UNIVERSITY OF OSLO

Department of Informatics

Contract-based
Internet Service
Software Development:
A Proposal

Research Report No.
333

Pablo Giambiagi
Olaf Owe

Gerardo Schneider
Anders P. Ravn

[sbn 82-7368-288-9
Issn 0806-3036

January 2006

Contract-based Internet Service Software
Development: A Proposal

Pablo Giambiagi* Olaf Owe' Gerardo Schneider?
Anders P. Ravn®

January 2006

Abstract

The fast evolution of the Internet has popularized service-oriented
architectures dynamic I'T-supported inter-business collaborations. Yet,
interoperability between different organizations, requires contracts to
reduce risks. Thus, high-level models of contracts are making their
way into service-oriented architectures, but application developers are
still left to their own devices when it comes to writing code that will
comply with a contract. This paper surveys existing and proposes
new language-based solutions to the above problem. Contracts are
formalized as behavioral interfaces, and abstraction mechanisms may
guide the developer in the production of contract-aware applications.
We concentrate on contracts dealing with performance (real-time) and
information flow (confidentiality).

1 Introduction

Already several years ago, technology gurus predicted that the next big trend
in software system development would be the service-oriented architecture,
SOA. A successful integration of loosely-coupled services belonging to dif-
ferent, sometimes competing, but always collaborating organizations would

*SICS, P.O. Box 1263, SE-16429 Kista, Sweden. E-mail: pablo@sics.se

fDept. of Informatics — Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mail: olaf@ifi.uio.no

fDept. of Informatics — Univ. of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway.
E-mail: gerardo@ifi.uio.no

SDept. of Computer Science Aalborg University, Fredrik Bajers vej 7E, DK-9220
Aalborg, Denmark. E-mail: apr@cs.aau.dk

storm the world. Tt would create a myriad of new business opportunities, en-
abling the formation of virtual organizations where SMEs' would join forces
to thrive in ever increasingly competitive global markets. While the dream
lives on, and the industry develops and deploys web services, the degree of
integration achieved between different organizations remains low. Collabo-
ration presumes a minimum level of mutual trust, and wherever trust is not
considered sufficient, businesspeople turn to contracts as a mechanism to re-
duce risks. In other terms, for the SOA to deliver its promised advantages,
developers need cost effective contract management solutions.

Researchers and industries alike have began addressing this very essential
issue with a top-down approach. Several electronic contract languages, their
models and reasoning techniques are in the process of being discussed and
refined. While this is a natural approach, we see the absolute need to provide
the actual system developer with the means to implement their services to
meet the requirements dictated by the contracts.

At the moment the developer faces a situation where the programming
languages originally used to produce intra-organization, non-distributed ap-
plications are already overstretched to cope with issues of distribution across
organizational domains. When it comes to contracts, the abstraction mecha-
nisms of current languages give almost no assistance to the developer. There-
fore we propose to use a richer language, based on the concepts of Creol [18|,
which allows formal verification of requirements of a contract to be done or
even automated using the Maude tool [38].

1.1 Related Work

The programming language community has long identified the need to pro-
vide easier ways to extend the abstraction mechanisms of a language. One
of the main approaches of the day is that of Aspect-Oriented Programming
(AOP) [26], which helps separate cross-cutting concerns (like logging and
access control) from the main business logic. AOP is composed of a set of
techniques, including code instrumentation and runtime interceptors.

A similar approach uses composition filters (CF) [2], where the idea is
not to replace the programming paradigm but to enhance the expressive
power and maintainability of current object-oriented languages. CF may be
considered as a modular extension to the object-oriented model with inter-
face layers including the so-called filters. Advantages of CFs with respect to
aspects are exposed in [12].

An alternative approach aims at defining new kinds of languages that

'SME: small and medium enterprise.

adapt themselves better to the challenges posed by web services. Some con-
centrate on bridging the gap between the program language objects and the
XML objects that web services should exchange [27, 28, 39|, others provide
abstractions to manipulate interfaces |17|, and others address asynchronous
communication by means of message passing [14]. In [17], for instance, a
new language proposal has been presented, which combines XQuery’s seman-
tics with imperative constructs and a join calculus-style concurrency model.
The proposed language seems to solve some of the problems of main stream
languages, like concurrency and message correlation problems, which arises
for instance in Java and C#. It lacks, however, useful features likeinterface
inheritance and the current implementation is based on the shared-state con-
currency and does not includes correlated messages nor garbage collection.

The solutions mentioned so far still lack support for discovery, monitoring
and management of contracts. Approaches like AOP and CF can potentially
provide some help here (see e.g. [10]), but they fail to abstract low-level
issues and basically leave too much freedom to the programmer (which leads
to code maintenance and analysis issues).

Despite of the current wide acceptance of AOP as a good paradigm for im-
proving reusability and modularity, there is no convincing and final solution
to the application of aspects to real-time systems. In some cases [55|, aspect-
orientation seems to perform better than object-orientation when dealing
with real-time specification, regarding system properties such as testability
and maintainability. On the other hand, in [7], there is a formal framework
for multi-threaded software and multi-processor architecture software synthe-
sis using timing constraints, where it is shown that aspect-oriented software
development is not suitable for such cases.

A new concept for real-time system development (ACCORD) is presented
in [53], combining both component-based and aspect-oriented software de-
velopment (CBSD and AOSD, respectively). ACCORD bridges the gap be-
tween modern software engineering methods —focused mainly on component
models, interfaces and separation of concerns— and real-time design meth-
ods, by proposing a model for software development using the advantages of
both communities. As far as we know, the focus is primarily on the design
methodology of real-time systems by using CBSD and AOSD, but not on
analysis (e.g. verification) of real-time systems. It is not clear, either, how
the methodology could be used in asynchronous open distributed systems
such as the Internet.

Programs using real-time features are, in general, difficult to design and
verify, even more when combined with an inheritance mechanism. Chang-
ing application requirements or real-time specifications in real-time object-
oriented languages may produce unnecessary redefinitions. This is called the

real-time specification inheritance anomaly. To our knowledge, [3] is the only
work trying to solve this problem; it does so by proposing real-time compo-
sition filters. The idea seems attractive and could be incorporated within a
contract-based approach.

A contribution towards verifying properties of contracts involving real-
time as formulated in existing languages is found in |24, 23|. They use a
translation to a real-time model checker to verify the cooperation aspect of
contracts.

In conclusion, there is still plenty of work to do in directly supporting
development of services that can be trusted to implement their contracts.

1.2 Overview

In the following section, we introduce Service Oriented Architectures (SOA)
and Contracts. In Section 3, we discuss Programming Languages and SOA
implementation. In Section 4, we identify open problems. In Section 5 we
outline our research agenda while Section 6 concludes on its feasibility.

2 Service-Oriented
Architectures

In a Service-Oriented Architecture (SOA), applications are essentially dis-
tributed systems composed of services (see Fig. 1, borrowed from [44]).
A service is a loosely-coupled, technology neutral and self-describing com-
putation element. Loose coupling is achieved through encapsulation and
communication through message passing; technology neutrality results from
adopting standardized mechanisms; and rich interface languages permit the
service to export sufficient information so that eventual clients can discover
and connect to it |44].

A SOA can be implemented in many different ways. A currently very pop-
ular approach uses a specific kind of service called web service. Web services
exchange SOAP [51| messages over standard Internet protocols (e.g. HTTP)
which carry a payload built from a stack of open XML standards [58]. There
are strong similarities between services and components in a component-
based system |52|. However, services usually have a coarser granularity and
the communication medium (the Internet) with its high latency and open-
ness constrains reliability and security in ways that easily go beyond what
can be found in most component-based systems.

Service

Provider
Publish Bind
Service Service

Figure 1: The basic Service Oriented Architecture

2.1 Contracts

The services in a SOA usually belong to different organizational domains and
therefore there is no single line of authority regulating their interactions. In
principle a consumer must trust the provider to deliver the expected service,
or establish a contract with it. For our purpose, a contract is a generic term
for the specification of a service which is negotiable and either statically en-
forceable or monitorable. In other words, a contract describes an agreement
between distinct services that determines rights and obligations on its signa-
tories, and for which there exists a programmatic way of identifying contract
violations. In the case of a bilateral contract, one usually talks about the roles
of service provider and service consumer; but multi-lateral contracts are also
possible where the participants may play other roles. A service provider may
also use a contract template (i.e. a yet-to-be-negotiated contract) to publish
the services it is willing to provide. As a service specification, a contract may
describe many different aspects of a service, including functional properties
(i.e. behavior) and also non-functional properties like security (e.g. access
control), quality of service (QoS), information flow and reputation.
Following [13], contracts may be classified in four levels?:

“The first level, basic, or syntactic, contracts, is required sim-

2This classification refers to level 2 contracts as “behavioral contracts”. When we use
the same name in the rest of the document we actually mean level 4 contracts. The reader
should be aware that from now on, when we refer to “behavioral contracts” we are not
restricted to sequential systems and mean level 4 contracts.

ply to make the system work. The second level, behavioral con-
tracts, improves the level of confidence in a sequential context.
The third level, synchronization contracts, improves confidence
in distributed or concurrency contexts. The fourth level, quality-
of-service contracts, quantifies quality of service and is usually
negotiable.”

2.1.1 Contract Models

There exists a number of contract models for services. The business process
standard ebXML [25] describes a Collaboration Protocol Agreement as a con-
tract between business partners that specifies the behavior of each service (by
simply stating its role) and how information exchanges are to be encoded.
IBM’s Web Service Level Agreement (WSLA [60]) is an XML specification
of performance constraints associated with the provision of a web service.
It defines the sources of monitoring data, a set of metrics (i.e. functions)
to be evaluated on the data, and obligations on the signatories to maintain
the metric values within certain ranges. The set of predefined metrics and
the structure of WSLA contracts are designed for services involving job sub-
missions in a grid computing environment. The later WS-Agreement [59], a
Global Grid Forum recommendation that has not reached the standard status
yet, is based on WSLA, but adapted to more recent web-services standards,
e.g. WS-Addressing and WS-Resource Framework. WS-Agreement is also
parametric on the language used to specify the metrics; but it must be an
XML dialect.

A number of problems have previously been identified for these standards
and specifications: They are restricted to bilateral contracts, lack formal
semantics (and therefore it is difficult to reason about them), their treatment
of functional behavior is rather limited and the sub-languages used to specify
QoS and security constraints are usually limited to small application-specific
domains.

In order to remedy the situation the research community has produced
contract taxonomies |1, 13, 54|, formalizations using logics (e.g. classical
[22|, modal [21]|, deontic |46] and defeasible logic [31]) and formalization
based on models of computation (e.g. finite state machines [16] and Petri
Nets [20]). The diversity of contract types, their applications and properties
poses a serious challenge to the definition of a generic contract model. This,
however, has been identified as a major precondition for the advancement of
the area [15].

2.1.2 Discovery and Negotiation

In a setup for contract-enhanced service provision, providers are expected
to make service descriptions available for consumers to discover and choose
among them. The description takes the form of a proto-contract, or template,
setting the basis for negotiating the provision of the service. Specifications
like ebXML and WS-Agreement define sub-languages for such contract tem-
plates, though they are usually attached to a very specific negotiation model.

There is, however, a large body of research on contract negotiation pro-
tocols under different threat models, particularly in the area of agent-based
systems |6, 48, 35].

2.1.3 Monitoring

Monitoring presents an important list of challenges. First, monitoring data
(including execution events and samplings of continuous processes) needs to
be collected in a timely, reliable and trustworthy manner. A set of collab-
orating Internet services forms a distributed system, and so must be the
monitoring subsystem itself, with the consequent difficulties regarding co-
ordination and dependability. Moreover, monitors are usually weaved into
the application code by specialists (not by ordinary programmers), creating
complex dependencies that seriously affect the software development process.

2.1.4 Quality of Service

According to the ARTIST road-map [15], quality of service is a “function
mapping a given system instance with its full behavior onto some [quantita-
tive| scale”. Typical QoS measures for web services include average response
time, minimum communication bandwidth and peak CPU usage. Contract
languages like WSLA and WS-Agreement permit specification of QoS con-
straints for web services. QoS measures usually depend on the behavior of the
environment as well as of the service, thus models tend to have a stochastic
nature, although this is not really necessary for monitoring purposes.

Typically, contract languages for QoS of Internet services consist of three
main sub-languages. Their purpose is to specify:

1. The QoS measures (i.e. functions) including their domains;

2. A mapping between elements in the execution model (e.g. observable
events) and the domains of QoS measures; and

3. The constraints on QoS measurements (i.e. the obligations).

The design of these contract languages is therefore centered around the con-
cept of QoS measure. However, realistic contracts are not easily modeled
as a set of functions. Instead, they are built upon the fundamental concept
of obligation, to which other concepts (like QoS measures) become acces-
sory. For instance, the fulfillment or violation of an obligation may trigger
other obligations. Function-based approaches need then to encode obligation
performances as elements in the domains of QoS measures.

The inclusion of time scales into these domains also complicates the design
in ways we consider unnecessary. For example, WSLA and WS-Agreement
use the concept of time series to define time points where measurements need
to be collected and then aggregated.

2.1.5 Information Flow

Information flow concerns issues like confidentiality and integrity of infor-
mation. Contract languages for security (e.g. [8]) do not usually address
information flow, putting the stress instead on access control. Regarding
enforcement of information flow, there are certainly static solutions; but, in
fact, we are not aware of any that use runtime methods. The static approach
usually comes in the shape of a type-system to enforce noninterference [50],
where the idea is to prevent all flow of information from the domain of se-
crets to the public-domain. It has been noted however that noninterference
is unsuitable in most real-life situations. There, an application is expected
to declassify some well-defined piece of information, thus creating the need
to admit some flows of secret information to the public-domain. Type sys-
tems that try to accommodate declassification, e.g. [43], soon suffer from the
so-called label creeping problem: A security type system, which associates a
classification (or security label) to each piece of data, necessarily describes an
abstraction of a set of values, possibly losing precision every time the value
participates in a computation. The accumulation of these losses results in
type systems that, in order to remain secure, reject too many secure systems
[19].

On the other side, it is well-known that information flow properties are
actually not safety properties (in fact, they do not even qualify as properties
in the Alpern-Schneider classification [5]). Therefore, runtime approaches
are generally considered inappropriate, since they are naturally associated
with the enforcement of safety properties.

Recent results by Hamlen et al. [42] and by Ligatti et al. [36] hint at the
potential of code rewriting techniques as a framework to accommodate several
enforcement mechanisms. There is a profusion of work on code rewriting
techniques (see [57, 56| for two thorough surveys) with applications ranging

from compilation, program synthesis and optimization to refactoring and
reverse engineering. However, not much research has been devoted to study
code rewriting for policy enforcement. A remarkable exception is [42] where
it is shown that RW-enforceable policies (i.e. policies enforceable using code
rewriting) strictly include those enforceable using reference monitors and/or
static analysis. These results provide strong evidence that approximations
of information flow properties may be RW-enforceable, i.e. policies that can
be enforced using code rewriting, cf. the “Secret File Policy” example [42]
and [29].

3 Programming languages and
SOA

Current programming language abstractions are not good enough for SOA,
much less for web-service development. The industry develops web-services
using the object-oriented programming (OOP) paradigm which maps badly
to document-based communication, i.e. SOAP-transported XML documents
, required by web-services [39] Besides, many current production OOP lan-
guages (e.g. Java and C#) are based on the shared-state model of con-
currency so they do not handle concurrency and message passing particu-
larly well. Another criticism to OOP concerns the possibility of reusability.
Object-orientation provides two distinct mechanisms for composing concerns:
aggregation and inheritance. Some examples show [4] that reusing compo-
nents through aggregation and inheritance mechanisms may not be successful
when the objects implement concerns like history information, multiple views
and synchronization. OOP needs therefore better abstraction mechanisms.
The Creol project [18] has been addressing many of the objections to
object-orientation. Essentially, a Creol program consists of concurrent ob-
jects communicating asynchronously and with internal process control. By
means of mechanisms for conditional processor release points, passive wait-
ing, and time-out [33, 34|, explicit synchronization primitives are not needed
in the language. An abstract representation of the Creol architecture is
shown in Fig. 2. Compared to for instance Polyphonic C#, Creol has a
simpler set of communication primitives using the concept of asynchronous
method call. By staying within the method paradigm, inheritance and over-
loading is unproblematic. Creol allows multiple inheritance, which is not
supported by Java, Polyphonic C#, nor join calculus based languages. In-
stead of the standard AOP mechanisms, which hinder program reasoning,
Creol offers a synchronized merge operator which may be seen as a high-

Ig,3

Figure 2: The Creol Architecture. For each object O;: I, ; are its interfaces
and ¢; its message queue. N is the network.

level AOP-like construct, and effectively reduces the problems related to the
so-called inheritance anomaly [37], while allowing reasoning.

XML documents are not yet integrated in the Creol language, however,
one may easily model an abstraction of XML documents in Creol, using
Creol’s data types, which includes inductively defined data types and a func-
tional sub-language (similar to, for instance, Haskell). Since all messages
and immutable values are defined by data types in Creol, it is not natural to
define XML documents by the class mechanism, as would be the option in
most other object-oriented languages.

4 Research directions

The main problems and open issues identified for supporting web services
development include:

10

Formal definition of generic contracts. Currently, there is no unified
formal definition of contracts (in particular for QoS and confidential-

ity).

Negotiable and monitorable contracts. Contracts must be negotiated
till both parts agree on their final form and they must be monitorable
in the sense that there must be a way to detect violations.

Language-based support for contracts. In the literature (e.g., [39]) it
has been identified that the following three areas must have a language-
based support: (a) data-access, (b) concurrency and (c) security. A
fourth area has to be considered: (d) contracts; currently, no existing
programming language supports negotiable and monitorable contracts.

Combination of object-orientation and concurrency models based on
asynchronous message-passing. The shared-state based concurrency
model is not suitable for web service development.

Integration of XML into a host language. There is a big mismatch
between XML and object data-models.

Harmonious coexistence at the language level of real-time and inheri-
tance mechanisms.

Verification of contract properties. The integration of contracts in a
programming language should be accompanied by good support for
proving/guaranteeing essential contract properties. Guaranteeing the
non-violation of contracts might be done in (at least) four different
ways: 1. enforcement at runtime, through monitors, for instance; 2.
by construction, e.g. through low-level language mechanisms; 3. static
analysis withstandard program analysis techniques; or 4. model check-
ing. None of the above can be used as a generic, universal tool for
inferring all the properties of contracts. Different approaches must be
used for different properties.

Addressing these issues and problems, we need to develop a model of con-
tracts in a SOA that is broad enough to cater for at least contracts for
QoS and confidentiality. A minimum requirement is the ability to seamlessly
combine real-time models (for QoS specification) and behavioral models (es-
sential to constrain protocol implementation and to enforce confidentiality).
Contract models should also address discovery and negotiation. Regarding
confidentiality, it seems that more experiments with RW-enforceable policies

11

giving sufficient conditions for admissible information flow 30| can be envis-
aged. The objective should be to develop practical and efficient methods to
enforce information flow properties of realistic code, including cryptographic
protocol implementations.

Yet, the formal definition of contracts should be only a first step towards
a more ambitious task, namely a language-based support for programming
and effectively use such contracts. Some contracts may be seen as a wrapper
which “envelopes” the code/object under the scope of the contract. Fire-
walls, for instance, may be seen as a kind of contract between the machine
and the external applications wanting to run on that machine. It could
be interesting to investigate a language primitive to create wrapped objects
which are correct-by-construction. Firewalls may then be implemented in
this way. On the other hand, contracts for QoS and confidentiality could be
modeled as first-class entities using a “behavioral” approach, through inter-
faces. In order to tackle timed constraints (related to QoS) such interfaces
need also to incorporate time. As clearly exposed in the ARTIST road-map
[15], finding languages or notations for describing timing behaviors and tim-
ing requirements is easy; the real challenges are in analysis, i.e. to check
that the requirements are guaranteed. So., besides the syntactic extensions
mentioned above, the language needs to have timing semantic extensions in
order to allow extraction of a timed model, e.g. a timed automaton. It
may be checked with existing tools e.g., Kronos [61] and Uppaal [11]. Model
checking tools will help to prove real-time properties, like guaranteeing that
a given promise service will, for instance, satisfy it response-time constraint.
Other properties may, instead, be proved to be correct-by-construction (e.g.
wrappers, as mentioned above).

In practice, many properties cannot be proved correct using correct-by-
construction or model checking techniques. In such cases only a runtime
approach may be used. It seems that a promising direction is to develop
techniques for constructing runtime monitors from contracts. In this case,
monitors will be used to enforce the non-violation of contracts.

5 A specific proposal

We believe object-orientation is still a good paradigm for modeling open dis-
tributed systems. The main problems with object-orientation come from lan-
guage design and implementation decisions, not from its original philosophy.
The Creol project has addressed many of these problems. Creol has a formal
semantics defined in rewriting logic [40] and implemented in Maude [38], and
supports compositional program reasoning. In addition, the dynamic class

12

.
.
.
)
1y
.

Figure 3: The Extended Creol Architecture

construct of Creol is well suited for dynamic reconfiguration and maintenance
of services in large networks. In its current state, Creol has basic constructs
that are suitable for programming the Internet in an object-oriented manner.
Since its operational semantics is executable in the Maude tool, a language
interpreter is readily available. In addition, the various Maude commands
for model checking and exhaustive search are available for Creol programs.

By using Creol and its definition in rewriting logic as our framework, we
propose the following:

e Formalization of contracts (for confidentiality and QoS) using a timing
extension of rewriting logic.

e Use of the meta-level capabilities of rewriting logic to specify contract
negotiation protocols.

e Syntactic extension of Creol to include contracts as interfaces.

13

e Integration of XML in Creol.

e Syntactic and semantic extension of Creol aiming at extracting timed
models amenable to model checking.

e Analysis of the timed models using current model checking tools.
e Runtime monitoring of contracts.

Below we explain in more details the items above.

Regarding the formal definition of contracts, many formalisms may be
used, but we believe such a generic model can be described harmoniously
using real-time extensions of rewriting logic [62|. This is in line with recent
investigations in the use of rule languages to model contracts |32, 45|. While
these rule-based languages are essentially ad-hoc, we expect to profit from
the existing large body of research in rewriting logics.

The rule-based approach promoted by the research mentioned above brings
along new challenges in the definition of appropriate negotiation schemes [49,
9, 47|. Here again, rewriting logic can give invaluable help. Its reflection and
meta-level computation properties may help define and structure the negoti-
ation protocol.

After defining contracts with suitable negotiation protocols in a solid for-
mal theory, we would like to concentrate on Creol extensions. By defining
interfaces on components consisting of a collection of objects, we develop
a notion of contract for such interfaces that integrates the main expressive
power of composition filters. In addition, the implementation of rewriting
logic by the Maude tool enables rapid prototyping and evaluation of alter-
native designs, which is essential for finding practically useful solutions. The
analysis tools of Maude will be valuable when assessing their properties. The
interface concept of Creol is oriented towards specification of observable be-
havior, expressed by means of the interaction history, i.e. the sequence of all
(visible) messages to or from an object.

A full integration of XML documents in Creol would require an exten-
sion of the language. In particular, the use of regular expressions should be
integrated in the functional sub-language, to allow flexible retrieval.

When adding real-time, Creol interfaces may be used to specify static and
dynamic contracts. Furthermore, semantics extensions of Creol are needed
in order to extract a timed automaton amenable to be model checked.

Another interesting extension of Creol would be to augment the interface
syntax with mechanisms for specifying dynamic contract monitoring. More-
over, the executable operational semantics of Creol could be used to test
the approach in situations where formal verification is practically impossible

14

(e.g., confidentiality properties). Additionally, the meta level of Maude may
well be used for monitoring without affecting the application code.

The proposed extended Creol architecture is shown in Fig. 3. Comparing
with Fig. 2, the extension consists of wrappers enveloping sets of objects,
possibly of different classes and communicating through their own local net-
works (LN and LN'). The access from outside the wrapper will be regulated
by the wrapper interface W. Contracts will be defined both at local (object)
interfaces as well as at wrapper interfaces.

6 Conclusion

The web is mostly used nowadays for retrieving remote information, but there
is a high demand for more challenging applications that offer, negotiate and
discover web services through XML interfaces. This new direction requires
redesigning software architectures and revising the existing foundations of
computer science. Software Engineering deals with the first aspect while the
second one is concerned with models of computation involving expressiveness
results, verification and security [41].

Moreover, in order to make collaboration a reality among different web-
services, the formal definition of monitorable and negotiable contracts has
become an imperative.

In this paper we have surveyed main current approaches to program web-
services and the features of state-of-the-art programming languages used.
We have identified some problems and open issues of current approaches (see
Section 4) and we have proposed general research directions and a particular
road-map based on Creol (Section 5).

The next natural step is to map the expected results into real languages.
One possibility would be to translate Creol programs into existing web-
services languages. However, this approach does not seem realistic, mainly
because the currently available target languages are far from being suitable
for such ambitious task. In our opinion the right approach would be to
develop a contract-based language from scratch, capitalizing on the Creol
experience.

References

[1] J. Aagedal. Quality of Service Support in Development of Distributed
Systems. PhD thesis, Dept. of Informatics, University of Oslo, 2001.

15

2]

3]

4]

5]

(6]

17l

8]

19]

[10]

[11]

M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-
database integration model: The composition-filters approach. In
ECOOP °92: Proceedings of the FEuropean Conference on Object-
Oriented Programming, pages 372-395, London, UK, 1992. Springer-
Verlag.

M. Aksit, J. Bosch, W. van der Sterren, and L. Bergmans. Real-time
specification inheritance anomalies and real-time filters. Lecture Notes
in Computer Science, 821:386—77, 1994.

M. Aksit and B. Tekinerdogan. Solving the modeling problems of object-
oriented languages by composing multiple aspects using composition
filters, 1998.

B. Alpern and F. B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181-185, Oct. 1985.

J. M. Andreoli and S. Castellani. Towards a Flexible Middleware Nego-
tiation Facility for Distributed Components. In DEXA 01: 12th Inter-
national Workshop on Database and Fxpert Systems Applications, page
732. IEEE Computer Society, 2001.

I. Assayad, V. Bertin, F.-X. Defaut, P. Gerner, O. Quevreux, and
S. Yovine. Jahuel: A formal framework for software synthesis. In
ICFEM, LNC, 2005. To appear.

J. S. B. de Win, F. Piessens and W. Joosen. Towards a Unifying View
on Security Contracts. In Software Engineering for Secure Systems
Building Trustworthy Applications (SESS’05). ACM, 2005.

C. Bartolini, C. Preist, and N. R. Jennings. A Generic Software Frame-
work for Automated Negotiation. Technical Report HPL-2002-2, HP
Laboratories Bristol, Jan. 2002.

C. Becker and K. Geihs. Quality of Service and Object-Oriented
Middleware-Multiple Concerns and their Separation. In 21st Interna-

tional Conference on Distributed Computing Systems Workshops (ICD-
CSW ’01), 2001.

J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL
— a Tool Suite for Automatic Verification of Real-Time Systems. In
Proc. of Workshop on Verification and Control of Hybrid Systems III,
number 1066 in LNCS, pages 232-243. Springer—Verlag, October 1995.

16

[12]

[13]

[14]

[15]

|16]

[17]

[18]
[19]

[20]

[21]

[22]

23]

L. Bergmans and M. Aksit. Composing crosscutting concerns using
composition filters. Commun. ACM, 44(10):51 57, 2001.

A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Making components
contract aware. IEEE Computer, 32(7):38 45, 1999.

G. Bierman, E. Meijer, and W. Schulte. The essence of data access in
Cw. In European Conference on Object-Oriented Programming, 2005.

B. Bouyssounouse and J. Sifakis, editors. Embedded System Design:
The ARTIST Roadmap for Research and Development, volume 3436 of
Lecture Notes in Computer Science. Springer-Verlag, 2005.

E. S. C. Molina-Jimenez, S. Shrivastava and J. Warne. Run-time Mon-
itoring and Enforcement of Electronic Contracts. Electronic Commerce
Research and Applications, 3(2), 2004.

D. Cooney, M. Dumas, and P. Roe. A programming language for web ser-
vice development. In CRPIT ’38: Proceedings of the Twenty-eighth Aus-
tralasian conference on Computer Science, pages 143 150, Darlinghurst,
Australia, Australia, 2005. Australian Computer Society, Inc.

Creol Homepage. http://www.ifi.uio.no/“creol/.

M. Dam and P. Giambiagi. SPC 01-4025 Mobile Language Study, Final
Technical Report. Technical report, EOARD, 2003. http://www.sics.
se/ pgiamb/Publications/eoard-TR2003.ps.gz.

A. Daskalopulu. Model Checking Contractual Protocols. In L. Breuker
and Winkels, editors, Legal Knowledge and Information Systems, JU-
RIX 2000: The 13th Annual Conference, Frontiers in Artificial Intelli-
gence and Applications Series, pages 35—-47. I0S Press, 2000.

A. Daskalopulu and T. S. E. Maibaum. Towards Electronic Contract
Performance. In Legal Information Systems Applications, 12th Interna-

tional Conference and Workshop on Database and Fxpert Systems Ap-
plications, pages 771-777. IEEE C.S. Press, 2001.

H. Davulcu, M. Kifer, and I. V. Ramakrishnan. CTR-S: A Logic
for Specifying Contracts in Semantic Web Services. In Proceedings of
WWW2004, pages 144-153, May 2004.

G. Diaz, J.-J. Pardo, M. E. Cambronero, V. Valero, and F. Cuartero.
Automatic translation of WS-CDL choreografies to timed automata. In

17

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32|

[33]

[34]

Proceedings of 2nd International Workshop on Web Services and Formal
Methods (WS-FM 2005), September 2005.

G. Diaz, J.-J. Pardo, M. E. Cambronero, V. Valero, and F. Cuartero.
Verification of web services with timed automata. In Proceedings of 1st

International Workshop on Automated Specification And Verification of
Web, March 2005.

ebXML: Electronic Business using eXtensible Markup Language. www.
ebxml.org.

R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, editors. Aspect-Oriented
Software Development. Addison-Wesley, Boston, 2005.

D. Florescu, A. Griinhagen, and D. Kossman. XIL: An XML program-
ming language for web service specification and composition. In Proc.
The Eleventh Int’l World Wide Web Conference, pages 6576, May 2002.

D. Florescu, A. Griinhagen, and D. Kossman. XL: A platform for Web
services. In Conference on Innovative Data Systems Research (CIDR),
2003.

P. Giambiagi. Controlled Declassification of Information. PhD thesis,
Royal Technical University, Stockholm, Sweden, In preparation 2005.

P. Giambiagi and M. Dam. On the Secure Implementation of Security
Protocols. Science of Computing Programming, 50:73-99, 2004.

G. Governatori. Representing business contracts in RuleML. Interna-
tional Journal of Cooperative Information Systems, 14:181-216, 2005.

B. Grosof and T. Poon. Representing Agent Contracts with Exceptions
using XML Rules, Ontologies, and Process Descriptions. In RuleML,
2002.

E. B. Johnsen and O. Owe. An asynchronous communication model for
distributed concurrent objects. In Proc. 2nd Intl. Conf. on Software FEn-
gineering and Formal Methods (SEFM’04), pages 188 197. IEEE Com-

puter Society Press, Sept. 2004.

E. B. Johnsen and O. Owe. Object-oriented specification and open
distributed systems. In O. Owe, S. Krogdahl, and T. Lyche, editors,
From Object-Orientation to Formal Methods: Essays in Memory of Ole-
Johan Dahl, volume 2635 of Lecture Notes in Computer Science, pages
137-164. Springer-Verlag, 2004.

18

[35]

[36]

[37]

38
[39]

|40]

[41]

[42]

|43]

[44]

[45]

|46]

[47]

S. Kraus. Automated Negotiation and Decision Making in Multiagent
Environments. Lecture Notes in Artificial Intelligence, 2086:150, 2001.

J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mech-
anisms for run-time security policies. International Journal of Informa-
tion Security, 4(1-2):2-16, Feb. 2005.

S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. Research directions
in concurrent object-oriented programming, pages 107-150, 1993.

Maude System. http://maude.cs.uiuc.edu/.

E. Meijer, W. Schulte, and G. Bierman. Programming with circles,
triangles and rectangles. In Proceedings of the XML Conference, 2003.

Logic, volume 165 of Lecture Notes in Computer Science, Marktoberdorf,
Germany, 1997. NATO Advanced Study Institute, Springer-Verlag.

U. Montanari. Web services and models of computation. In First Inter-
national Workshop on Web Services and Formal Methods, volume 105
of Electronic Notes in Computer Science. Elsevier, 2004.

G. Morrisett, F. B. Schneider, and K. Hamlen. Computability classes for
enforcement mechanisms. Technical Report 2003-1908, Cornell, 2003.

A. C. Myers. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th POPL, pages 228241, San Antonio, TX, Jan.
1999. ACM.

M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteris-
tics and Directions. In 4th International Conference on Web Information
Systems Engineering (WISE). IEEE CS, 2003.

A. Paschke, M. Bichler, and J. Dietrich. ContractLog: An Approach to
Rule Based Monitoring and Execution of Service Level Agreements. In
RuleML, 2005.

A. Paschke, J. Dietrich, and K. Kuhla. A Logic Based SLA Management
Framework. In /th Semantic Web Conference (ISWC 2005), 2005.

A. Paschke, C. Kiss, and S. Al-Hunaty. A Pattern Language for Decen-
tralized Coordination and Negotiation Protocols. In EFEE, pages 404—
407, 2005.

19

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

W. Picard. NeSSy: Enabling Mass E-Negotiations of Complex Con-
tracts. In DEXA ’03: 14th International Workshop on Database and
Expert Systems Applications, page 829. IEEE Computer Society, 2003.

D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated negotiation
from declarative contract descriptions. In AGENTS ’01: Proceedings of

the fifth international conference on Autonomous agents, pages 51-58.
ACM Press, 2001.

A. Sabelfeld and D. Sands. A PER model of secure information flow in
sequential programs. Higher-Order and Symbolic Computation, 14(1),
2001.

Simple Object Access Protocol (SOAP). http://www.w3.org/TR/
soap/.

C. Szyperski. Component technology - what, where, and how? In Pro-
ceedings of the 25th International Conference on Software Engineering
(ICSE), pages 684-693. IEEE, 2003.

A. Tesanovic, D. Nystrom, J. Hansson, and C. Norstrom. Aspects and
components in real-time system development: Towards reconfigurable
and reusable software. Journal of Embedded Computing, 1(1), 2 2004.

V. Tosic. On Comprehensive Contractual Descriptions of Web Services.
In IEEE International Conference on e-Technology, e-Commerce, and
e-Service, pages 444-449. IEEE, 2005.

S. L. Tsang, S. Clarke, and E. L. A. Baniassad. An evaluation of aspect-
oriented programming for java-based real-time systems development. In
ISORC, pages 291-300, 2004.

E. Visser. A survey of rewriting strategies in program transformation
systems. Flectronic Notes in Theoretical Computer Science, 57, 2001.

E. Visser. A survey of strategies in rule-based program transformation
systems, March 2004. (Draft).

WSA. Web Services Architecture. W3C Working Group Note, wuw.w3.
org/TR/ws-arch/, Feb 2004.

Web Services Agreement Specification (WS-Agreement).
https://forge.gridforum.org/projects/graap-wg/document/
WS-AgreementSpecification/en/7.

20

[60] WSLA: Web Service Level Agreements. www.research.ibm.com/wsla/.

[61] S. Yovine. Kronos: A verification tool for real-time systems. Interna-
tional Journal of Software Tools for Technology Transfer, 1(1/2):123~
133, October 1997.

[62] P. Olveczky. Specification of real-time and hybrid systems in rewriting
logic. Theoretical Computer Science, 285, 2002.

21

