Transforming Data Flow Diagrams for Privacy Compliance

Hanaa Alshareef¹, Sandro Stucki² and Gerardo Schneider²

¹ Chalmers University of Technology, Gothenburg, Sweden
² University of Gothenburg, Gothenburg, Sweden
hanaa@chalmers.se, sandro.stucki@gu.se, gersch@chalmers.se

Keywords: Privacy by design, Data flow diagrams, GDPR

Abstract: Most software design tools, as for instance Data Flow Diagrams (DFDs), are focused on functional aspects and cannot thus model non-functional aspects like privacy. In this paper, we provide an explicit algorithm and a proof-of-concept implementation to transform DFDs into so-called Privacy-Aware Data Flow Diagrams (PA-DFDs). Our tool systematically inserts privacy checks to a DFD, generating a PA-DFD. We apply our approach to two realistic applications from the construction and online retail sectors.

1 INTRODUCTION

The European General Data Protection Regulation (GDPR) imposes stringent constraints on how individuals’ personal data are to be collected and processed, stipulating heavy penalties in case of violations [European Commission 2016]. Complying the regulation is a hard task and software engineers trying to meet the required data protection principles often face a conflict between system and privacy requirements [Oetzel and Spiekermann 2014].

An additional difficulty is that privacy does not refer to one particular property but rather to a set of properties, including confidentiality, secrecy, data minimisation (DM), privacy impact assessment (PIA), user consent, the right to be forgotten, purpose limitation, etc. So, it does not make sense to talk about “privacy compliance” but rather to refer to specific privacy properties. But even when restricted to a specific privacy property, verifying privacy compliance is in general undecidable [Tsormpatzoudi et al. 2015, Schneider 2018].

We therefore advocate the Privacy by Design (PbD) principle [Cavoukian 2012], in which any (computerised) personal data processing environment should be designed taking privacy into account from the very beginning of the (software) development process. It has been argued that PbD is more tractable than retrofitting legacy software for privacy compliance (see e.g. [Danezis et al. 2015]).

Still, the implementation of privacy principles such as PbD, PIA or DM requires a lot of work from software engineers and developers: they consider such principles to be overly complicated and impractical, and they lack the necessary knowledge to implement them [Senarath and Arachchilage 2018, Sirur et al. 2018, Freitas and Mira da Silva 2018]. Hence, despite having been advocated since the mid-1990s, PbD has gained momentum only in recent years, mostly due to the GDPR.

An example is the work by Antignac et al. [2016, 2018], who propose an approach to automatically add privacy checks already at the design level. The idea is based on model transformations, enhancing Data Flow Diagrams (DFDs) with checks for specific privacy concepts, notably concerning retention time and purpose limitation for each operation on sensitive (personal) data (storage, forwarding, and processing of data). The enhanced diagram is called a Privacy-Aware Data Flow Diagram (or PA-DFD for short). In that proposal the software engineer designs a DFD, pushes a button to obtain a PA-DFD, inspects it manually, and then generates a program template from the PA-DFD that guides the programmer in the concrete implementation of the privacy checks. Antignac et al. describe their transformation from DFDs to PA-DFDs through high-level graphical “rules” but provide neither a full algorithm nor a reference implementation. The main purpose of our paper is to provide these missing pieces.

In summary, we make the following contributions.
1. We give algorithms to check and automatically transform DFDs into PA-DFDs. We identified
2 PRELIMINARIES

We recall here relevant GDPR concepts, the definition of DFDs, as well as the transformation into PA-DFDs given by Antignac et al. (2018).

GDPR The European General Data Protection Regulation (GDPR) contains 99 articles regulating personal data processing. The GDPR is organised around a number of key concepts, most notably its seven principles of personal data processing, the rights of data subjects and six lawful grounds for data processing operations. Relevant to this paper are the principles of purpose limitation (data may only be used for purposes to which the data subject consented) and accountability, as well as the right to be forgotten and the lawful ground of consent. See (European Commission 2016) and Hert and Papakonstantinou (2016) for more details on the GDPR.

Data Flow Diagrams (DFDs) A data flow diagram (DFD) is a graphical representation of how data flows among software components. As shown in Fig. 1, DFDs are composed of activators and flows. Activators can be external entities (rectangles), processes (ellipses) and data stores (double horizontal lines). Processes may represent detailed low-level operations or complex high-level functionality that could be refined into sub-processes (the latter are drawn as double-lined ellipses). Data flow is represented by arrows. We chose DFDs since they are a widely used for modelling digital systems and for security and privacy analysis (Shostack 2014, Wuyts et al. 2014).

Antignac et al. (2016, 2018) extended DFDs with a data deletion type of flow and a data structure to specify personal data: (i) the owner of personal data, (ii) the purpose for which the data can be used consented by the data subject, and (iii) the retention time for the data. This extension is referred to as Business-oriented DFD (B-DFD).

The left-hand side of Fig. 2 shows three types of hotspots, each defined by a pattern of activators and flows that corresponds to a basic data processing operation, such as “collection”, “disclosure”, etc. The right-hand side of Fig. 2 shows, for each B-DFD hotspot, the corresponding PA-DFD containing new activators and flows for specific privacy mechanisms.

Tables 1 and 2 in Antignac et al. (2018) describes the privacy properties of interest for each hotspot, derived from the GDPR. To capture the (new) privacy checks and to facilitate the transformation, the set of activator types in PA-DFDs is augmented with...
five different “Process” subtypes: “Limit”, “Reason”, “Request”, “Log” and “Clean”, each corresponding to a particular privacy enforcement mechanism. “Limit” inspects whether the purpose of data processing is compatible with the data subject consent, which demands a policy from the data subject, given by “Request”. “Log” is used to create log files in a Log data store. The “Reason” activator is used to get an updated policy corresponding to a newly computed data value. Finally, “Clean” guarantees that personal data is eliminated from the data store. See Antignac et al. (2018) for more details about PA-DFDs.

To illustrate Antignac et al.’s transformation, consider the B-DFD shown in Fig. 1 and (part of) its corresponding PA-DFD in Fig. 3. In the figure, “pol” is a policy related to data “d”. Two rules (collection and usage) have been applied to a subset of the B-DFD from Fig. 1 (the part inside the dashed line). The external entity “Customer” provides “Customer Info” data and its associated policy “pol”. The data flows to the “Limit” process which verifies that the data subject has consented to the use of “Customer Info” for downstream processing. The consent is specified in the policy “pol”, received via the “Request” process. The data value and its policy are logged by the “Log” process in the “Log” store.

Note that the PA-DFD in Fig. 3 contains a dangling arrow “pol”: this is an unfortunate side-effect of the original transformation rules were formulated (Fig. 2). This and other shortcomings and inaccuracies are discussed at the end of Section 3.2.

3 FROM B-DFDS TO PA-DFDS

Here we present our algorithms for transforming B-DFDs to PA-DFDs. The transformation process consists of two steps: type-inference followed by the actual transformation. Type-inference ensures that the input B-DFD is well-formed before it is transformed into a PA-DFD in the second step. Fig. 4 shows the general architecture of our approach.

3.1 Type-inference

The B-DFDs we read from input files are not necessarily well-formed. They may, for example, connect external entities directly, or contain a data deletion flow connecting two process entities rather than a process and a data store. Such inconsistencies reveal errors made by designers. Our tool detects and reports such issues. For this purpose, we distinguish between two kinds of B-DFDs: raw B-DFDs correspond to diagrams read from input files and may contain inconsistencies; well-formed B-DFDs are free of inconsistencies and satisfy all the necessary invariants required by our transformation algorithm.

We represent both kinds of B-DFDs as attributed multigraphs with activators as nodes and flows as edges. Attributes allow us to specify properties of activators and flows, such as their type or associated privacy information.

Definition 1. An attributed multigraph G is a tuple $G = (\mathcal{N}, \mathcal{T}, \mathcal{V}, s, t, \ell_N, \ell_{\mathcal{T}})$ where \mathcal{N}, \mathcal{T}, \mathcal{V} are sets of nodes, edges, attributes and attribute values, respectively; $s, t : \mathcal{T} \rightarrow \mathcal{N}$ are the source and target maps; $\ell_N : \mathcal{N} \rightarrow (\mathcal{A} \rightarrow \mathcal{V})$ and $\ell_{\mathcal{T}} : \mathcal{T} \rightarrow (\mathcal{A} \rightarrow \mathcal{V})$ are attribute maps that assign values for the different attributes to nodes and flows, respectively.

Note that the attribute maps are partial, i.e., nodes and edges may lack values for certain attributes.

Henceforth, we use the letters n, m to denote nodes and e, f to denote edges. We write $e : n \rightarrow m$ to indicate that e has source $s(e) = n$ and target $t(e) = m$. We use “.“ to select attributes, writing $n.a$ for $\ell_N(n)(a)$ and $f.a$ for $\ell_{\mathcal{T}}(f)(a)$. The set $S(G) \subseteq \mathcal{N}$ of source nodes in G is defined as $S(G) = \{ n \mid \exists e.s(e) = n \}$; similarly, $T(G)$ denotes the set of target nodes in G.

A (raw) B-DFD is simply an attributed multigraph with a fixed choice of attributes $\mathcal{A} = \{ \text{type} \}$. The type attribute describes the type of activators and flows. Activators can be external entities (ext), processes (proc) and data stores (db); flows are classified as either plain data flows (pf) or data deletions (df). Fig. 1 shows an example of a B-DFD with five activators (an
external entity, a datastore and three processes) that are connected by plain flows.

Definition 2. We define the set of data node types as \(T_{dn} = \{ \text{ext, proc, db} \} \) and the set of raw flow types as \(T_{rt} = \{ p_f, df \} \). A (raw) B-DFD is an attributed multigraph with activators as nodes and flows as edges, and where we fix \(\mathcal{A} \) and \(\mathcal{V} \) to be \(\mathcal{A} = \{ \text{type} \} \) and \(\mathcal{V} = T_{dn} \uplus T_{rt} \). In addition, every activator and flow must have a type, i.e., \(n.\text{type} \in T_{dn} \) and \(f.\text{type} \in T_{rt} \) must be defined for all \(n \) and \(f \).

Since the \(\text{type} \) attribute plays an important role in all DFDs, we introduce shorthands for typing activators and flows. We write \(n : t \) to abbreviate \(n.\text{type} = t \), and \(f : n \rightsquigarrow m \) to indicate that \(f.\text{source} = n \) and \(f.\text{target} = m \).

Well-formed B-DFDs differ from raw B-DFDs primarily in the choice of flow types. Flows are typed based on their source and target activators. Only some combinations of sources, targets and flow types are valid. They are shown on the left-hand side of Fig. 5.

If a flow does not conform to one of these six cases, it is ill-formed and will be rejected by our type inference algorithm. In addition to these flow typing constraints, we adopt some common rules from the DFD literature for well-formed B-DFDs: diagrams may not contain loops (flows with identical source and target activators), activators cannot be isolated (disconnected from all other activators), and processes must have at least one incoming and outgoing flow (see e.g. Falkenberg et al., 1991; Dennis et al., 2018).

Definition 3. We define the set of data flow types as \(T_{df} = \{ \text{in, out, comp, store, read, delete} \} \). A well-formed B-DFD is an attributed multigraph \(G \) where \(\mathcal{A} = \{ \text{type} \} \) and \(\mathcal{V} = T_{dn} \uplus T_{df} \). In addition, flows and activators are subject to the following conditions:

- \(f.\text{source} \cap m.\text{type} \in T_{dn} \) and \(f.\text{target} \in T_{df} \);
- if \(f : n \rightsquigarrow m \) then \(n : \text{ext} \) and \(m : \text{proc} \);
- if \(f : n \rightsquigarrow m \) then \(n : \text{proc} \) and \(m : \text{ext} \);
- if \(f : n \rightsquigarrow \text{comp} \) then \(n : \text{proc} \) and \(m \neq n \);
- if \(f : n \rightsquigarrow \text{store} \) then \(n : \text{proc} \) and \(m : \text{db} \);
- if \(f : n \rightsquigarrow \text{read} \) then \(n : \text{db} \) and \(m : \text{proc} \);
- if \(f : n \rightsquigarrow \text{delete} \) then \(n : \text{proc} \) and \(m : \text{db} \);
- if \(n : \text{proc} \) then \(n \in S(G) \) and \(m \in T(G) \);
- if \(n : \text{ext or} \ n : \text{db} \) then \(n \in S(G) \) or \(n \in T(G) \).

The Type-inference algorithm (Algorithm 1) detects and reports any ill-formed flows (lines 11–12) and activators (lines 13–19). If type inference is successful, the resulting well-formed B-DFD can safely be transformed into a PA-DFD.

3.2 Transformation

Well-formed B-DFDs are guaranteed to be well-formed, but they do not yet contain any explicit privacy checks. They are introduced by Algorithm 2 which transforms each flow in the well-formed B-DFD into a set of corresponding PA-DFD elements (see Fig. 5). These PA-DFD elements represent the functionality for enforcing purpose limitation, retention time, accountability and policy management.

First we add reason activators for each process in the well-formed B-DFD. These activators are linked to each other by a special partner attribute. Each reason activator is assigned to exactly one process via this attribute. Likewise, we add a new policy db activator to each data store in the well-formed B-DFD and link them via their partner attributes. The second phase of the algorithm transforms each flow based on its type (i.e., the hotspot that it belongs to). We use dedicated helper procedures to transform each flow type (e.g., addInElements, which transforms in flows).

The auxiliary procedures introduce the necessary activators and flows for checking and logging each data flow. The partner attributes of the original flow’s source and target are used to identify the activators that supply and transfer the required policy values.

As with B-DFDs, we use attributed graphs to represent PA-DFDs formally.

Definition 4. Define the set of policy node types as \(T_{pn} = \{ \text{limit, request, reason, policy_db} \} \) and the set of admin node types as \(T_{an} = \{ \text{log, log_db, clean} \} \). A PA-DFD is an attributed graph \(G \), where \(\mathcal{A} = \{ \text{type, partner} \} \) and \(\mathcal{V} = T_{dn} \uplus T_{df} \uplus T_{pn} \). In addition, the following must hold:

- \(n.\text{type} \in T_{dn} \uplus T_{df} \);
- if \(f.\text{type} \neq \text{pf} \) then \(f.\text{reason} = \text{null} \);
- if \(f.\text{type} = \text{pf} \) then \(f.\text{reason} = \text{null} \);
- if \(f.\text{type} = \text{pf} \) then \(f.\text{reason} = \text{null} \).
In principle, the flows of PA-DFDs ought to be subject to similar typing conditions as those for well-formed B-DFDs. Following the principle used for well-formed B-DFDs, we could type each flow based on the types of its source and target. For example, the flows connecting request to limit activators could be given type reqlim. This would result in eighteen new flow types. To simplify presentation, we instead use just two flow types for PA-DFDs as we did for raw B-DFDs: plain flows (pf) and deletion flows (df).

Comparison of transformation rules The transformation rules presented in Fig.2 have a few subtle but important shortcomings that are addressed in our Transformation algorithm.

First, the rules do not explain how activators with multiple input and output flows are to be transformed. Note that all activators on the left of Fig.2 have at most one incoming or outgoing flow. It is unclear which of the new activators and flows shown on the right should be added only once per rule application, and which need to be instantiated for every incoming or outgoing flow. We solve this problem by splitting the transformation into two distinct steps. In a first step, we create reason and policy_db nodes as partners for processes and data stores. In the second step, each original flow is equipped with the activators and flows implementing the new privacy checks. This two-step approach cleanly separates the per-activator and per-flow aspects of each rule.

Second, the limit and log activators in the original rules are set up in a problematic way. Every limit activator is followed by a log activator that receives both a policy and a data value. The log activator logs both values and forwards the data value to downstream activators. But what if a privacy violation occurs? The limit activator should inhibit such violations by blocking unintended flows, passing on only policy-compliant data values. Hence, policy violation events never reach the log activator, and are therefore not logged. This seems highly problematic. Alternatively, limit nodes could pass on all data and policy values (irrespective of violations), leaving the log activator to perform the actual filtering. But why have separate limit and log activators in the first place then? We resolve this ambiguity by connecting limit activators directly to the downstream activators and, separately, to the log activator. The flow connecting the limit and log activators carries a special flag v indicating whether a violation took place (see Fig.3).

Finally, the original "Usage" rule contains a subtle error, which is again related to the way it connects the newly introduced limit and log activators (see Fig.2). After the application of this rule, the

Algorithm 2: Transformation

```
input : A well-formed B-DFD G
output : A PA-DFD

foreach n ∈ N do
  if n : proc then
    add a new node m : reason to G;
    m.partner ← n; n.partner ← m
  if n : db then
    add a new node m : policy_db to G;
    m.partner ← n; n.partner ← m

foreach f ∈ F do
  if f : in then addInElems (n, f, G);
  if f : out then addOutElems (n, f, G);
  if f : comp then addCompElems (n, f, G);
  if f : store then addStoreElems (n, f, G);
  if f : read then addReadElems (n, f, G);
  if f : delete then addDeleteElems (n, f, G);
```
process receives a policy value \(pol \) in addition to the data value \(d \) it received originally. It passes \(pol \) to the adjacent \(log \) activator, presumably without changing its value, so that any violations related to \(pol \) detected by the preceding \(limit \) activator can be logged. But this means that the updated data value \(d' \) and the policy value \(pol \) are out of sync. Fig. 5 shows an example PA-DFD transformed according to the original rules that clearly illustrates this issue. The “Get Customer Information” process receives the “Customer Info” and the corresponding policy “pol”, then passes it to the \(log \) activator with the processed data “Create Account”. This means there is a mismatch between the logged data “Create Account” and the policy value “pol” which belongs to “Customer Info”. Our algorithm avoids this problem by separating limiting and logging, which are added on a per-flow basis, from processing. Fig. 6 shows the PA-DFD produced by our Transformation algorithm for the same B-DFD. Now the “Create Account” flow, after having been transformed according to the \(\text{comp} \) rule, is protected by its own \(\text{limit} \) and \(\text{log} \) activators, and there are no longer any dangling flows.

3.3 Our Tool

We have modified the hotspots-based translation given by Antignac et al. (2016, 2018) in order to address its ambiguities and inaccuracies. Our tool for transforming B-DFDs into PA-DFDs implements algorithms 1 and 2, and uses a third-party application for drawing the diagrams. Such drawing software should support the drawing of DFDs, be user-friendly, be easy-to-use, be cross-platform and be open source. draw.io was the tool of our choice (draw.io, 2019). As draw.io has no built-in support for B-DFDs, we suggest installing Henriksen’s open source library (Henriksen, 2018). Since it is easy to import and export diagrams from/to XML format in draw.io, our implementation processes B-DFD diagrams represented in an XML format and generates PA-DFD diagrams in the same format. Our tool is implemented in Python and has been tested on a Mac.

4 CASE STUDIES

To validate our algorithms, we have applied our tool to models of two realistic applications: an automated payment system and an online retail system. We illustrate the correctness of our algorithm by running informal simulations of the two models. Here we focus on the first case study. The second case study is described in our tech report (Alshareef et al., 2020).

The DFD for the secure payment system considered here is due to Chong and Diamantopoulos (2020); it has been reviewed by domain experts and models a system for making automatic payments to subcontractors in a construction project.

We start our evaluation by augmenting the original DFD shown in Fig. 7 with \text{static} (or \text{design-time}) policy information. Table 1 shows an extract: each flow is assigned a unique identifier (\(F_id \)), its \text{Label} (from the DFD), a \text{Purpose} (to check against the data subject consent), a \text{PD} flag indicating if the data is personal, and a \text{Data_type} (e.g., “image” or “email”).

Next, we transform the B-DFD thus obtained into a PA-DFD, parts of which are shown in Fig. 8.

Finally, we perform an informal simulation of the payment system, illustrating that the PA-DFD generated by our proof-of-concept tool enforces the desired GDPR properties (purpose limitation and accountability). To run the informal simulation, we assume a set of \text{dynamic} information provided by users during runtime. An excerpt is shown in Table 2. Each row
Table 1: Design Time Information for B-DFD Automated Payment System.

<table>
<thead>
<tr>
<th>F_id</th>
<th>Label</th>
<th>Purpose</th>
<th>PD</th>
<th>Data_type</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Completed sub-tasks</td>
<td>Capturing completed sub-tasks</td>
<td>True</td>
<td>video, images and string</td>
</tr>
<tr>
<td>f2</td>
<td>Scope of Works</td>
<td>Knowing subcontractors contractual duties</td>
<td>True</td>
<td>string</td>
</tr>
<tr>
<td>f3</td>
<td>Real-time Location Information Status</td>
<td>Project monitoring</td>
<td>True</td>
<td>video, images and string</td>
</tr>
<tr>
<td>f4</td>
<td>Sending up to date project information to IBM</td>
<td>True</td>
<td>video, images and string</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Run-time Information for B-DFD/PA-DFD Automated Payment System.

<table>
<thead>
<tr>
<th>D_id</th>
<th>F_id</th>
<th>Sub</th>
<th>Pol/Consent</th>
<th>Expiry</th>
<th>Content</th>
<th>Content_c</th>
<th>Pol/Consent_c</th>
<th>Expiry_c</th>
<th>Content_c_c</th>
<th>Content_c_c_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>f1</td>
<td>SubcontractorX</td>
<td>Capturing completed sub-tasks</td>
<td>end of 2020</td>
<td>"streaming videos" and "image_1.jpg"</td>
<td>Yes</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>d2</td>
<td>f1</td>
<td>SubcontractorX</td>
<td>Identifying assigned tasks</td>
<td>end of contract</td>
<td>"streaming videos" and "image_2.jpg"</td>
<td>Yes</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>d3</td>
<td>f1</td>
<td>SubcontractorX</td>
<td>Recording the work status</td>
<td>end of contract</td>
<td>"Project info name, desc, status, subcontract etc"</td>
<td>Yes</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>d4</td>
<td>f4</td>
<td>ProjectX</td>
<td>Assigning project info to BIM</td>
<td>end of 2021</td>
<td>"streaming videos" and "image_3.jpg"</td>
<td>Yes</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>d5</td>
<td>f5</td>
<td>SubcontractorX</td>
<td>Taking pictures for advertisements</td>
<td>end of 2020</td>
<td>"streaming videos" and "image_4.jpg"</td>
<td>Yes</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Figure 8: Part of Automated Payment System PA-DFD.

Consists of a unique data identifier (D_id) with five attributes: F_id identifies the flow carrying the data; DSub the data subject; Pol/Consent the consented purposes; Expiry the expiration time; Content the actual data. The last two columns of Table 2 indicate whether the given data values are forwarded to downstream activators in the B-DFD and PA-DFD, respectively, during the simulation. They show that the PA-DFD prevents some data from being processed, while the B-DFD processes all data regardless of the data subject’s consent since there are no privacy checks.

Consider, for example, the “Completed sub-tasks” flow between “Construction Project” and Process 1 in the original DFD. This flow carries sensitive information collected by the smart sensor, which needs to be checked and limited according to the subcontractor’s privacy policy (following the principle of purpose limitation). This is achieved via corresponding limit and request activators in the PA-DFD. To illustrate this, we consider two scenarios, represented by the data values d1 and d5 in the first and last rows of Table 2. In Scenario 1, the data subject “SubcontractorX” permitted the smart sensor to collect information until the end of 2020. Hence, the information d1 is forwarded from the limit node to Process 1 and logged (according to the accountability principle) in the log store along with its policy and a flag indicating that no violation occurred. In Scenario 2, the limit node prevents the data value d5 from being forwarded to Process 1 since the intended purpose of the flow (“Completed sub-tasks”) is not compatible with the purpose (“Taking pictures for advertisements”) to which the data subject (“SubcontractorY”) consented. Furthermore, this event is logged in the log store and identified as a privacy violation.

Contrast the above scenarios with the original DFD in which the subcontractors’ data is unconditionally forwarded to processes and stored without regard for any GDPR principle; the data can be collected and used without limitation, for any purpose.

5 RELATED WORK

[Basin et al. (2018)] have recently proposed a methodology to audit GDPR compliance by using business process models. They identify “purpose” with “process” and show how to automatically generate privacy policies and detect violations of data minimisation at the modelling level. They highlight the difficulty of representing purpose at the programming language level, and provides convincing arguments on why GDPR compliance cannot be entirely automated.

[Schaefer et al. (2013)] present a definition of rules for achieving Confidentiality-by-Construction, where functional specifications are replaced by confidentiality specifications listing which variables contain secrets. Though the approach seems interesting, it has (to the best of our knowledge) not been implemented.

[Tuma et al. (2019)] analyse information flow policies at the modelling level. They focus on data confidentiality and integrity, and introduce a graphical no-
tation based on DFDs to algorithmically detect design flaws “in the form of violations of the intended security properties”. They provide an Eclipse-based implementation. Their approach is also based on DFDs but has different objectives: while we focus on the implementation of model transformation for specific privacy checks, Tuma et al. focus on the detection of design flaws associated with security properties.

Our paper distinguishes itself in that none of the above has taken the approach to automatically add privacy checks to design models.

6 CONCLUSIONS

We have provided algorithms to automatically translate DFD models into privacy-aware DFDs (PA-DFDs) as well as a proof-of-concept implementation integrated into a graphical tool for drawing DFDs. Obtaining the algorithms (from the existing conceptual transformation) was not easy as some aspects of the transformation were subtle and ambiguous not allowing for a direct implementation. We have addressed these conceptual flaws and evaluated them through two case studies: an automated payment system and an online retail system.

One limitation of our approach is that the diagrams resulting form our transformation can be large, making it difficult to visualise them. That said, the intended use of this tool is as an intermediate step in the design and development process, so the software architect can still be able to inspect (and modify) only small and relevant subsets of the PA-DFD. Our next step is to implement an algorithm to automatically synthesise a template from the PA-DFD in Java or Python. We will provide the programmer with predefined libraries to be used as building blocks for implementing such privacy checks.

REFERENCES

