inertΓe0→e1 may appear in e0σe1.Proof. From the de�nition of inert states, it follows that either both e0 and
e1 are inert, or neither is. If both are inert, then for some γ, e0 ∈ γin and
e1 ∈ γout. But if this were so, then e0σe1 is unfeasible by proposition 7. We
an thus 
onsider only inert edges in σ.Let e be an inert edge appearing in σ. Therefore, e0σe1 = e0σ1eσ2e1. Byde�nition of inert edges, e 
an either be inert be
ause (i) it lies outside asemi-separatrix inside whi
h lies e0, or (ii) it lies inside a semi-separatrixoutside whi
h lies e1.Case 1: Let γ ∈ Γ be a semi-separatrix su
h that e0 ∈ γin and e ∈ γout. Butby proposition 7, e0σ1e is not feasible. Hen
e, neither is e0σ1eσ2e1.Case 2: Let γ ∈ Γ be a semi-separatrix su
h that e ∈ γin and e1 ∈ γout. Byproposition 7, eσ2e1 is not feasible, and hen
e, neither is e0σ1eσ2e1.It thus follows that e0σe1 is not feasible.Given an SPDI, we 
an redu
e the state spa
e by dis
arding inert edges.De�nition 9. Given an SPDI S, a set of semi-separatri
es Γ, a sour
e edge
e0 and a destination edge e1, we de�ne the redu
ed SPDI SΓ

e0→e1 to be thesame as S but without the inert edges.Clearly, the resulting SPDI is smaller than the original one.Proposition 8. For any SPDI S, a set of semi-separatri
es Γ, and edges e0and e1, S does not have less edges than SΓ
e0→e1.Example 12. The shaded (light blue) areas of Fig. 6 (a) and (b) are thesubsets of the SPDI (edges of the rea
hability graph) eliminated by the re-du
tion presented in this se
tion, when answering the question: Is interval I ′rea
hable from I? 18
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(b)Figure 6: Redu
tion using Semi-separatri
esFinally, we prove that 
he
king rea
hability on the redu
ed SPDI is equivalentto 
he
king rea
hability on the original SPDI:Theorem 9. Given an SPDI S, a set of semi-separatri
es Γ, and edges e0and e1, then, e1 is rea
hable from e0 in S if and only if e1 is rea
hable from
e0 in SΓ

e0→e1.Proof. The proof is split into two parts: that rea
hability in the redu
edSPDI implies rea
hability in the original automaton (soundness) and vi
e-versa (
ompleteness).Soundness: Assume that e1 is rea
hable from e0 in SΓ
e0→e1. Then, theremust exist a feasible signature σ in SΓ

e0→e1 whi
h starts on e0 and endsat e1. Sin
e every SPDI edge in SΓ
e0→e1 is also in S, and the dynami
sof the two systems are identi
al, it follows that σ is also a feasible pathin S. Therefore, e1 is also rea
hable from e0 in S.Completeness: Now assume that e1 is rea
hable from e0 in S. By de�ni-tion of rea
hability, there exists a feasible signature e0σe1 in S. Byproposition 8, no inert edge may appear in e0σe1. Therefore, e0σe1is also a feasible signature in SΓ

e0→e1, whi
h in turn implies that e1 isrea
hable from e0 in Se0→e1.
19



We have shown, that on
e semi-separatri
es are identi�ed, given a rea
habil-ity question, we 
an redu
e the size of the SPDI to be veri�ed. This enablesus to verify SPDIs mu
h more e�
iently. It is important to note that model-
he
king an SPDI requires identi�
ation of simple loops, whi
h means thatthe 
al
ulation of the semi-separatri
es is not more expensive than the ini-tial pass of the model-
he
king algorithm. Furthermore, we 
an perform thisanalysis only on
e for an SPDI and store the information to be used in anyrea
hability analysis on that SPDI. Redu
tion, however, 
an only be appliedon
e we know the sour
e and destination states.4 State-Spa
e Redu
tion Using Kernels4.1 State-spa
e redu
tion using kernelsWe have already shown that any invariant set, is essentially a pair of semi-separati
es. In parti
ular, the invarian
e kernel is a largest invariant set fora parti
ular loop, we 
an use the results presented in se
tion 3 to abstra
t anSPDI by using invarian
e kernels. We now turn our attention to state spa
eredu
tion using 
ontrollability kernels:De�nition 10. Given an SPDI S, a loop σ, a sour
e edge e0 and a destina-tion edge e1, an edge e is said to be redundant if it lies on the opposite sideof a 
ontrollability kernel as both e0 and e1:redundantσe0→e1 = {e : E | ∃e0, e1 ∈ Cntrin(σ) ∪ Cntr(σ) ∧ e ∈ Cntrout(σ)}

∪ {e : E | ∃e0, e1 ∈ Cntrout(σ) ∪ Cntr(σ) ∧ e ∈ Cntrin(σ)}We 
an prove that we 
an do without these edges to 
he
k feasibility:Lemma 10. Given an SPDI S, a loop σ, a sour
e edge e0, a destinationedge e1, and a feasible signature e0σe1 then there exists a feasible signature
e0σ′e1 su
h that σ′ 
ontains no redundant edge from redundantσe0→e1.Proof. Let e0σe1 be a feasible signature whi
h 
ontains some redundant edgefrom the set redundantσe0→e1. Without loss of generality, we assume that
e0, e1 ∈ Cntrout(σ) ∪ Cntr(σ). Let f0 and f1 be, respe
tively, the �rst andlast redundant edges in σ. By de�nition of redundant edges, it follows that
f0, f1 ∈ Cntrin(σ). The path we are following is thus:

e0σ1f0σ2f1σ3e120



Sin
e f0 (f1) is the �rst (last) redundant edge, it follows that the last elementof σ1 (the �rst element of σ3) is inside the 
ontrollability kernel. Usingproposition 3, it follows that there exists a point p on the 
ontrollabilitykernel rea
hable from the last element of σ1 (a point q on the 
ontrollabilitykernel from whi
h the �rst element of σ3 is rea
hable). Sin
e all points onthe 
ontrollability kernel are mutually rea
hable, it follows that q is rea
hablefrom p along some dis
rete path σ′
2 
ompletely within the kernel. We havethus obtained a shorter dis
rete path e0σ1σ

′
2σ3e1 whi
h is feasible and whi
h
ontains no redundant edges.Given an SPDI, we 
an redu
e the state spa
e by dis
arding redundant edges.De�nition 11. Given an SPDI S, a loop σ, a sour
e edge e0 and a desti-nation edge e1, we de�ne the redu
ed SPDI Sσ

e0→e1 to be the same as S butwithout redundant edges.Clearly, the resulting SPDI is smaller than the original one.Proposition 9. For any SPDI S, a loop σ, a sour
e edge e0 and a destinationedge e1, S does not have less edges than Sσ
e0→e1.Finally, we prove that 
he
king rea
hability on the redu
ed SPDI is equivalentto 
he
king rea
hability on the original SPDI:Theorem 11. Given an SPDI S, with a set of loops σ, a sour
e edge e0 anda destination edge e1, then, e1 is rea
hable from e0 in S if and only if e1 isrea
hable from e0 in Sσ

e0→e1.Proof. The theorem follows immediately from proposition 10.Given a loop whi
h has a 
ontrollability kernel, we 
an thus redu
e the statespa
e to explore. In pra
ti
e, we apply this state spa
e redu
tion for ea
h
ontrollability kernel in the SPDI. On
e a loop in the SPDI is identi�ed, itis straightforward to apply the redu
tion algorithm.4.2 Immediate answers to rea
hability questionsBy de�nition of the 
ontrollability kernel, any two points inside it are mu-tually rea
hable. This 
an be used to answer 
ertain rea
hability questionssimply by inspe
ting the 
ontrollability kernel: if both the sour
e and des-tination edge lie (possibly partially) within the same 
ontrollability kernel,then, there exists a traje
tory from the sour
e to the destination edge.21



Proposition 10. Given a sour
e edge esrc and a destination edge edst, iffor some loop σ, esrc ∩ Cntr(Kσ) 6= ∅ and edst ∩ Cntr(Kσ) 6= ∅, then edst isrea
hable from esrc.Furthermore, proposition 2 tells us that any point in the viability kernel ofa loop 
an eventually rea
h the 
ontrollability kernel of the same loop. Thisallows us to relax the 
ondition about the sour
e edge to just 
he
k whetherit (partially) lies within the viability kernel. Sin
e the 
ontrollability kernelalways lies within the viability kernel of the same loop, this is a generalizationof the �rst result.Proposition 11. Given a sour
e edge esrc and a destination edge edst, iffor some loop σ, esrc ∩ Viab(Kσ) 6= ∅ and edst ∩ Cntr(Kσ) 6= ∅, then edst isrea
hable from esrc.Finally, we note that the union of two non-disjoint 
ontrollability sets is itselfa 
ontrollability set. This means that we 
an extend the result to work fora 
olle
tion of loops whose 
ontrollability kernels form a strongly 
onne
tedset. To state this result, we will require some additional ma
hinery.De�nition 12. We extend viability and 
ontrollability kernels for a set ofloops Σ by taking the union of the kernels of the individual loops:
Viab(KΣ) =

⋃

σ∈Σ

Viab(Kσ)

Cntr(KΣ) =
⋃

σ∈Σ

Cntr(Kσ)De�nition 13. Two loops σ and σ′ are said to be 
ompatible (σ ! σ′) iftheir 
ontrollability kernels overlap:
σ ! σ′ ⇔ Cntr(Kσ) ∩ Cntr(K ′

σ) 6= ∅We extend the notion of 
ompatibility to a set of loops Σ to mean that allloops in the set are transitively 
ompatible:
∀σ, σ′ ∈ Σ · σ !

∗ σ′Theorem 12. Given a sour
e edge esrc and a destination edge edst, if forsome 
ompatible set of loops Σ, esrc ∩Viab(KΣ) 6= ∅ and edst ∩Cntr(KΣ) 6= ∅,then edst is rea
hable from esrc. 22
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(b)Figure 7: Answering Rea
hability using KernelsProof. The proof of the theorem follows almost immediately from the de�-nition of the 
ontrollability kernel, and proposition 2.We note that this theorem is a generalization of the previous two propositions.Example 13. Fig. 7-(a) shows a viability and a 
ontrollability kernel of a
y
le and two intervals I and I ′. The rea
hability question, is I ′ rea
hablefrom I?, 
annot be answered immediately in this 
ase. Fig. 7-(b) showsoverlapping of the viability and 
ontrollability kernels depi
ted in Fig. 7-(a) with the kernels of an inner 
y
le. I ′ is shown to lie in a 
ompatible
ontrollability kernel, thus by theorem 12, I ′ is rea
hable from I (the positiveanswer is given without the need of performing the rea
hability analysis).The next theorem provides an immediate answer to edges lying inside andoutside invarian
e kernels. The proof follows dire
tly from the de�nition ofinvarian
e kernels.Theorem 13. If one of the following 
onditions holds, then then edst is notrea
hable from esrc:1. Sour
e edge esrc ∈ Invin(Kσ) and destination edge edst ∈ Inv(Kσ) ∪
Invout(Kσ)2. Sour
e edge esrc ∈ Inv(Kσ) ∪ Invout(Kσ) and destination edge edst ∈
Invin(Kσ) 23



We note that, sin
e an invarian
e kernel indu
es a pair of semi-separatri
es,this theorem is a spe
ialization of of the redu
tion using semi-separatrixinformation.In pra
ti
e, we propose to use these theorems to enable answering 
ertainrea
hability questions without having to explore the 
omplete state spa
e. It
an also be used to redu
e rea
hability questions to (possibly) simpler onesby trying to rea
h a viability kernel rather than a parti
ular edge (in the 
aseof theorem 12). As in the 
ase of semi-separatri
es, a preliminary analysisof an SPDI 
an be done to store all kernels, whi
h information is used inall subsequent rea
hability queries. By 
ombining this te
hnique with thesemi-separatrix redu
tion te
hnique we envisage substantial gains.5 Con
luding RemarksWe have hereby introdu
ed the 
on
ept of semi-separatri
es for polygonalhybrid systems, and presented non-iterative algorithms to 
al
ulate them.Using semi-separatri
es, and kernels in SPDI phase-portraits introdu
ed in[ASY02℄ and in [S
h04℄, we presented te
hniques to improve rea
habilityanalysis on SPDIs. In all 
ases, the te
hniques require the identi�
ation andanalysis of loops in the SPDI. When multiple rea
hability questions are tobe asked about the same SPDI, this information 
an be gathered and storedto avoid repeated analysis. We note that most of this information is stillrequired when performing rea
hability analysis, and thus no extra work isrequired to perform the optimization presented in this paper. The resultspresented in this paper all depend on 
he
king whether an edge lies withina given polygon. This 
an be e�
iently 
he
ked using standard geometri
alte
hniques frequently used in 
omputer graphi
s su
h as using the odd-paritytest [FvDFH96℄.In 
ertain 
ases, using kernel information, we 
an answer rea
hability ques-tions using the information gathered without any further analysis. In other
ases, we use semi-separatri
es and 
ontrollability kernels to redu
e the sizeof the SPDI under analysis.Our work is obviously restri
ted to planar systems, whi
h enables us to 
om-pute these kernels exa
tly. In higher dimensions and hybrid systems withhigher 
omplexity, 
al
ulation of kernels is not 
omputable. Other relatedwork is thus based on 
al
ulations of approximations of these kernels (e.g.,[ALQ+01b, ALQ+01a, SP02℄). We are not aware of any work using kernelsand semi-separatri
es to redu
e the state-spa
e of the rea
hability graph aspresented in this paper.We have built a toolset SPeeDI [APSY02℄ for the analysis of SPDIs. We have24



re
ently extended this toolset to SPeeDI+ [PS06℄ whi
h 
al
ulates kernels ofSPDIs. We are 
urrently exploring the implementation of the optimizationspresented in this paper to improve the e�
ien
y of SPeeDI+. We are alsoinvestigating other appli
ations of these kernels in the model-
he
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