Towardsintegration of XML in the Creol object-oriented
language

Arild Torjusen, Olaf Owe, Gerardo Schneider
Department of Informatics, University of Oslo - Oslo, Nogwva
{aribraat,olaf,gerardo}@ifi.uio.no

Abstract

Creol is a high level object-oriented modeling language dastributed
systems. In this paper we propose an extension to Creol fudlimg XML
documents.

1 Introduction

XML (eXtensible Markup Language) [2] is a flexible and genddrmat for structured
data aimed at being shared on the World Wide Web and intrafiéte need for XML
documents as first-class citizens is acknowledged by adadesmwell as by business-
oriented communities [7].

XML documents are ordered labeled tree structures containimaykup symbols
describing their content. The document structure is desedrby a document type—or
schema—written in a schema language. The integration of XML on entrobject-
oriented languages is far from trivial. The initial apprbdmas been to treat XML through
APIs which use strings for representing literals. One probWith this approach is that
it limits the use of static checking tools. Furthermore, tygresentation of programs as
text involves potential security risks. See [7] for a moréaded description of the main
problems arising with the integration of XML in object-anted languages.

Creoal Our research project concerns integration of XML into theoboriented language
Creol [6]. The main features of Creol are: It supports obganted classes and
subclasses, as well as user defined data types and funcfidns.gives flexibility in
our choices when representing XML. Creol is oriented towamaen distributed systems,
with support for concurrency and asynchronous commuminafihis gives an interesting
setting for exploring processing and sharing of XML docutsefreol is strongly typed
and has a formal operational semantics defined in rewritigicIwith a small kernel
consisting of only 11 rewrite rules. This makes it easy teedtthe language and to
formalize the extensions by reuse of the operational saosanthe interpreter for Creol
written in Maude [3] provides a useful framework for implemegtion and testing.

Our Agenda In order to integrate XML documents in Creol, we intend to radd the
following issues: (1) Parsing and well-formedness chagloh XML documents; (2)
internal representation of XML in Creol with preservatioh@reol static type-safety;
(3) validity-checking of XML data-structures against setas; (4) queries on XML
documents; and finally (5) more complex transformations dMiXlocuments.

This paper gives a sketch of the first steps towards integraif XML in Creol.
We give a representation of XML in Creol and address the isdualidity-checking.

This paper was presented at the NIK-2007 conference; see http://www.nik.no/.

{aribraat,olaf,gerardo}@ifi.uio.no

Validation can be done either by functions defined “on toptha existing type system
or by enhancing the Creol type system witdgular expression types [5]. The former
approach is taken here. A more detailed presentation of auk ¥& available in the
research report [9], which also contains a larger exampleassurvey of related work.

In the next section we show how XML documents are integratézteol. In Sectiors
we show how schemas are represented in Creol. Settsoroncerned with the validation
of XML documents. In Sectiof we conclude and present further work.

2 A model for XML in Creol

The data model defined in the XPath 1.0 Recommendation [2Bgibasis for canonical
XML which we will take as the point of departure for the intatmepresentation of XML
in Creol. XPath models an XML document as an ordered treeagtingy nodes of seven
different types. We will focus on the following four node Bgin our model: Aroot
node represents the root of the XML tree; @dament node has a hame (corresponding
to the XML tag for the element) and may have as its childrenesaaf other kinds and
associated sets of attribute and namespace ntsteapdes represent character data; and
attribute nodes contain name/value pairs for attributes. The thm@aireng node types:
namespace, processing instructions, andcomment nodes are left out from the model for
now since they are less relevant to demonstrating integrati XML in Creol. Leaving
these out also simplifies the definition of element nodes dodisius to represent a root
node with an element node (cf. [9]).

Since the Creol operational semantics is executable in laue accommodate XML
by extending the operational semantics with Maude sorge(hames) for XML names,
element, text, and attribute nodes, as well as a sort for Xdtudhents and a common
supersortontentNd for nodes that can occur as children of an element node (gment
and text nodes):

sorts XMLName ElemNd TextNd AttNd ContentNd XMLDoc
subsort ElemNd TextNd < ContentNd .

We add the following constructors:

op (_=_) : XMLName String -> AttNd [ctor]
op tx : String -> TextNd [ctor]
op _(_)[_] : XMLName AttNdList ContentNdList -> ElemNd [ctor]
op _[_] : XMLName ContentNdList -> ElemNd [ctor]
op xmlDoc : ElemNd XMLSchema -> XMLDoc [ctor]

Example The XML fragment:<rcp addr="vera@foo.com">Vera</rcp> has the Maude
syntax:"rcp" ("addr"="vera@foo.com") [tx("Vera")].

3 Schemas and type checking

There are several generally adopted XML schema languagésdifierent expressive
power [8]. The DTD language is sufficiently expressive for purpose of demonstrating
XML integration in Creol and hence we adapt its restrictitmachieve simple validation
(i.e. only deterministic regular expressions are allowethe definition of an element).
Theschematypefor Creol ADTD is a list of markup declarations i.e. either declaratio
of element type, attribute-list, entity, or of notation. We only consider declarations of
element type here. Th@ILSchema cONstructor is:

op xmlSchema : XMLName ElemDeclList -> XMLSchema [ctor]

with an additional operatafoschema for use in XML documents with no XML Schema.

Element type declarations consist of a name and a speaincatithe legal content.
There are four kinds of specification: either one of the kagsEMPTY” or “ANY”,
or the specification of aontent model, or a mixed-content declaration of the form:
(#PCDATA | e |e2] ... |e,) x Where each; is an element name.

A content model is a context free grammar governing the atbtypes of the child
elements and the order in which they are allowed to appeamtéel the content models
asregular expressions over the alphabel containing element names and the reserved
namePCDATA. By including PCDATA in X, a mixed-content declaration may be modeled
as a content model specification. The set of regular exesaverX* is obtained
using concatenatiorg), union (|), and star as well as '?’ and '+ with their standard
interpretation:

op elDecl : XMLName ContentModel -> ElemDecl [ctor]

ops empty any : -> ContentModel [ctor]

op elCt : RegExp -> ContentModel [ctor]

op PCDATA : -> RegExp [ctor]

ops _7 _* _+ : RegExp -> RegExp [ctor prec 40]

op (_Q@_) : RegExp RegExp -> RegExp [ctor assoc prec 42]
op _I_ : RegExp RegExp -> RegExp [ctor prec 44]

Example The DTD fragment:

<!DOCTYPE email [<!ELEMENT email (head, body, footx*)>
<!ELEMENT head (sender, rcp, subject?)>...]>

has the Maude syntax:

xmlSchema("email", (elemDecl("email",elCt("head"@"body"@("foot"*)))
elemDecl("head",elCt("sender"@"rcp"@("subject"?)))...)) .

4 Validating XML in Creol

Well-formedness of any value of typexMLDoc is ensured by Maude type checking.
The XML specification defines an XML document to taid “if it has an associated
document type declaration and if the document complies thighconstraints expressed
init” [2].

Validation of an XML document is performed by the functiealidate : XMLDoc
— ValResult. A ValResult iS a boolean/string pair where the boolean value indicates
validity and the string contains an error message or a remfoifte processingvalidate
checks whether there is a schema with a name matching themgmturoot node
associated with the document, in which case the recursiaifinval is called, otherwise
validation ends with a negative result. The functi@n : ContentNdList ElemDeclList
— ValResult validates a content node list against the element deaaréist defined
by the schema by retrieving for each node the correspondinlgaedcontentModel and
calling the functioncheck : ContentNd ContentModel ElemDeclList — ValResult. If
there is n@ontentModel for some node the document is invalid. Note also that acogrdi
to [2] an element type must not be declared more than onceiqaemess of declarations
may be assumed.

For acontentNd to be valid relative to @8ontentModel We need to consider three cases:
ThecContentModel is empty and the element should have no content orcdigentModel
is any and the element can consist of any sequence of (declaraudgets intermixed
with character data. These two cases are easy to check. TFdec#ise is where the
ContentModel specifies a regular expression and it is checked by matchiadigt of
names of children elements of the node against the regufaession specified in the
ContentModel and in addition callingral on the list of children elements. Matching

of a list of element names against a regular expression ikemmgnted by constructing a
deterministic finite automaton from the regular expresaiohtest whether the automaton
accepts the string corresponding to the list of names.

5 Conclusion

Integrating XML documents in object-oriented languagesad easy in general as
witnessed by the extensive research conducted in this anglanicely presented in the
survey [7]. We have outlined how to integrate XML documemit® iCreol, an object-
oriented language with formal semantics in rewriting logitle have also presented an
algorithm for validating XML documents against XML schemtasshow that the former
are instances of the latter.

This paper is a first step towards a full integration of XMLa@reol, and we intend to
pursue our work as to complete our agenda described in &€ectim particular, we find
it interesting to be able to manipulate and reason about Xbttuchents, and to enhance
the Creol type system wittegular expression types and to adapt the semantic sub-typing
algorithm from the related work on CDuce [1] and XDuce [4].

References

[1] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XMht@e general-purpose
language SGPLAN Not., 38(9):51-63, 2003.

[2] T. Bray, J.Paoli, C. Sperberg-McQueen, E. Maler, and Erg¥au. Ex-
tensible Markup Language (XML) 1.0, third edition, February 2004.
http://www.w3.0rg/TR/REC-xml/.

[3] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliel, Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewrlbgg. Theoretical
Comput. Sci., 285:187-243, Aug. 2002.

[4] H. Hosoya and B. C. Pierce. XDuce: A statically typed XMtopessing language.
ACM Trans. Inter. Tech., 3(2):117-148, 2003.

[5] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expassypes for XML. ACM
S GPLAN Notices, 35(9):11-22, 2000.

[6] E. B. Johnsen and O. Owe. An asynchronous communicatmtehfor distributed
concurrent objectsSoftware and Systems Modeling, 6(1):35-58, Mar. 2007.

[7] E. Meijer, W. Schulte, and G. Bierman. Programming wittcles, triangles and
rectangles. IrProceedings of the XML Conference, 2003.

[8] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema larages using
formal language theory. IBxtreme Markup Languages, Montreal, Canada, 2001.

[9] A. Torjusen, O. Owe, and G. Schneider. Towards integratif XML in the Creol
object-oriented language. Res. Rep. 365, Dept. of Infdosatniv. of Oslo, Oct.
2007.

[10] W3C (World Wide Web Consortium). XML Path Language (XPath)
Verson 1.0, 1999. W3C Recommendation 16 November 1999.
http://www.w3.0rg/TR/1999/REC-xpath-19991116.

http://www.w3.org/TR/1999/REC-xpath-19991116

	Introduction
	A model for XML in Creol
	Schemas and type checking
	Validating XML in Creol
	Conclusion

