Using Wrappers to Ensure Information-Flow Security for Active
Objects with Futures

Farzane Karami
farzanka@ifi.uio.no
Department of Informatics
University of Oslo

ABSTRACT

This paper introduces a run-time mechanism for preventing leakage
of secure information in distributed systems. We consider a general
concurrency model suitable for designing service-oriented and dis-
tributed systems. In this model, concurrent objects communicate
by asynchronous method calls and futures. The aim is to prevent
leakage of confidential information to low-level viewers. The ap-
proach is based on the notion of a wrapper enclosing an object or a
component, controlling its interactions with the environment. A
wrapper is a mechanism added by the run-time system to provide
protection of an insecure component according to some security
policies. The security policies of a wrapper are formalized based
on a notion of security levels and dynamic information-flow en-
forcement. At run-time, future components will be wrapped upon
need, while only objects of unsafe classes will be wrapped, using
static checking to limit the number of unsafe classes and thereby
reducing run-time overhead. We define an operational semantics
and prove that non-interference is satisfied.

Wrappers provide flexibility because they may be added or re-
moved upon need, and they give separation of concerns by allowing
the business code to be separated from the security control code.
A service provider may use wrappers to protect its services in an
insecure environment, and vice-versa: a system platform may use
wrappers to protect itself from insecure service providers.

KEYWORDS

active objects, futures, information-flow, security, wrapper, non-
interference, dynamic analysis, static analysis, distributed systems

ACM Reference Format:

Farzane Karami, Olaf Owe, and Gerardo Schneider. 2019. Using Wrappers
to Ensure Information-Flow Security for Active Objects with Futures. In
Proceedings of PPDP Conference (PPDP’19). , 15 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Given the large number of users and systems involved in a dis-
tributed system, security is a critical concern. It is thus essential to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPDP’19, October 07-09, Porto, Portugal

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Olaf Owe
olaf@ifi.uio.no
Department of Informatics
University of Oslo

Gerardo Schneider
gerardo@cse.gu.se
Dept. of Computer Science and Eng.
University of Gothenburg

analyze the confidentiality of a system and control how informa-
tion propagates between nodes. Though access control techniques
can be used to control access to information, it does not control
how the program handles the information. A program might leak
secure information ("high") to public ("low") data disclosing it, or
send the private information to malicious nodes. Language-based
techniques, in particular program analysis, provide means to spec-
ify and enforce security policies for preventing leakage of secure
information. Information-flow controls track how information prop-
agates through the program during execution. The semantic notion
of information-flow security is based on non-interference [10]. This
means that in any two executions, where a program is run with
different secret inputs but the same public values, the public outputs
will be the same (at least for deterministic programs). This way, an
attacker cannot see any difference between these two executions
since public outputs are independent of the secret inputs. Attackers
are assumed to be able to observe public information.

In this paper, we are interested in service-oriented and object-
oriented systems, where distributed and concurrent objects commu-
nicate through asynchronous method calls. Active object languages
are concurrent programming languages suitable for designing such
systems. The goal is to design an efficient, permissive, and precise
security mechanism that can be applied to these programming lan-
guages, supporting concurrency and communication paradigms
like futures. A future is a read-only placeholder, which is created
as the result of a remote method call and eventually contains the
corresponding return value [3]. Therefore, the caller needs not
block while waiting to get the return value: it can continue with
other tasks and later get the value from the corresponding future.
A future as a handler can be passed to other objects, that is they
are first-class futures. In this case, any object that has a reference to
the future can access its content, which may be a security threat
as the future might contain highly sensitive data. Futures offer a
flexible way of communication and sharing results, but handling
them appropriately, in order to avoid security and privacy leakages,
is challenging [15].

In this paper, our security mechanism is based on the notion
of wrappers [18]. A wrapper wraps a component or subsystem at
run-time and controls their interactions with the environment. We
consider a concurrent core language, supporting high-level active
objects, including non-blocking calls and futures, and use wrappers
to control the objects and futures. In our core language, fields are
encapsulated by objects and remote access is forbidden. Illegal flows
may happen inside an object, such as assigning high values to low
variables, and they are considered harmless in our setting since they
are not observable by attackers as long as there is no illegal output
from the object, such as sending high information to a remote object

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PPDP’19, October 07-09, Porto, Portugal

[:=true; if h then [:= false else skip fi

Figure 1: Implicit flow.

with low protection. Therefore, only object interactions (through
calls and return values) are controlled. Wrappers can be used to
ensure non-interference in object interactions. They can also protect
futures if they contain high return values, preventing illegal access
by lower level objects.

The security policies and semantics of a wrapper are defined
based on a combination of run-time security levels and dynamic
information-flow enforcement. Our dynamic approach guarantees
some levels of permissiveness and is precise since it deals with the
exact run-time security levels. The use of wrappers and its security
semantics are added to the run-time system for our core language.
We define an operational semantics in the style of Structured Oper-
ational Semantics (SOS), modeled in the Maude system [9], giving
an executable interpreter for programs written in our language.
The approach gives a guarantee of non-interference, at the cost of
some overhead due to the presence of the wrappers. In order to
have less run-time overhead, we suggest a static analysis to identify
where security checking and wrappers are needed since often only
a few methods deal with secure information. Assuming a sound
static analysis, we prove that our proposed security mechanism
ensures the non-interference property in object communications.

In summary, our contributions are: i) a high-level core language
as a model for service-oriented and distributed systems communi-
cating through asynchronous method calls eventually using futures
(Section 3.2), ii) a built-in notion of wrappers for enforcing non-
interference and security control in object interactions in this model
(Section 4), for which we use static analysis to reduce the run-time
overhead (Section 4.1), and provide an executable operational se-
mantics for the core language and wrappers (Sections 4.2-4.3), iii) a
proof that our model satisfies non-interference (Section 5).

2 BACKGROUND

2.1 Information-flow security

Information-flow control approaches enforce security policies and
prevent leakage of sensitive data during program execution. In
principle, there are two kinds of leakage of information, namely
explicit and implicit flows [21]. For simplicity, we assume two se-
curity levels Low and High. An explicit flow is direct copying of a
high variable to a low one (I := h), where [and h are variables that
store public and secret values. However, in an implicit flow, there is
an indirect flow of information due to control flow structures. That
is, an implicit flow happens when there is a low computation in
a conditional or loop with a high guard (when the guard involves
a high variable). For example, in the if statement of Figure 1, the
value of h affects the value of [indirectly.

Information-flow control techniques are divided into two cate-
gories, static and dynamic approaches [20]. Static information-flow
analysis, as in the Denning and Denning style [8], is performed by
type checking at compile time (static type system). In this approach,
the types of all program variables and expressions are extended
with annotations for the different security levels. A compiler reads
and tracks these security levels and makes sure that there is no

Farzane Karami, Olaf Owe, and Gerardo Schneider

leakage of information based on specified security policies. Security
policies specify how the data variables can be used in a way such
that there is no leakage of information. For example, each assign-
ment is checked to ensure that the level of the assigned variable
is high if there is a high variable in the right-hand-side (tracking
explicit flows) or if the assignment occurs in a conditional or loop
with a high guard (tracking implicit flows). In order to avoid implicit
flows, a program-counter label (pc) is introduced, which captures
the program context security level [21]. For instance, inside the if
statement in Figure 1, since the guard is High, pc becomes High
(a high context). Accordingly, in the branches, an assignment is
secure if the security level of the assigned variable is greater than
or equal to pc. By using this technique, the program in Figure 1
would be rejected. Static analysis is conservative: in order to be
sound, it makes a worst case over-approximation of the security
levels of variables (for example, it over-approximates a variable to
High, while at run-time it can be Low). This causes unnecessary
rejections of programs, especially when the complete program is
not statically known, as is usually the case in distributed systems.
On the other hand, static analysis has the benefit of less run-time
overhead, since all security checks are performed before program
execution [20].

Dynamic information-flow techniques may perform security
checks similar to static techniques, at run-time. Dynamic techniques
introduce a run-time overhead, but they are more permissive and
precise since they deal with the exact security levels of variables
instead of an over-approximation. Another example to illustrate
permissiveness of dynamic techniques is the program

if [<10 then [=1 else [=h fi

A traditional static type system [25], rejects this program as insecure
due to the presence of the explicit flow I = h (alternatively, a static
analysis may over-approximate [as High after the if statement.)
However, a dynamic technique accepts executions of the program
when [< 10 holds.

In what follows we briefly explain some of the terminologies of
information-flow security that we use in this paper:
Security levels. Variables are tagged with security levels organized
in a lattice, a partially ordered set of security levels by the relation
C with join (L), meet (M), a top T and bottom L elements. The
join operator returns the least upper bound of two given levels.
The policy rules describe the flow of information considering these
security levels. Inside a class, declarations of fields, class parameters,
and formal parameters may have statically assigned security levels
(with level Low as default if none is specified). In flow-sensitive
static analysis, these variables start with their assigned levels, but
the levels may change after each statement according to static
information-flow control. Static checking is used to see if any actual
parameter (or return value) of a call or object creation statement
may possibly have a high security level according to the chosen
static policy, if so the class is said to be unsafe as explained in more
details in Sections 4-4.1. At run-time, objects are assigned security
levels as well, and precise levels are evaluated during execution for
objects of unsafe classes.

Flow-sensitivity. By flow-sensitivity, we mean that the analysis
keeps track of the security levels of variables and updates them
for each assignment. Let T be a function mapping variables to

Using Wrappers to Ensure Information-Flow Security for Active Objects with Futures

security levels, Var — {Low, High}, then T might change during
program execution. For each assignment, a flow-sensitive technique
assigns a variable to high, if the assignment is in a high context
(pc = High) or if there is a high variable in the right-hand-side.
It assigns the level of the variable to low, if the assignment does
not occur in a high context, and there are no high variables in the
right-hand-side of the assignment. Otherwise, the security level
of a variable does not change [20]. On the other hand, in a flow-
insensitive analysis variables are assigned security levels at the
beginning of the execution and this assignment does not change
during the execution. For example, in the method body:

h:=10; if h>0 then [:=1 fi ; return [

a flow-insensitive analysis may reject the program if the method
is supposed to return a low value (since there is an assignment
to a low variable in a high context). However, it is accepted by a
flow-sensitive analysis since the security level of h is relabeled to
low after the first assignment. In an assignment x := e, the security
level of x changes to the join of the pc and the security level of
the expression e. The security level of e is the join of the security
levels of the variables that appear in the expression. By this security
semantics, variables are instrumented with security levels, which
are propagated along with ordinary values.

In [20], it is shown that although a flow-sensitive dynamic tech-
nique is permissive, it is unsound because of implicit flows. To over-
come the implicit flows when branching on conditionals or loops
with high guards, not only the security level of variables in the taken
branch, but also the ones in the untaken branch, get updated to
high [20]. In our dynamic information-flow enforcement, the same
approach is applied to avoid implicit flows. For instance, if we con-
sider an initial environment I' ={h +— High,l; — Low, Iz — Low}
and the program:

if hthenl; :=1elsel; :=0 fi

when the condition is true, the final typing environment should
end up as T ={h — High l; — High,l; +— High} for a sound
flow-sensitive analysis. Whereas a naive flow-sensitive dynamic
analysis, which only updates the taken branch variables, would end
up with I' ={h + High, Iy — High, Iy — Low}.

3 ACTIVE OBJECT LANGUAGES & FUTURES

Active object languages have received a lot of attention in recent
years. These are programming languages for concurrent and dis-
tributed systems that are inspired by the actor model [1] and sup-
port asynchronous method calls, as well as standard object-oriented
programming features. There are a number of active object lan-
guages including ABCL [28], Rebeca [23, 24], Scala/Akka [11, 26],
Creol [14], ABS [13], Encore [5], and ASP/ProActive [6, 7]. Active
objects communicate through asynchronous method calls. In the
call/return paradigm without futures, both the method call and the
corresponding return value are transmitted by message passing
between the caller and callee objects. An object has an external
queue for receiving method call requests and return values from
other objects. In a naive model, a caller waits while the callee per-
forms the call, which is a blocking call and undesirable. Therefore
non-blocking call mechanisms are needed.

O 00 N N U R W DN =

=
(=}

1
12
13
14
15
16
1
18

—_

1)

PPDP’19, October 07-09, Porto, Portugal

interface DataBase { // Medical records
MedData init(); // MedData is defined as a data type.
Void modify();
}
interface Service {
Unit process(Fut[MedData] fd);
}
class Server implements Service{
Unit process(Fut[MedData] fd) {
MedData rd = fd.get;
rd.modify(); }
}
{// main block

Service s = new Server();

DataBase d = new DataBaseClass();
Fut[MedData] fd = d!init();
slprocess(fd);

}

Figure 2: A simple ABS example [4].

The notion of futures is a common mechanism in active object
languages for avoiding blocking calls [4, 15]. Futures are objects
with a promise that a return value will become available at some
point in the future [12, 27]. When a remote method call is made, a
future object with a unique identity is created. A caller may con-
tinue with other processes while the callee is computing the return
value. A callee sends back the return value to the corresponding
future object. The future is then said to be resolved. This language
construct allows a client program with access to the future object
to continue its computation and wait only when one needs to fetch
the value of the future object. In the case of first-class futures, a
future identity can be passed to objects desiring the return value of
the corresponding method call, even before the value is computed.
Thus, a future can be distributed to many active objects in a sys-
tem. In general, the future mechanism makes a language flexible
and expressive; however, they may give rise to deadlock of one or
more objects when these are waiting for a future that never will be
resolved.

Futures can be either explicit with a specific type and access op-
erations like ABS, or it can be implicit with automatic creation and
synchronization. An explicit future in ABS is created as Fut[T] f :=
o'm(e); ...; v = f.get, where f is a future variable and T is the
type of the future value. The symbol ”!” indicates an asynchronous
method call (m) of object o, and the future value is retrieved with
a get construct. Implicit futures are created by asynchronous and
remote calls, and future values are accessed automatically without
explicit constructs. In fact, when a future value is needed the only
way is to block until the future is resolved; this access mechanism
is called wait-by-necessity like in ASP and ProActive.

We explain the concurrency model of ABS-like active objects by
means of the code in Figure 2, which is a simplified version of an
example from [4]. In the main block of the code (lines 14-17), two
tasks are started independently, by means of asynchronous calls
to init and process, respectively. In line 14, a new object is created
from the class Server of interface type Service. Objects are typed by
interfaces because ABS supports behavioral interface specification.

PPDP’19, October 07-09, Porto, Portugal

Therefore, a pointer to an object is typed by an interface limiting the
methods available on that pointer to the methods declared in the
interfaces. Moreover, fields are not accessible via interfaces. In line
16, a future is created for the result of a call to init and immediately
passed as a parameter to object s in line 17. In the process body, the
future is retrieved, and there is a synchronous call to modify, which
blocks the caller until it returns.

3.1 Information-flow security with futures

Information-flow analysis for a future-free language like Creol
can be performed by static declaration of security levels for each
input parameter and result value of a method, like the approach
proposed in [17]. In that paper, the considered language does not
support futures, and the security checks are done at static time,
rather than at run-time. According to [15], the static analysis would
be difficult when allowing futures as parameters. Future variables
give a level of indirectness in that the retrieval of the result of
a call is no longer syntactically connected to the call, compared
to future-free languages. For instance, when a future is received
as a parameter, it may not statically correspond to a unique call
statement. One may overestimate the set of call statements that
correspond to this given future parameter, but it requires access
to the whole program. Moreover, these calls are not uniform with
respect to security levels. In this case, one must consider the worst
case possibility (i.e., the highest security level) for the set of possible
corresponding call statements. It is conservative and will easily lead
to security levels inflation, something which is not desirable since
it would severely limit statically acceptable information passing
and call-based interaction, or require dynamic checking.

During static analysis there is limited static knowledge about ob-
ject identities. Therefore a language may compensate by including
a syntactic construct for testing security levels, as in [17]. By test-
ing relevant security levels one may achieve fine-grained security
control (at the cost of added branching structure). For example, in
the code below p is a high variable, and its security level is checked
before returning it to the caller.

Nat : Highc :=0; if p C caller then ¢ :=p fi; return c

In a program with futures, the passing of future references to other
objects is legal since they are just references. However, the exact
security level of a future value is revealed when it becomes resolved,
thus an if-test checking for the future passing cannot help. A dy-
namic approach is required to control access to a future value at
run-time when it is resolved. The concept of futures makes static
checking less precise, and the need for complementary run-time
checking is greater, as provided in the present paper. An example
in Figure 4 shows why static analysis alone is not sufficient in the
context of a real problem. This example is a health care system writ-
ten in our core language and involves futures for communication
and sharing of secure information.

3.2 The proposed core language syntax

In order to implement our security approach, the security mech-
anisms are embedded in a core language, using a syntax similar
to that of Creol/ABS. It supports non-blocking calls with explicit
futures. For simplicity, we assume all remote object interactions

Farzane Karami, Olaf Owe, and Gerardo Schneider

Basic constructs

X:=E assignment (variable X, and expression E)
X :=new C(E) object creation (E actual class parameters)
X := newy,, C(E) object creation with the security level Lev
return E creating a method result/future value

if BthS [el §’] fi if statement (B a Boolean condition)
while Bdo S od while statement (S a statement list)

Call constructs

10.M(E) simple asynchronous remote call,
it is a broadcast when O is a list of objects
0Q'0.M(E) remote asynchronous call (to object O)
creating an explicit future, assigned to Q
Q!this. M(E) asynchronous self call, with future variable Q
X := O.M(E) synchronous call, i.e., an abbreviation for
Q10.M(E); Q?(X)
X :=.M(E) local call, with standard stack-based semantics

Access constructs

Q?(X) blocking access operation on future Q

Figure 3: Core Syntax.

are made by means of futures. Therefore, the result of a remote
call always is returned back to the corresponding future. We allow
first-class futures. The syntax of statements is given in Figure 3
letting O denote an object expression, M a method name, Q a future,
E an expression and E an expression list. A call statement !M(E)
is an asynchronous local invocation without waiting for the result,
where M is the method name and E is a list of actual parameters.

The statement Q'0.M(E) is an asynchronous and remote method
calltoward object O. The call creates an explicit future with a unique
future identity, assigned to the future variable Q. This statement
sends a call request message to the callee O, and the caller object
proceeds without waiting. A return value can be accessed with a get
statement Q?(X), which blocks while waiting for the corresponding
future to become resolved and then assigns the future value to the
variable X. The statement Q?(X) is similar to X = Q.get in the
ABS language. A synchronous call X := O.M(E) may be expressed
in terms of an asynchronous call: 010.M(E); 0?(X).

The simple call statement !0.M(E) is an asynchronous invocation
without associating a future to the call, and thus no query is possible.
Here O may be a list of objects, and that gives a broadcast to those
objects. A local call with the syntax X := .M(E) uses a standard
stack-based execution to perform the call. In contrast, the self call
Q!this.M(E) uses a future to handle the result. (And in this case, a
query on Q in the object could lead to deadlock.) Figure 3 provides
the core language syntax.

Example. Figure 4 illustrates an example of a health care service
in our core language, where high variables are emphasized based
on static analysis/user specifications, in this case reflecting med-
ical data. The problem the system is trying to solve is to prevent
personnel and patients with lower-level access from accessing the
medical records (communicated through futures). In this example,
the server, defined by class Service, searches for the test result of
a patient and publishes it to the patient and associated personnel
through the proxy object. The server uses futures to communicate
test results to the proxy, thus it does not wait for the results and is

O 0 N N U e W N =

BW W W W W W W W W WD DN DN DN DN DN DN = e e e e e e e e
S O 0 N AU R W R O 0O 0T U R WD RO 0 00NN = O

Using Wrappers to Ensure Information-Flow Security for Active Objects with Futures

PPDP’19, October 07-09, Porto, Portugal

data type Result = ... // definition of medical data

interface Servicel {
Void produce() ... }

interface Proxyl {
Void publish(Fut[Result] Q, Patientl a, List[Personnell] d) ... }

interface Labl {
Resultyig, detectResult(Patientl a) ... }

interface Patientl {
Void signal(Resultyigp 1) ... }

interface Personnell {
Void signal(Resultyigp 1) ... }

interface DataBase {
List[Personnell] findPersonnel(Patientl a)
Patientl getPatient(Int counter) ... }

class Service(Labl lab, DataBase db) implements Servicel { List[Personnell] d = Nil; Int counter = 0;
Proxyl proxy = new Proxy(this); //proxy does the main job
Ithis.produce(); // initial action, starting a produce cycle

Void produce() { Fut[Result] Q; Patientl a;
a = db.getPatient(counter);
d = db.findPersonnel(a);
Qllab.detectResult(a);
Iproxy.publish(Q, a, d);
counter++; }

}

class Proxy(Servicel s) implements Proxyl{ Resultygp, 1;
Void publish(Fut[Result] Q, Patientl a, List[Personnell] d) {
Q2(r);
la.signal(r); // ris now High
'd.signal(r); // multicasting, ris High
Is.produce(); }
}

// finding a patient in the database
// finding a group of personnel associated to the patient (a)

// sending the future (Q), no waiting

// waiting for the future and assigning the value to r

Figure 4: Example showing interaction between a server, laboratory, patients, and health personnel sharing High test results.

free to respond to any client request. Instead, the proxy waits for the
results from the laboratory and publishes them. (A simple asynchro-
nous remote calls !10.M(E) is a broadcast when O is a list of objects.)
In line 24, a produce cycle is initiated between the server and proxy
objects. In line 27, the method call db.getPatient gets a patient’s
identity (a) from the database, and then the db.findPersonnel finds
the personnel (d) associated with this patient. In line 29, the server
searches for the test results of this patient by sending a remote
asynchronous call to the laboratory Q!lab.detectResult, where Q is
the future variable and lab is the callee. This method call creates an
explicit future, and its identity is assigned to the future variable Q.
In line 30, the future is passed to object proxy for publishing, and

this object waits and assigns the result to the variable r as in line
36. Then object proxy sends this value to the patient and personnel.

This example can be extended to a hierarchy of security lev-
els according to different access rights. Here we assume that the
possible security levels are High and Low, and our static analysis
over-approximates the security levels of test results as High, as em-
phasized in Figure 4. This over-approximation leads to an inflation
of high security levels and unnecessary rejections of information
passing or call-based interactions. Note that the two signal calls
in class Proxy would not be allowed if we only use static checking
since we cannot tell which patients and personnel have a high
enough level. In the present framework, class Proxy is therefore

PPDP’19, October 07-09, Porto, Portugal

marked as unsafe, and precise level information for objects of this
class is calculated at run-time and non-interference is ensured by
means of wrappers. A static analysis which considers references
as Low might leak high information through passing futures. For
instance, in line 30, static analysis allows passing the future Q as a
Low reference to object proxy, but later when it is resolved it can
be High, and the object proxy sends this value to other objects. We
focus in this paper on run-time checking, using the exact security
level information at run-time rather than over-approximation.

4 A FRAMEWORK FOR NON-INTERFERENCE

Like Creol and ABS, our core language is equipped with behavioral
interfaces, which means that created objects are typed by interfaces,
not classes [14]. Therefore, remote access to fields or methods that
are not exported through an interface is impossible. It makes the
observable behavior of an object limited to interactions by means
of remote method calls. Illegal object interactions are the ones
leading to an information-flow from more sensitive to less sensitive
information holders.

According to [18], a wrapper wraps an object (or component)
and filters (modifies, deletes, adds) messages going out from an
object and coming inside. A wrapper acts like a "local firewall"
enforcing the safety of an object or a component. In this paper,
we exploit the notion of wrappers to perform dynamic checking
for enforcing non-interference in object interactions. The opera-
tional semantics of wrappers is explained in Section 4.3. An object
can reveal confidential information through outgoing method calls
by sending actual parameters with high security levels to lower
level objects. In this case, a wrapper based on the security policies
blocks illegal communications. Moreover, if a return value is High,
then all the objects having a reference to the corresponding future
can access the value. In a similar manner, a future wrapper con-
trols access to the value and blocks illegal ones. Inside an object,
in order to compute the exact security levels of created messages
or return values, flow-sensitivity must be active, using dynamic
information-flow enforcement. The operational semantics of our
dynamic flow-sensitive enforcement is given in Section 4.2. Secu-
rity policies of a wrapper are based on the run-time security levels.
Thus, it makes our approach to be more permissive and precise.
We can be conservative to wrap all objects and correspondingly
activate dynamic flow-sensitivity, but it costs run-time overhead.
The semantics of a wrapper is defined in a way making it indepen-
dent of the object, but the flow-sensitivity slows down the object.
In order to be more efficient at run-time, it is important to perform
dynamic checking only for components where it is necessary.

Table 1 shows the results of a class-wise static analysis to iden-
tify where to put wrappers and correspondingly where to activate
the flow-sensitivity. The column static analysis” classifies classes
according to their observable behavior through method calls and
return values. The column “flow” shows if objects created from
these classes need active flow-sensitivity. The column “wrapper”
shows if wrappers are needed for objects or futures. The column
“class” defines a class as safe or unsafe according to the static anal-
ysis results. For example, a class is safe if there are no outgoing
calls with high parameters and no high return values; therefore,
flow-sensitivity is off and neither the object nor future needs to be

Farzane Karami, Olaf Owe, and Gerardo Schneider

Table 1: Static analysis results

Static analysis flow wrapper class
No ca.lls with High parameters off none safe
No High return values

No calls.w1th High parameters on ot unsafe
Some High return values

Some calls with High parameters Obj unsafe

No High return values

Some calls with High parameters

Some High return values on Obj&Fut unsafe

wrapped. Otherwise, a class is unsafe, and objects created from these
classes are active flow-sensitive. In addition, an object is wrapped
if there is an outgoing method call, where the security level of at
least one of its actual parameters is high, and a future is wrapped if
the corresponding return value is high. Based on this Table, objects
can be: 1) normal without active flow-sensitivity or a wrapper, 2)
active flow-sensitive and not wrapped, 3) active flow-sensitive and
wrapped. Similarly, futures can be : 1) unwrapped or 2) wrapped.
We define each type of the above-mentioned objects and futures in
the operational semantics of the language (see Sections 4.2-4.3).

4.1 Static analysis

According to Table 1, we benefit from static analysis to categorize a
class definition as safe or unsafe based on analysis of the parameters
of outgoing calls and return values. This will make the execution of
objects of safe classes faster, as we avoid a potentially large number
of run-time checks and wrappers. Our approach can be combined
with any (sound) static over-approximation for detecting security
errors and safe classes, for instance the one proposed in [17], which
is more permissive (to classify a class as safe) than the static analysis
indicated here, in that high communication is considered secure
as long as the declared levels of parameters are respected. Thus,
the present work is complementary to [17]. For instance, if a class
definition obeys the confidentiality typing rules proposed in [17],
it is not a threat of leakage and it can be assumed to be safe. If not,
then the class may be unsafe. Moreover, in [17] it has been proven
that this static type system is sound, ensuring that evaluation of
variables and expressions at run-time results in levels less than or
equal to those of the static analysis.

Based on our core language, a program consists of interfaces
and classes. In a class, fields and formal parameters are declared
with static security levels, representing maximal security levels.
Local variables do not have a declared security level, they start with
Low (as default) but may change after each statement due to flow-
sensitivity. Inside interfaces, formal parameters of a method and its
return value are declared with maximum static security levels. In
order to declare a parameter security level, all possible levels that
can be assigned at run-time are considered, then the maximum one
is taken. This leads to maximum security levels for all variables at
a given program point. Since an object encapsulates local data and
fields, there is no need to control the flow of information inside an
object. However, since all object interactions are done by method

Using Wrappers to Ensure Information-Flow Security for Active Objects with Futures

Q!lab. detectResult(a)

service

g S\ #
)
Q= fut 1
) 1. ¢F2¢
, 7
FOX.
P y/
O object
6 Personnel d future

‘ flow-sensitivity

C) wrapper

2N
Patient a

Figure 5: Information flow security regarding wrappers.

calls, typing rules are defined to control security levels of return
values and actual parameters. A class is safe if the confidentiality
of each method is satisfied. The confidentiality of a method is satis-
fied if the typing rules for its return value and actual parameters
are satisfied. The typing rules check that each occurrence of an
actual parameter (or return value) is not high, then the class is safe;
otherwise, it is unsafe and needs dynamic checking at run-time.

According to the results of the static analysis and Table 1, we
can categorize safe and unsafe classes for the example in Figure 4.
As emphasized in this example, the interface laboratory LabI has
a method with a high return value (detectResult). Thus the object
lab is unsafe and flow-sensitivity must be active to compute the
security level of the return value at run-time. The class Proxy is
unsafe since it has at least one method call with a high actual
parameter, thus object proxy is active flow-sensitive and wrapped.
Figure 5 represents the run-time model of this program, and object
communications are illustrated with arrow numbers. Objects are
represented as circles, and the active flow-sensitivity is represented
by a triangle inside an object. A dashed circle denotes a wrapper, and
rhombus is a future. Whenever a remote method call for detecting
a test result is made (arrow #1), the object service creates a future
with identity fut (arrow #2). This object sends the future to the
object proxy (arrow #3). The laboratory object (lab) returns back
the test result (arrow #4), the object proxy gets the result (arrow
#5) and sends it to the patient a (arrow #6) and the personnel d
(arrow #7) . According to our security model with wrappers, if the
return value of method detectResult is high, then the future wrapper
protects this value. In fact, the future wrapper lets the object proxy
get the value only if the security level of the object is greater than or
equal to the security level of the future value. Otherwise, it blocks
or raises an error. Based on the security levels of objects a and d,
the wrapper of object proxy decides whether to send out the signal
messages (6, 7) or block them.

PPDP’19, October 07-09, Porto, Portugal

sorts Class Object Queue Msg Future Wrapper Configuration .
subsorts Class Object Queue Msg Future Wrapper < Configuration .

op none : — Configuration .
op _ _: Configuration Configuration — Configuration
[assoc comm id: none] .

Figure 6: Our definition of system configuration in Maude.

4.2 Operational semantics

We here discuss the operational semantics of our secure program-
ming language (including the notions of flow-sensitivity and wrap-
pers). Our secure programming language has a small-step opera-
tional semantics defined by a set of rewrite logic (RL) rules in the
Maude format. Maude uses sorts to define data types and data struc-
tures together with operations (functions) to manipulate values and
constructor functions to define the value set of a sort. Operator func-
tions can be defined recursively by equations, and rules are used to
define (non-reversable) execution steps. Both equations and rules
are applied by letting an occurrence of a left-hand-side pattern be re-
placed by the corresponding instance of the right-hand-side. Rules
(and equations) are computed by rewriting from left to right chang-
ing (a part of) the system state. Non-overlapping rewrites may be
done in parallel. Concurrent and distributed systems are modeled as
multisets consisting of the relevant components and messages. The
order of objects and messages in a multiset is immaterial, and the
outcome of a system can be different based on non-deterministic
applications of the rewrite rules. In other words, given a set of
rules and equations, the rules are non-deterministically applied.
In addition, rules and equations can be conditional, using the for-
mat [hs —> rhs if condition for rules and rhs = lhs if condition for
equations.

Maude has a built-in understanding of associativity, commutativ-
ity, and identity, which are used in constructor functions to define
data types, in particular the multiset constructor (denoted by white
space). A system state can then be modeled as a configuration, which
is a multiset of objects (with or without active flow-sensitivity),
queues, messages, futures, and wrappers. The Configuration sort
is a super sort of the sorts of the mentioned components. (Classes
are included in a configuration to provide static information about
fields and methods.) Assuming a system with objects and messages,
the Configuration sort is defined by two constructor functions as in
Figure 6. The first constructor (which does not take any arguments)
defines none as a constant of sort Configuration, representing an
empty state. The binary multiset constructor (denoted by white
space) is defined on Configuration as associative, commutative, and
with none as the identity element, reflecting multiset semantics. The
underscores (_) determine where the arguments should be placed.

An object in a given state is represented by aterm < O : C | Ay :
Vi,...An + Vi >, where O is the object’s identifier or name, C
is its class name, the A;’s are the names of the object’s attribute
identifiers and the V;’s are the corresponding values. Figure 7 rep-
resents the components of a configuration. An object component
is represented as:

<O:C|Att:S, Pr:(L,SL), Lent : N, Lvl: Lev >

PPDP’19, October 07-09, Porto, Portugal

object :

unsafe-class :

flow-sensitive object :

queue : < Qu:0|Ev: MMsg >
invoc-msg : invoc(Fid, M, DL) from O to O’
comp-msg : comp(D) from O to Fid

future : fut(Fid, D)

unresolved-future : fut(Fid, undef)

wrapper : {Wr: Wid, Lvi: Lev | Config}

Farzane Karami, Olaf Owe, and Gerardo Schneider

<O:C|Att:S, Pr:(L,SL), Lent : N, Lvl : Lev >

class : <Cl:C|Att:S',Mtds : MM, Ocnt : F >
<Cl:C|Att:S',Mtds : MM, Ocnt : F, Flow : V' >

<O:C|At:S, Pr:(L,SL), Lent : N, Lvl: Lev, Flow : , PCstk : pcs >

Figure 7: The components of a configuration.

where O is the object name, C is the class name that the object
is created from, S is the state of object fields (attributes), the pair
(L, SL) represents the current active process, where L is the state of
local variables defined in a method (a mapping from local variables
to values), SL is the statements in the active process, and N is a
natural number to assign unique identities to each method invo-
cation created by the object. The states of object fields and local
variables are given by mappings from variable names to values.
For instance, S[A — D] denotes updating S so that variable A
binds to data value D. Variable Lev is the security level of the object
(Lev € {Low, High}), which is assigned by a programmer at the
time of creating an object, using the syntax A := newge, C’(..).
A class is represented as:

< Cl:C| Att: S’ ,Mtds : MM, Ocnt : F >

where C is the class name, S’ is the class fields state (attributes),
MM is a multiset of method declarations (each with code and local
variables), and F is a natural number for generating unique object
identities. For simplicity, we ignore inheritance in this paper; oth-
erwise, there would be a field Inh : S, where S is the inheritance
list.

In Figure 7, the unsafe-class definition includes the same fields
as a safe class with an additional field Flow : /, denoting that all
objects created from this class will be wrapped and with active
flow-sensitivity control. The flow-sensitive object component
shows an object with active flow-sensitivity. The field Flow : v/
represents active flow-sensitivity inside an object, and pcs is the
stack of pc (a list of security levels), which is used to avoid implicit
flows in conditionals with high guards.

The queue component represents the external queue of an object
for storing method invocations toward the object.

< Qu:0|Ev:MMsg >

The queue is associated with object O, and MMsg is a multiset
of stored messages toward object O. The invoc-msg component
represents an invocation message from object O to O’ as:

invoc(Fid, M, DL) from O to O’

where Fid is the future identity, M is the called method name, and
DL is a data list of actual parameters. The comp-msg component

represents a completion message, where D is the return value from
object O (the callee) to a future with identity Fid.

comp(D) from O to Fid

A resolved future component with identity Fid and value D has
the form

fut(Fid, D)

and an unresolved future component has undef as value. A wrap-
per is represented as:

{Wr: Wid, Lvl: Lev | Config}

where Wid is the wrapper identity, Lev is its level, and Config
represents what the wrapper contains, its internal configuration.
A wrapper wraps a future or an object and correspondingly, gets
the identity and level of the component that it is wrapping. For
instance, an object wrapper has the same identity and level as the
object. Figure 8 is a legend of Figure 7. According to the Maude
convention, Maude variables (i.e., meta variables) are written in
capital letters.

Figure 9 represents the flow-sensitivity semantics of objects. The
operational semantics is given by a number of rules, written in
the style of SOS rules. A rule can be applied to a configuration if
the left-hand-side matches a subset of the configuration (possibly
reordered). And since configurations can be nested inside wrappers,
the rules can also be applied to inner configurations. If the left-
hand-sides of two rules match disjoint parts, they can be applied
at the same time, indicating concurrency and non-determinism.
In our semantics, each rule involves at most one object, reflecting
that objects are executing independently from each other. Thus the
objects execute in parallel. For simplicity, in the right-hand-side
of the rules, fields that are as in the left-hand-side are ignored and
indicated by ..., but changed fields are shown. Comments are shown
by *** symbol.

The new-obj rule shows creation of a new object from a safe
class (ignoring class parameters for simplicity). In the active process
of object O, command A := newp, C’(EL) creates a new object from
class C” with a unique identity newld and its external queue. In
the rules, for simplicity, newld is an abbreviation for a function
new(C’, F), which creates a unique object identity out of the class
name C’ and value of object counter F. This rule assigns newld to

Using Wrappers to Ensure Information-Flow Security for Active Objects with Futures

Structural names used in the operational semantics

Cl indicates a class component

Att attribute field (followed by the state of the attributes)
Mtds | method declaration field

Ocnt | object counter field

Flow | flow-sensitivity field

Pr current active process field

Lent method call counter field

Lvl security level field

PCstk | pc stack field

Qu indicates a queue component

Ev stored invocation messages field in a queue
Wr indicates a wrapper component

fut indicates a future component

invoc | indicates an invocation message

comp | indicates a completion message

Meta variable names used in the operational semantics

C class name

S, S state of class attributes

MM a multiset of method declarations

F a natural number (used for creating unique object identities)

0,0 object name

L state of local variables (mapping from names to values)
SL remaining statement list in the active process

N a natural number (used for creating unique call identities)
Lev level (Lev € {Low, High})

pes pc stack

MMsg | a multiset of invocation messages

Fid future identity

M method name

D data value

DL data value list (actual parameters)

A program variable

Q future variable

E expression

EL expression list

Wid wrapper identity (the ID of the component it wraps)

Config | a variable of sort Configuration

Figure 8: A legend for the operational semantics.

the variable A and increases the object counter by one in the class C”.
Moreover, the fields of the new object are assigned correspondingly.
The active process is initialized with (empty, idle), where empty
denotes an empty state of local variables, and idle denotes an empty
statement list (no active process). The new object level is Lev since it
is specified in the command A := newp,, C’(EL).If it is not specified,
then the created object level would be assumed Low. Moreover, the
new external queue is initialized to the new object’s identity (newld)
and no stored messages (noMsg). The semantics of the actual class
parameters is here treated like parameters of an asynchronous call

PPDP’19, October 07-09, Porto, Portugal

1A.init(EL), where init is the name of the initialization method of
a class.

In the new-obj’ rule, C’ is an unsafe class; therefore, a new object
with active flow-sensitivity is created inside a wrapper. The wrapper
gets the same identity and level as the new object, Wr : newld, LvI :
Lev, and it wraps the new object and its queue. The new object has
additional fields Flow : v and an empty stack of pc (emp). In an
active flow-sensitive object, variables and fields can be defined with
security tags. For example, the evaluation result of an expression E
is denoted by [E] which returns back both the value and security
tag as Dy, where D is the value and Lev is the tag. If this value is
assigned to a program variable A, the binding A + Dy, is added to
the corresponding state in the object. Moreover, a variable without a
security tag is assumed Low. Static analysis assigns variables to their
maximum static security levels due to over-approximation. Then
at run-time due to the flow-sensitivity, security levels of variables
can change and propagate to other variables. Therefore, a variable
without a tag means that it was assumed as Low at the static time,
and it has not been tainted by High information at the time of
analysis. Thus at run-time, it is considered as Low (which might
change afterward). The tag of a variable is extracted by a function
level(Dypey), which returns back Lev. It is worth mentioning that
[E] is an abbreviation for eval(E, S#L). The eval function evaluates
an expression E by considering the map composition of S and L,
i.e., S#L, reflecting that the binding of a variable name in the inner
scope L shadows any binding of that name in the outer scope S.
Considering a variable X, eval(X, S#L) equals eval(X,L) if L has a
binding for X, otherwise eval(X,S).

Rules assign and assign’ show an assignment statement of
(A := E) in a normal and active flow-sensitive object, respectively.
The function dom(A, L) is true if variable A is in the local state L,
then in the next step, A with its value is inserted to L by function
insert(A, [E], L); otherwise, it is inserted to the attribute state S.
In the assign’ rule, the insertTag function inserts A with a value
and security tag to the corresponding state. The tag is a join Ll of
the security level of [E] and pc, where pc = U;pes|i], and i ranges
over all indexes in the stack (level([E]upc) = level([E]) U pe). If
the stack is empty, then [E]iemp equals [E]. In the case where a
variable is without tag, the function insertTag adds it to the domain
with the pc level. According to the assign’ rule, inside an active
flow-sensitive object, the security level of a variable containing the
identity of a new object or future is affected by the context level pc.
This rule inserts these variables with the pc security level to the
corresponding state, although an object or a future identity is not
confidential.

The rules if-low and if-high represent how the stack of pc
(pes) changes according to the guard security level in a conditional
structure if th el fi. In the if-low rule, the guard’s security
level is Low, thus the stack of pc does not change, and only the
corresponding branch is taken. Rule if-high applies when branch-
ing happens in a high context (level([E]) # Low). Similar to the
approach [20], in order to avoid implicit flows, the security levels
of variables appearing in both branches are raised by this rule. In
this case, the stack of pc is updated by adding the guard security
level (pcs level([E])). In addition, an auxiliary function endif (SL”)
is defined to mark the join point of the if structure, and SL’ is
the statements of the untaken branch. At the join point, security

PPDP’19, October 07-09, Porto, Portugal

new-obj : <O:C|Att:S, Pr: (L, A:=newp,, C’'(EL); SL), Lent : N, Lvl : Level >
<Cl:C"| Att: S’, Mtds : MM, Ocnt : F >
— <O0:C|.., Pr:(L, A:=newld; 'A.init(EL); SL), ... >
<Cl:C"|.., Ocnt:(F+1), ..>
< newld : C’ | Att : S/, this — newld, Pr: (empty, idle), Lent : 1, Lvl : Lev >
< Qu: newld | Ev : noMsg >
new-obj’ : <O:C|Att:S, Pr: (L, A:=newp,, C'(EL); SL), Lent : N, Lvl : Level >
<Cl:C’"| Att:S’, Mtds : MM, Ocnt : F,Flow : vV >
— <0:C|.., Pr: (L, A:=newld; A.init(EL); SL), ... >
<Cl:C"|.., Ocnt:(F+1), ..>
{Wr: newld, Lvl: Lev | < newld : C’|Att : S', this v newld, Pr : (empty, idle), Lent : 1, Lvl : Lev, Flow : , PCstk : emp >
< Qu: newld | Ev: noMsg > }
assign : <O:C|Att:S, Pr:(L, A==E; SL), Lent : N >
— if dom(A,L) then <O :C| .., Pr: (insert(A, [E],L), SL),... >
else <O:C|Att: insert(A,|E],S), Pr:(L,SL),... >
assign’ : <O:C|Att:S, Pr: (L, A:==E; SL), Lent : N, Lvl : Lev, Flow : v, PCstk : pcs >
— if dom(A,L) then <O :C| .., Pr: (insertTag(A, [Elupe, L), SL), ... >
else <O:C|Att: insertTag(A, [E]lupe S), Pr: (L, SL), ... >
if-low : <O:C|A#t:S,Pr:(L, if E th SL’ el SL” fi; SL), Lent : N, Lvl: Lev, Flow : V/, PCstk : pcs >
— if [E]=truethen <O:C]|.., Pr: (L, SL’; SL), ... >
else <O:C|.., Pr:(L, SL”; SL), ... >
if level([E]) = Low
if-high : <O:C|Att:SPr:(L,if E th SL’ el SL” fi; SL), Lent : N, Lvl: Lev, Flow : v/, PCstk : pcs >
— if [E] =truethen <O :C|.., Pr: (L, SL’; endif (SL""); SL), ..., PCstk : pcs level([E]) >
else <O:C|.., Pr:(L, SL”; endif (SL’); SL), ..., PCstk : pcs level([E]) >)
if level[E] # Low
endif : <O:C|Att:S, Pr: (L, endif (SL’); SL), Lent : N, Lvl : Lev, Flow : /, PCstk : pcs Lev’ >

Farzane Karami, Olaf Owe, and Gerardo Schneider

— < O0:C|.., Pr: (L, update(SL’,Lev’); SL), ..., PCstk : pcs >

Figure 9: Flow-sensitivity operational semantics, where newld = new(C’, F), [E| = eval(E, (S#L)), and pc = U;pes][i].

levels of variables in the untaken branch are updated with the guard
level. According to the endif rule, the function update(SL’, Lev")
updates the variables of the untaken branch (SL’) with the current
context level (Lev’). Moreover, Lev’ is removed from the stack of
pe, reflecting the previous context.

Figure 10 shows the operational semantics regarding method
calls and the future creation. In the rules, we do not cover local calls,
which are standard and not involving object interactions (therefore,
less interesting here). The start rule says that when there is no
active process (the object is idle) and there is an invocation message
in its queue, the object starts to execute the corresponding method.
The rule captures the method’s body SL as the active process, and
the object’s local state is updated, binding formal parameters to
the actual ones, storing the future identity (Id) in label. The label
variable is used later to execute the return statements to return
back the value to the corresponding future. Moreover, in the left
hand side of this rule, only the fields common for both normal and
active flow-sensitive objects are specified to indicate that this rule
can be applied to both types of objects.

The async-call rule deals with an asynchronous and remote
method call Q'E.M(EL), where Q is a future variable, E is the callee,
M is the method name and EL is a list of actual parameters. In this
rule, the call is reduced to !E.M(EL), and a future with identity
newfld and value undef (not resolved) is created. The newfld is
an abbreviation for function new(O, N), which creates a unique
identity from the object name O and N. The new identity newfld
is assigned to the future variable Q. A future variable can be used
for accessing the return value (future value) or synchronization as
explained in Section 3.2. The rule async-call’ shows an asynchro-
nous call !E.M(EL), which creates an invocation message toward
the callee. The invocation message contains newfId, method name
M, and actual parameters EL.

The return rule interprets a return statement, which creates a
completion message toward the corresponding future (eval(label, L)),
and the object becomes idle. We assume each method body ends
with a return statement. The return’ rule represents a return
statement in an active flow-sensitive object, where the security
level of the completion message is level(D) LI pc, and D is the return
value.

Using Wrappers to Ensure Information-Flow Security for Active Objects with Futures

PPDP’19, October 07-09, Porto, Portugal

start : <O:C|At:S, Pr: (empty,idle), Lent : N, Lvl : Lev, ... >

< Qu: 0| Ev: MMsg invoc(Id, M, DL) >

— <O0:C|Att:S, Pr:([label — Id, X — DL,L — Lo],SL), ... >

< Qu:0|Ev: MMsg >

where method M binds to M(X){Lo; SL;} with initial local state Ly

async-call : <O:C|Att:S, Pr: (L, Q'E.M(EL); SL), Lent : N, Lvl : Lev >
— fut(newfld, undef)
<O:C|Att:S, Pr:(L, Q:=newfld; \EM(EL); SL), ... >
async-call’ : <O:C|Att:S, Pr: (L, \EIM(EL); SL), Lent : N, Lvl: Lev >
— <0 :C|..,Pr:(L, SL), .., Lent : N+1, ... >
invoc(newfld, M, [EL]) from O to [E]
return : <O:C|Att:S Pr: (L, return(D);), Lent : N, Lvl: Lev >
— < 0:C| .., Pr:(empty,idle), ... >
comp(D) from O to eval(label, L) s * future Identity
return’ :

— < 0:C|.., Pr:(empty,idle), ... >

(comp(D) from O to eval(label, L)) jevel(D)Lipe

<O:C|At:S Pr: (L return(D);), Lent : N, Lvl: Lev, Flow : v/, PCstk : pcs >

Figure 10: Object interaction operational semantics, where [E] = eval(E, (S#L)) and newfld = new(O, N).

4.3 Wrappers operational semantics

A wrapper is assigned to an object or a future by the run-time
system. According to the new-obj’ rule, the run-time system wraps
a new object created from an unsafe class. Not all object wrappers
are needed; for example, according to Table 1 if a class is unsafe
with high return values but no high outgoing calls, the new object
does not need a wrapper (and this can be adjusted as future work).
A future is wrapped when there is a high return value. Assuming
the static analysis (Table 1), there are some objects which are not
wrapped or active flow-sensitive. Considering this assumption, the
operational semantics of a wrapper is given in Figure 11.

A wrapper wraps a flow-sensitive object and all invocation mes-
sages that the object might create and also the queue. The two
rules of wr-call and wr-call’ represent an asynchronous call inside
an active flow-sensitive object. They are similar to the two rules
async-call and async-call’ in Figure 10. In the wr-call’ rule, an
invocation message is created, where EL is a list of actual parame-
ters. The security level of the message is level([EL]) LI pc, which
is the join of security levels of the actual parameters in EL and pc.
An object may send a future variable, as an actual parameter, to
other objects. Although a future identity is not confidential, it is
affected by the current context pc level. According to this rule, all
outgoing messages at least get the pc level, and the wrapper checks
the security levels based on the next rule.

The wr-invoc rule represents a wrapper with an invocation
message and Config inside, denoting the wrapper’s configuration.
At run-time, a wrapper acquires and records the security levels of
destination objects before sending the invocation messages toward
them. If the security level of the message is less than or equal to
the destination object level (level(O”)), then the wrapper allows the
message to go out. Otherwise, as the else-branch of this rule, the
wrapper eats the message and it disappears from inside. In this case,

an object performing a get will deadlock because the invocation
message was deleted. It is worth mentioning that the setting of asyn-
chronous method calls and futures has an inherent possibility of
objects being blocked, and thus deadlocked. For instance, a method
result may never appear in the future if the callee object is blocked.
The present work makes the situation even worse by deleting cer-
tain invocation messages. We have extended the approach with a
notion of errors, so that the deletion of an invocation message re-
sults in an error value in the corresponding future component. This
can be combined with an exception handling mechanism such that
an exception is raised when a get operation tries to access an error
value. However, as this is beyond the scope of this paper, we ignore
the exception handling part here. We simply indicate exceptions
by assignments with error in the right-hand-side. One could use
exception handling as in ABS (where also a time-out mechanism is
considered). The fut-get’ rule represents the case when a future
value is error, and an object performs a get command Fid?(A) asks
for the return value of this future. In this case, the object gets an er-
ror instead of being blocked because the corresponding invocation
message was deleted by the object wrapper.

The invoc-wr’ rule represents a wrapper and an incoming invo-
cation message toward the object (O). The notation A[M, i] denotes
the level of the ith formal parameter of the method M as declared
in the class. If the security level of each actual parameter (DL;) is
less than or equal to the security level of the corresponding formal
parameter, then the wrapper allows the message to go through and
adds it to its configuration inside. The invoc-qu equation stores an
invocation message toward an object in the corresponding queue
for later processing. In case there is a wrapper, the message has
passed it. This equation for storing a message inside the correspond-
ing queue has priority over the rule sending an invocation message

PPDP’19, October 07-09, Porto, Portugal

Farzane Karami, Olaf Owe, and Gerardo Schneider

<O:C|At:S, Pr: (L, QIE.M(EL); SL), Lent : N, Lvi : Lev, Flow : v/, PCstk : pcs >

wr-call :
— fut(newfld, undef)
<O:C|.. Pr:(L, Q:=newfld; \EMM(EL); SL), ... >
wr-call’ : <O:C|Au:S, Pr: (L, \EMM(EL); SL), Lent : N, Lvl: Lev, Flow : /, PCstk : pcs >
— <0:C|..,Pr:(L, SL), ..., Lent : N+1,...>
(invoc(newfld, M, [EL]) from O to [E]) evel([EL])Lipc
wr-invoc : { Wr:0, Lvl: Lev | (invoc(Id, M, DL) from O to O")[Config }
fut(Id, undef)
— if Lev’ T level(O’) then { Wr: O, Lvl: Lev | Config } (invoc(Id, M, DL) from O to O")1,y fut(Id, undef)
else { Wr: O, Lvl: Lev | Config } fut(Id,error)
fut-get’ : fut(Fid, error)
<O:C|Att:S, Pr: (L, Fid?(A); SL), Lent : F, Lvl: Lev, ... >
— fut(Fid, error)
<0:C|.., Pr:(L, A:=error; SL), ... >
invoc-wr’ : { Wr: 0O, Lvl: Lev | Config }
invoc(Id, M, DL) from O’ to O
— if Vi : level(DL;) T A[M,i] then { Wr: O, Lvl: Lev | invoc(Id, M, DL) from O” to O Config }
else { Wr: O, Lvi: Lev | Config }
invoc-qu : < Qu:0|Ev: MMsg > invoc(Id, M, DL) from O’ to O
= < Qu:O0|Ev: MMsg invoc(Id, M, DL) >
wr-future : fut(Fid, undef)
(comp(D) from O’ to Fid)pey
— if Lev # Low then{ Wr: Fid, Lvl: Lev | fut(Fid, D) }
else fut(Fid, D)
wr-fut-get : { Wr: Fid, Lvl : Lev’ | fut(Fid, D) }
<O:C|Att:S, Pr: (L, Fid?(A); SL), Lent : F, Lvl: Lev, ... >
— if (LevC Lev’) then{ Wr: Fid, Lvl: Lev' | ...} <O:C|.., Pr: (L, A:=error; SL), ... >
else { Wr:Fid, Lvl: Lev’'|..} <O:C]|.., Pr: (L, A:=D; SL), ... >
fut-get : fut(Fid, D)

<O:C|Att:S, Pr: (L, Fid?(A); SL), Lent : F, Lvl: Lev, ... >

— fut(Fid, D)
<0:C|.., Pr:(L, A:==D; SL), ... >

Figure 11: Operational semantics involving wrappers, where [E] = eval(E, (S#L)) and newfld = new(O, N).

out of the wrapper (if both rules apply), since in Maude an equation
has priority over a rule.

An unresolved future becomes resolved when it sees a comple-
tion message. Inside an active flow-sensitive object, the security
level of a completion message is computed according to the return’
rule in Figure 10. If the security level of a completion message is
not Low, then the run-time system wraps the corresponding future.
The wr-future rule represents an unresolved future with identity
Fid and value undef, and a corresponding completion message. On
the right-hand-side, if the security level of the completion message
(Lev) is not Low, the future becomes both wrapped and resolved.
If the future value is Low, then there is no need to protect it by a
wrapper. The wrapper has the same identity as the future identity
Fid and the security level of the future value Lev.

Now how does a wrapper protects a future value? The wr-fut-
get rule represents a wrapped future and an object which wants
to get the future value. Moreover, in the left hand side of this rule,
only the common fields between a normal and active flow-sensitive
object is specified to indicate that this rule can be applied to both
types of objects. In this rule, the command Fid?(A) asks for the
return value of a method call with future given by Fid and assigns
the value to the variable A. If the security level of the object (Lev)
asking for the value is smaller than the wrapper security level
(Lev’), then the wrapper sends an error value; otherwise, the object
gets the future value (D). The fut-get rule shows an unwrapped
future and an object which wants to get the future value. There is
no security checking, and the object gets the value immediately.

We have here focused on rules formalizing inter-object interac-
tion and futures. For simplicity, we have ignored local stack-based

Using Wrappers to Ensure Information-Flow Security for Active Objects with Futures

calls and while-loops, as well as exception handling in case of errors
in communication and futures.

5 THEORETICAL RESULTS

This Section establishes results about local and global non-interference.

THEOREM 1 (WRAPPED FUTURES). A high future value will not be
passed to a low object.

ProOF. Since each call has a unique future identity, there is at
most one write operation on a future component, and by Rule wr-
future, the future component is placed in a wrapper if the future
value is high. And this wrapper is not removed by any rule. Any get
operation of such a future is handled by rule wr-fut-get, and this
rule will not pass such a (High) future value to a low object. O

We next consider non-interference. In general, the concept of
non-interference of non-deterministic systems is more complicated
than that of deterministic systems. In our context of message-based
systems, each object behaves in a deterministic manner, while the
overall system may be non-deterministic due to independent object
speeds and overtaking of message passing in the network. Asyn-
chronous local calls could, however, create non-determinism with
our semantics, if they are non-deterministically delayed; but we
may assume immediate scheduling of such calls, and in a FIFO
manner in case several local asynchronous calls are made from
the same method. We may therefore use an adapted version of the
standard definition of non-interference assuming each object is
deterministic.

We let R denote a run-time configuration, and let the projection
R/f denote the future component f in R (possibly with value undef).
Furthermore, we let the projection R/o denote the local run-time
configuration of an object o in R as given by the attributes of that
object, including the object level and also the local communication
history, i.e., the sequence of messages/values communicated from
o to other objects/components (the “outputs” of 0), or from other
objects/components to o (the “inputs” of 0), as in [19].

When comparing two run-time configurations R1 and R2, the
object identities and future identities will in general differ. We,
therefore, use a correspondence relation (~gy gz) between the ob-
jects in the two configurations and between the future components
in the two configurations. We define equality over such configu-
rations by equality modulo the correspondence of the object and
future identities.

DEFINITION 2 (LOW EQUALITY OF CONFIGURATIONS, OBJECTS, AND
FUTURES). We say that two configurations are low equal (=[4,) if (i)
there is a correspondence between the objects in the two configurations
and between the future components in the two configurations, and
if (ii) all the corresponding objects and futures are low equal. We
say that two object-local configurations are low equal (=L, if the
low values of the attributes (including the level and the local history)
of the objects are equal modulo correspondence of object and future
identities. We say that two future components are low equal if their
values are low equal.

We define non-interference by:

DEFINITION 3 (LocAL NON-INTERFERENCE FOR OBJECTS). Object-
local non-interference, means that if two executions reach the pre-state

PPDP’19, October 07-09, Porto, Portugal

of a basic output statement (call, new, or return) to be performed by
corresponding objects 01 and oy and with configurations Ry and Ro,
respectively, such that the local communication histories of 01 and 03
are low equal, then the observable output resulting from execution
of the statement on the two configurations will be the same.

DEFINITION 4 (OBSERVABLE OUTPUT). The observable output of a
call statement s performed by an unwrapped object o is the message
generated by s. For a wrapped object we consider only the messages
passing through the wrapper. The observable output of a new state-
ment is given by the actual class parameters. The observable output
of a return statement is the generated value.

We define global non-interference by:

DEFINITION 5 (GLOBAL NON-INTERFERENCE). Global (system-
wide) non-interference means that for any two executions with cor-
responding objects and futures as explained, two configurations that
are low equal with respect to their global histories, should satisfy that
the next outputs are low equal for each pair of corresponding objects.

THEOREM 6 (GLOBAL NON-INTERFERENCE). Global (system-wide)
non-interference follows if local non-interference holds for all corre-
sponding objects in two executions.

ProoF. Object-local non-interference for all corresponding ob-
jects implies that the next outputs are low equal for the correspond-
ing objects. Since the communication histories are low equal, we
have that the inputs (through input parameters of messages and
queries on futures) are also low equal. For a return (or other outputs)
from corresponding objects, the local communication histories are
low equal, and by local non-interference, the returned values must
be low equal. Therefore we have non-interference for the corre-
sponding future components, and the values communicated from
future components (requested by get statements) must be low equal,
and the get statements must be low equal as well. O

THEOREM 7 (NON-INTERFERENCE). Our security model using the
wrapper mechanism guarantees global non-interference.

Proor. It suffices to prove object-local non-interference. The
proof is by considering all cases of statements s producing an out-
put. We must consider the following kinds of statements: call, new,
and return. According to the new-obj’ rule in Figure 9, a new object
becomes wrapped when the class which it is created from is unsafe.
Correspondingly, the wrapper includes all the object’s invocation
messages and the object queue. According to wr-call’ rule in Figure
11, inside a flow-sensitive object an outgoing method call creates
an invocation message. According to the wr-invoc rule, a wrapper
checks the security levels, and if a message contains confidential
data, the wrapper does not send it to a low-level object. The ob-
servable output of a call statement is the values of the parameters
of M for which the run-time level and also the pc level is low at
the time of creating the invocation message. These messages are
low since they have not been affected by high variables inside the
object. Therefore, a wrapper allows them to be sent to low objects.

When a new object or future are created, their identities are
assigned to variables inside an object and due to the assign’ rule
in Figure 9, these variables get the level of pc. An object can send
these variables as parameters of a method call to other objects (as

PPDP’19, October 07-09, Porto, Portugal

an invocation message). However, if the object is wrapped, these
variables (identities) are not sent to objects with a lower security
level than pc. Only if pc is low, then low-level objects can have these
variables. A return statement, based on the return’ rule in Figure
10, creates a completion message with the join security level of
the return value and pc. According to the wr-future rule in Figure
11, if the security level of a completion message is high, then the
future becomes wrapped. Otherwise, low-level objects can access
the value. According to the wr-fut-get, low-level objects cannot
get the value from a wrapped future. O

6 RELATED WORK

A static and class-wise information-flow analysis has been sug-
gested for Creol without futures by Owe and Ramezanifarkhani
in [17]. It is a type system for the Creol language, named SeCreol.
The approach is based on static declaration of security levels for
each input parameter and return value of a method, object fields,
and local variables. The authors proved soundness and a non-
interference property in object interactions based on an operational
semantics. In contrast to the present paper, futures are not con-
sidered in [17]. The present paper can be applied for languages
supporting futures. Our approach is a dynamic technique which is
more permissive, precise, and to overcome the run-time overhead
we combine it with static analysis similar to the approach in [17].
The static analysis determines where dynamic checking is required
and correspondingly wrappers are assigned to objects and futures
by the run-time system to protect confidentiality of data.

In a paper by Attali et al. [2], secure information-flow for the ASP
language is provided by dynamically checking for unauthorized
information flows. ASP is based on active objects and supports asyn-
chronous communications and futures. In their approach, security
levels are assigned to activities and transmitted data between these
activities (an activity includes one active object and several pas-
sive objects manipulated by one thread). The security levels do not
change when they are assigned. Their security model guarantees
data confidentiality for multi-level security (MLS) systems, which
means that an entity will be given access only to the information
that it is allowed to handle. Dynamic checks are implemented at
activity creation, requests, and replies. Future references can be
freely transmitted between activities because they do not hold any
valuable information. However, for updating a future and getting
its value, the secrecy level of this transmission will be checked
dynamically by the security rules of a secure reply transmission.
Our approach adds flow-sensitivity which allows security levels of
variables to change inside an object. It makes our approach more
permissive and a wrapper deals with run-time security levels. In
addition to enforcing the non-interference property in object in-
teractions, our approach guarantees that an object will be given
access only to the information that it is allowed to handle (based
on the MLS definition).

Sabelfeld and Russo [22] prove that a sound and pure dynamic
information-flow enforcement is more permissive than static anal-
ysis in the case of flow-insensitivity (where variables are assigned
security levels at the beginning of program execution, and then
their security levels do not change during the execution). In addi-
tion, Russo and Sabelfeld [20] show that dynamic flow-sensitive

Farzane Karami, Olaf Owe, and Gerardo Schneider

enforcement (where security levels of variables change during ex-
ecution) is the most permissive but unsound because of implicit
flows in the conditional constructs. The authors propose an ap-
proach as explained in Section 2.1 to make it sound. We apply the
same approach to avoid implicit flows.

Phung et al. [16] describe a method for wrapping built-in meth-
ods of JavaScript programs in order to enforce security policies.
The security policies avoid web browser vulnerabilities and protect
web pages from malicious JavaScript code. A policy specifies under
what conditions a page may perform a certain action and a wrapper
grants, rejects, or modifies these actions. As mentioned before, the
notion of wrappers has been developed for the safety of objects [18].
For instance, when an object is wrapped it controls which actions
are to be taken for any input/output communication event. We here
exploit wrappers for dealing with information security, by extend-
ing the run-time system with secrecy levels and apply dynamic
checking for securing object interactions.

7 CONCLUSION

We have proposed a framework for enforcing secure information
flow and non-interference in active object languages based on the
notion of wrappers. We have considered a high-level core language
supporting asynchronous calls and futures. In our model, due to
encapsulation, there is no need for information-flow restrictions
inside an object. However, information-flow security of object in-
teractions (with method-oriented communications) is enforced by
wrappers, performing the dynamic checking. Furthermore, wrap-
pers are used to control the extraction of confidential values from
futures.

Security rules of wrappers are defined based on security levels
assigned to objects, actual parameters, fields and local variables.
Inside an object, the security levels of variables might change at run-
time due to flow-sensitivity. In a setting where concurrent objects
communicate confidential or non-confidential information, wrap-
pers on unsafe objects and future components protect exchange of
confidential values. Wrappers on objects protect outgoing method
calls and prevent leakage of information through outgoing parame-
ters. The wrappers are created by the run-time system without the
involved parties being aware of it.

The notion of secure wrappers enable dynamic enforcement of
avoidance of information flow leakage, and we define and prove non-
interference. By combining results from static analysis of security
levels, we can improve run-time efficiency by avoiding wrappers
where they are superfluous according to the over-approximation
of levels given by the static analysis.

ACKNOWLEDGMENTS

We thank Christian Johansen for discussions and comments that
have greatly improved the manuscript.

This work was partially supported by the project IoTSec, Security
in IoT for Smart Grids, with number 248113/070 the Norwegian Re-
search Council, and by the project SCOTT (www.scott-project.eu)
funded by the Electronic Component Systems for European Lead-
ership Joint Undertaking under grant agreement No. 737422.

Using Wrappers to Ensure Information-Flow Security for Active Objects with Futures

REFERENCES

(1]

[2

[

[3

[4

flaa

u
=

(6

=

(71

T =
)

[10

[11]

[12

[13]

[14]

[15

[16]

[17]

[18]

[19]

[20

[21

[22

[23

[24

Gul A Agha. 1985. Actors: A model of concurrent computation in distributed systems.
Technical Report. Massachusetts Inst. of Tech, Cambridge Artificial Intelligence
Lab.

Isabelle Attali, Denis Caromel, Ludovic Henrio, and Felipe Luna Del Aguila. 2007.
Secured information flow for asynchronous sequential processes. Electronic Notes
in Theoretical Computer Science 180, 1 (2007), 17-34.

Henry C Baker Jr and Carl Hewitt. 1977. The incremental garbage collection of
processes. ACM Sigplan Notices 12, 8 (1977), 55-59.

Frank De Boer, Vlad Serbanescu, Reiner Hihnle, Ludovic Henrio, Justine Rochas,
Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah,
Kiko Fernandez-Reyes, and Albert Mingkun Yang. 2017. A survey of active object
languages. Comput. Surveys 50, 5 (2017), 76.

Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes,
Einar Broch Johnsen, Ka I Pun, S Lizeth Tapia Tarifa, Tobias Wrigstad, and
Albert Mingkun Yang. 2015. Parallel objects for multicores: A glimpse at the
parallel language Encore. In International School on Formal Methods for the Design
of Computer, Communication and Software Systems (Lecture Notes in Computer
Science), Vol. 9104. Springer, 1-56.

Denis Caromel, Christian Delbé, Alexandre Di Costanzo, and Mario Leyton. 2006.
ProActive: an integrated platform for programming and running applications
on Grids and P2P systems. Computational Methods in Science and Technology 12,
issue 1 (2006), 16.

Denis Caromel and Ludovic Henrio. 2005. A Theory of Distributed Objects:
Asynchrony-Mobility-Groups-Components. Springer.

Dorothy E Denning and Peter] Denning. 1977. Certification of programs for
secure information flow. Commun. ACM 20, 7 (1977), 504-513.

F Duran, S Eker, P Lincoln, N Marti-Oliet,] Meseguer, and C Talcott. 2007. All
about Maude: A high-performance logical framework. Lecture Notes in Computer
Science 4350 (2007).

Joseph A Goguen and José Meseguer. 1982. Security policies and security models.
In Security and Privacy, 1982 IEEE Symposium on. IEEE, 11-11.

Philipp Haller and Martin Odersky. 2009. Scala actors: Unifying thread-based and
event-based programming. Theoretical Computer Science 410, LAMP-ARTICLE-
2008-003 (2009), 202-220.

Robert H Halstead Jr. 1985. Multilisp: A language for concurrent symbolic com-
putation. ACM Transactions on Programming Languages and Systems (TOPLAS) 7,
4 (1985), 501-538.

Einar Broch Johnsen, Reiner Hihnle, Jan Schifer, Rudolf Schlatte, and Martin
Steffen. 2011. ABS: A core language for abstract behavioral specification. In
Formal Methods for Components and Objects (Lecture Notes in Computer Science),
Vol. 6957. Springer, 142-164.

Einar Broch Johnsen and Olaf Owe. 2007. An asynchronous communication
model for distributed concurrent objects. Software & Systems Modeling 6, 1 (2007),
39-58.

Farzane Karami, Olaf Owe, and Toktam Ramezanifarkhani. 2019. An evaluation of
interaction paradigms for active objects. Journal of Logical and Algebraic Methods
in Programming 103 (2019), 154 — 183. https://doi.org/10.1016/.jlamp.2018.11.008
Jonas Magazinius, Phu H Phung, and David Sands. 2010. Safe wrappers and sane
policies for self protecting Javascript. In Nordic Conference on Secure IT Systems.
Springer, 239-255.

Olaf Owe and Toktam Ramezanifarkhani. 2017. Confidentiality of Interactions
in Concurrent Object-Oriented Systems. In Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology (Lecture Notes in Computer Science),
Vol. 10436. Springer, 19-34.

Olaf Owe and Gerardo Schneider. 2009. Wrap your objects safely. Electronic
Notes in Theoretical Computer Science 253, 1 (2009), 127-143.

Toktam Ramezanifarkhani, Olaf Owe, and Shukun Tokas. 2018. A secrecy-
preserving language for distributed and object-oriented systems. 7. Log. Algebr.
Meth. Program. 99 (2018), 1-25. https://doi.org/10.1016/j.jlamp.2018.04.001
Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. static flow-sensitive
security analysis. In Computer Security Foundations Symposium (CSF), 2010 23rd
IEEE. IEEE, 186-199.

Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5-19.
Andrei Sabelfeld and Alejandro Russo. 2009. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In International
Andrei Ershov Memorial Conference on Perspectives of System Informatics. Springer,
352-365.

Marjan Sirjani, Ali Movaghar, and Mohammad Reza Mousavi. 2001. Composi-
tional Verification of an Object-Based Model for Reactive Systems. In Proceedings
of the Workshop on Automated Verification of Critical Systems (AVoCS’01), Oxford,
UK. Citeseer, 114-118.

Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S De Boer. 2004. Modeling
and verification of reactive systems using Rebeca. Fundamenta Informaticae 63, 4
(2004), 385-410.

PPDP’19, October 07-09, Porto, Portugal

Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A sound type system
for secure flow analysis. Journal of computer security 4, 2-3 (1996), 167-187.
Derek Wyatt. 2013. Akka concurrency. Artima Incorporation.

Yasuhiko Yokote and Mario Tokoro. 1987. Concurrent Programming in Concur-
rent SmallTalk. In Object-oriented concurrent programming. MIT Press, 129-158.
Akinori Yonezawa (Ed.). 1990. ABCL: An Object-oriented Concurrent System. MIT
Press, Cambridge, MA, USA.

https://doi.org/10.1016/j.jlamp.2018.11.008
https://doi.org/10.1016/j.jlamp.2018.04.001

	Abstract
	1 Introduction
	2 Background
	2.1 Information-flow security

	3 Active object languages & futures
	3.1 Information-flow security with futures
	3.2 The proposed core language syntax

	4 A framework for non-interference
	4.1 Static analysis
	4.2 Operational semantics
	4.3 Wrappers operational semantics

	5 Theoretical results
	6 Related work
	7 Conclusion
	Acknowledgments
	References

