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Abstract—The US Food and Drug Administration (FDA)
recently recalled approximately 465,000 pacemakers that were
vulnerable to hacking. It was reported that hackers could either
pace the devices rapidly inducing arrhythmia or could drain the
battery. Such actions would compromise the health and well being
of the patient concerned. Considering this, techniques to ensure
the security of implantable medical devices is an emerging area of
research. To the best of our knowledge, existing techniques lack
the formal rigour for ensuring the safety and security of such
systems. While methods exist for formal verification of pacemaker
software, these are not suitable to prevent security vulnerabilities.
To this end we develop a run-time verification based approach.
Our approach proposes a wearable device that non-invasively
senses the familiar ECG signals in order to determine if a
pacemaker has been compromised. We develop a set of timed
policies to be monitored at run-time. We provide a methodology
for the design of the wearable device and results demonstrate
the technical feasibility of the developed concept.

Index Terms—Monitoring, runtime verification, pacemaker
security, timed automata

I. INTRODUCTION

A cardiac pacemaker is an electrical device that manages
irregular heart rhythms [1]. The pacemaker is implanted under
the skin of the patient’s chest, just under the collarbone,
hooked up to the heart using a set of leads. Pacemakers are
used to treat arrhythmia, which produces irregular heartbeat.
During an arrhythmia, the heart can beat too fast, which is
called tachycardia, or too slow, which is called bradycardia.
The pacemaker senses intrinsic events (atrial and ventricular
events) of the heart and gives electrical pacing pulses (either
an atrial pulse or a ventricular pulse) whenever necessary.
Figure 1 illustrates a dual chamber pacing system using a
DDD-mode pacemaker. Here two leads are inserted in the
right atrium and the right ventricle respectively. These leads
act as both sensors and actuators, sensing the heart surface

This research has been partially supported by the Swedish Research Council
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electrical activity as Electrogram (EGM) signals, and actuating
by pacing the heart when the right signal is not detected at
the right time.
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Fig. 1. The heart-pacemaker system showing the atrial and the ventricular
chambers with pacing leads.

a) Motivation: Technical advances in biomedical engi-
neering have resulted in a boom of wirelessly accessible
pacemakers. Recent investigations on pacemakers revealed
security vulnerabilities on existing pacemakers available com-
mercially [2]. These artificial pacemakers are fitted with tiny
radio components so they can be controlled and updated
without having to cut them out and replace them each time.
This means someone with the right technical knowledge and
in the vicinity of the patient, could take control over the
pacemaker, making it pace inappropriately. The hacker can
make the pacemaker pace either too slow or too fast or
may even drain the battery of the pacemaker. Many possible
hacking avenues for pacemakers are reported in the detailed
survey [2] and specific instances are reported in [3], [4].

b) Problem definition: A key problem related to pace-
maker security is the trade-off of allowing emergency device
access to health care professionals while ensuring that the de-
vice prevents all unauthorised access. Such trade-off for cyber
physical systems (CPS), such as a pacemaker (a cyber com-978-1-5386-6195-6/18/$31.00 ©2018 IEEE INDEXING & ABSTRACTING



ponent) controlling the rhythmic beating of the human heart
(a physical system), is discussed in the detailed survey [5].
While cryptography is one of the best mechanisms for securing
such CPS, a challenge is the problem of key distribution to
legitimate parties, such as emergency health care workers.
Considering this, alternative solutions based on devices that
automatically detect and respond to anomalous behavior have
been developed [6]. Here a medical security monitor, called
MedMon has been developed. MedMon can detect and prevent
anomalous events by snooping all wireless transactions. Med-
Mon relies on a set of policies to be monitored to determine
which events need to be jammed. The developed solutions
has some limitations. First, the developed formulation requires
the design of embedded devices mainly for snooping wireless
channels. The efficacy of the device regarding cost, power
consumption and certification needs to be studied. Importantly,
MedMon’s wireless snooping approach is as effective as the
set of policies that are defined. As the policy framework is
informal, there is no guarantee of soundness of the developed
framework. Soundness guarantees are provided by techniques
grounded in formal methods [7]. To the best of our knowledge,
there is no formal solution for anomaly detection that can be
implemented very efficiently and in a cost effective manner.
To this end, we develop a solution using readily available
Electrocardiogram (ECG) sensing technology combined with
formal methods.

A. Typical ECG

Fig. 2. Timing information in ECG signals (this is an adaptation from [8])

The Electrocardiogram (ECG) [9] [10] is the waveform
produced by the heart showing the electrical activity of the
heart over a period of time. Electrodes are attached to the skin
on the chest, arms and legs which record the heart’s electrical
activity as waveforms from different angles. A typical ECG
signal is illustrated in Figure 2. The P-wave symbolizes atrial

depolarization (indicating an atrial event has occurred). P-
waves precede QRS complex in sinus rhythm. The PR interval
is the time interval between the beginning of the P-wave and
the beginning of the Q-wave. It shows the time taken by the
electrical impulses to travel between the atria and ventricles.
The QRS complex denote the ventricular depolarisation (in-
dicating ventricular event has occurred), atrial repolarization
also happens during this interval. The ST-segment starts at the
end of the S-wave and finishes at the start of the T-wave. It
marks ventricular contraction i.e. time between depolarisation
and repolarization of ventricles. The wave followed by QRS
complex is the T-wave which represents ventricular depolar-
isation. The R-R interval indicates the time interval between
two QRS complex. It begins at the peak of one R-wave and
ends at the peak of the consecutive R-wave. The QT-interval
is from the start of the QRS complex and finishes at the end
of the T-wave. It represents the time taken for the ventricles
to depolarise and then repolarise. Thus, a lot of information
regarding the heart conditions can be extracted from the ECG
signals of the patients, which is also valuable in the security
context as highlighted by our methodology.

B. Overview of the proposed solution

Security risks in pacemakers are life threatening, which can
make a life saving device a potential killer [3], [4]. Existing
monitoring solutions for pacemakers require wireless commu-
nication with the pacemaker. This raises additional security
challenges, especially when encryption and key distribution is
a challenge. We propose an alternative monitoring mechanism
that does not require any communication with the pacemaker
or any external device. The monitor runs on an external
wearable device, and uses person’s ECG to identify events
of interest. The device is programmed with critical pacemaker
timing values by the cardiologist. We assume that this device
is not connected to any other device, including the pacemaker,
using any wireless protocol. Hence, we can make a reasonable
assumption that our device is fairly robust and secure.

We adapt a runtime verification approach for timed au-
tomata [11] to create a monitor that identifies anomalous
events at run-time. When any anomaly is detected, an alarm
is sounded to alert the patient. Runtime verification (RV)
[7], [12]–[17] approaches are concerned with monitoring and
checking if a run of a system under inspection satisfies or
violates a particular desired property (ϕ). RV is an ideal fit for
pacemaker security due to the fact that it is only concerned
with runs of the system, which is considered a black-box. This
will thus require no modification to the existing pacemaker and
hence will not require additional wireless protocols and asso-
ciated key distribution. This will also not need any additional
certification cost.

RV can be considered as a lightweight formally based
verification approach, and one of the main emphasis of for-
mally based RV approaches such as [13]–[15] is to generate
RV monitor from a formal high-level specification of a set
of properties. RV monitors do not modify the execution of
the system. They are used to verify a stored execution of a



system (offline verification), or the current live execution of a
system (online) with respect to a desired correctness property
ϕ. The context of an RV monitor is illustrated in Figure 3,
which takes a stream of events σ as input from the system
being monitored, and emits a verdict that provides information
whether σ violates or satisfies property ϕ. In this paper, we
propose an externally wearable device which continuously
monitors the ECG signals of the body for verifying critical
safety properties defined for the heart-pacemaker activity using
runtime verification techniques, giving additional layer of
security as well as safety.

System
(Event Emitter)

Verification
Monitor

Property

σ ∈ Σ∗ Verdicts

Fig. 3. Runtime Verification Monitor.

The key contributions of the paper are:
• We develop the first formal framework for tacking the

emerging problem of pacemaker security using RV. We
consider a set of safety properties and obtain RV monitors
for them using techniques proposed in [13], [15],

• We develop the ECG sensing module for identification
of key events and a run-time verification framework
based on policies expressed as timed automata. These
two modules operate online to verify these policies at
run-time. Whenever a violation is detected, an alarm is
triggered. Empirical results show that the overhead of
such monitoring is minimal and hence such as wearable
device can be implemented as an embedded system cost
effectively.

• The developed solution requires no modifications to be
made to pacemakers and their pacing logic. Also, there
are no wireless communication modules, which mini-
mizes the risk of attacks on the wearable device or the
pacemaker using the developed formulation.

This paper is organised as follows: Section II discusses the
key timers of a DDD mode pacemaker, their mapping to ECG
intervals and finally the properties that should be monitored by
the proposed wearable device. In Section III after presenting
all the notations and preliminaries, formal definition of the
verification monitor is given and its behavior is illustrated via
an example. Overview of the proposed approach is given in
Section IV, and later the two main modules of the system
namely ECG_Processing and RV_Monitor are described
in sections V, and VI respectively. Section VII discusses about
implementation and results, and finally conclusions are drawn
in Section VIII.

II. DDD MODE CARDIAC PACEMAKER

In Section I, a DDD mode pacemaker has been briefly
introduced via Figure 1. In this section we present various
key timers for a DDD mode pacemaker, and discuss how these
timers map to the ECG intervals discussed in Section I.

A timing diagram for a DDD mode pacemaker is shown in
Figure 4. Unlike ECG, which are body surface signals, Elec-
trograms (EGMs) record heart surface electrical activity based
on the view provided by the leads (i.e. the pacemaker leads
shown in Figure 1). At the top of the diagram EGMs for both
an atrium and ventricle are shown. The status of various timers
used for ensuring correct operation of the heart-pacemaker
system are shown at the bottom. The traces at the top of the
figure indicate three types of events: natural events (Atrial
Sense (AS ) or Ventricular Sense (VS )), ignored natural event
(Atrial Refractory Sense (AR) or Ventricular Refractory Sense
(VR)), or artificial pacing from the pacemaker (Atrial Pace
(AP ) or Ventricular Pace (VP )).
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Fig. 4. Timing Diagram for a DDD mode pacemaker (adapted from [18]).

The Atrioventricular Interval (AVI ) timer ensures the cor-
rect time delay between any atrial event and a subsequent
ventricular event. When VS has not occurred before the
AVI -interval the pacemaker delivers a paced variant i.e. VP .
Examples of paced VP events are the beats 2 and 3. The
Atrial Escape Interval (AEI ) timer monitors the maximum
time separation between any ventricular event and the corre-
sponding atrial event. The pacing induced by the AEI -timer
is illustrated by beat 3 in the diagram.

In addition, the Lower Rate Interval (LRI ) and Upper Rate
Interval (URI ) timers maintain the overall heart rate within an
upper and a lower bound. LRI ensures that the heart rate never
falls below some minimum value. If this timer ever expires
before another ventricular event has been detected, then the
pacemaker must deliver a VP to force the heart rate within
a normal range. URI performs the opposite task and ensures
that the heart rate never goes above some maximum value.
If this timer has not yet expired and the pacemaker attempts
to deliver a VP signal, the signal will be delayed until the
time that the URI timer has expired. This phenomenon can be
seen in beat 4 where a VP from the AVI expiration has been
delayed, and the timer extended, in order to not violate the
URI . The Post-Ventricular Atrial Refractory Period (PVARP )
timer acts as a blocking mechanism for spurious atrial events
that occur shortly after ventricular events. If an atrial event
occurs within this interval the event is marked as AR and
is ignored, as shown between beats 1 and 2. Similarly, the
Ventricular Refractory Period (VRP ) timer blocks spurious
ventricular events that also occur shortly after other ventricular



events. In this case, the events are marked as VR as shown
between beats 2 and 3.

We consider the following set of critical safety properties
from [19], where the timing intervals such as AV I , AEI and
LRI are real values denoted as some constant C.

PM1 AP and VP cannot happen simultaneously.
PM2 VS or VP must be true within AV I after an atrial event

AS or AP .
PM3 AS or AP must be true within AEI after an ventricle

event VS or VP .
PM4 After a ventricle event, another ventricle event can happen

only after URI .
PM5 After a ventricle event, another ventricle event should

happen within LRI .
a) From Pacemaker timers to ECG intervals: In the

proposed monitoring approach, input events to be fed into
the monitor that checks for the violation of properties of
interest are extracted from the person’s ECGs. Based on
feature extraction of the ECGs, our monitoring device must
detect whether properties PM1, · · · , PM5 are violated or not.
Since, the device has access only to surface ECGs, we need
to map the Pacemaker timer values such as AV I and AEI to
the ECG intervals described in Section I. The timers and their
corresponding intervals are as follows.
• The AV I timer corresponds to the PR interval.
• The AEI timer corresponds to the time interval begin-

ning from R− wave till the subsequent P − wave.
• The LRI timer corresponds to the R−R interval.
• The URI timer corresponds to the minimum time interval

between two consecutive R− waves.
With the above mapping, properties PM1, · · · , PM5 can

be described in terms of ECG intervals as follows:
P1 P −wave and R−wave cannot happen simultaneously.
P2 R − wave must arrive within PR interval after a P −

wave.
P3 P − wave must be true within R − P interval after an

R− wave.
P4 After an R − wave, another R − wave can come only

after R− P interval.
P5 After an R−wave, another R−wave should come within

R−R interval.
In the remainder of this paper, P − wave, Q − wave and

R− wave are denoted as P , Q and R respectively.

III. PRELIMINARIES AND BACKGROUND

RV relies on monitoring of input streams σ and we start with
a formalisation of such streams as words over an alphabet.
Subsequently, we extend the setting to timed words. Given a
finite alphabet Σ, a finite word over Σ is a finite sequence
σ = a1 · a2 · · · an of elements of Σ. The length of a finite
word σ is denoted using |σ|, and ε denotes empty word over
Σ. Σ∗ denotes the set of all words over Σ, and any subset L
of Σ∗ is a language over alphabet Σ.

Given two words σ and σ′, their concatenation is denoted
as σ ·σ′. A word σ′ is a prefix of a word σ, denoted as σ′ 4 σ,

if ∃ a word σ′′ s.t. σ = σ′ · σ′′, and if additionally σ′ 6= σ
then σ′ ≺ σ; conversely σ is called an extension of σ′.

The set of prefixes of σ is denoted as pref(σ) and subse-
quently, pref(L)

def
=

⋃
σ∈L pref(σ) denotes the set of prefixes

of words in L. A language L is extension-closed if L·A∗ = L
and prefix-closed if pref(L) = L.

A. Timed words and timed languages

When a timed framework is considered, the time instances
of occurrence of actions are also important. Let the set of non-
negative real numbers be denoted by R≥0, and let Σ be a finite
set of actions. An event is a pair (t, a). The absolute time of
the event is given by date((t, a))

def
= t ∈ R≥0 and the action

is given by act((t, a))
def
= a ∈ Σ.

A timed word over the alphabet Σ is a finite sequence of
events σ = (t1, a1)· (t2, a2) · · · (tn, an) , with (ti)i∈[1,n] being
a non-decreasing sequence in R≥0. The starting date of σ is
denote by start(σ)

def
= t1 and end(σ)

def
= tn denotes its ending

date. The starting and ending dates are null for ε (empty timed
word).

Given alphabet Σ, tw(Σ) denotes the set of timed words
over Σ, and any set L ⊆ tw(Σ) is a timed language. Notations
in the untimed setting related to length, prefix, etc extend to
timed words, though the alphabet in the timed setting (R≥0×
Σ) is infinite.

The untimed projection (i.e., ignore dates) of σ is ΠΣ(σ)
def
=

a1 ·a2 · · · an in Σ∗. When concatenating two timed words, the
dates should be non-decreasing in the resulting timed word.
This is ensured if the ending date of the first timed word is less
than the starting date of the second timed word. Formally, con-
sider σ = (t1, a1) · · · (tn, an) and σ′ = (t′1, a

′
1) · · · (t′m, a′m)

be two timed words with end(σ) ≤ start(σ′). Their concate-
nation is

σ · σ′ def
= (t1, a1) · · · (tn, an) · (t′1, a′1) · · · (t′m, a′m).

By convention σ · ε def
= ε · σ def

= σ. Concatenation is undefined
otherwise.

B. Properties as Timed Automata (TA)

A timed automaton [11] is a finite automaton that is
extended with a set of finite (real-valued) clocks X =
{x1, . . . , xk}. A clock valuation for X is a function from X
to R≥0, which is an element of RX≥0. Consider χ ∈ RX≥0 and
δ ∈ R≥0, χ + δ denotes the valuation assigning χ(x) + δ to
each clock x of X . The clock valuation χ where all clocks
in X ′ are assigned to 0 is denoted as χ[X ′ ← 0] for a given
set of clocks X ′ ⊆ X . The set of guards denoted as G(X) ,
clock constraints defined as conjunctions of constraints of the
form x ./ c with x ∈ X , c ∈ N and ./ ∈ {<,≤,=,≥, >}.
We denote χ |= g when g holds according to χ (for given
g ∈ G(X) and χ ∈ RX≥0).

a) TA syntax and semantics: In this paper, properties to
be verified are formalised as timed automata, from which RV
monitors are synthesised.
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Fig. 5. Timed automaton defining property P4 in Section II.

Definition 1 (Timed automata): A timed automaton A =
(L, l0, X,Σ, ∆, F ) is a tuple, s.t. L is a finite set of locations
with the initial location l0 ∈ L , a finite set of clocks X , Σ is
a finite set of actions, ∆ ⊆ L × G(X) × Σ × 2X × L is the
transition relation. F ⊆ L is a set of accepting locations.

Since the set of possible values for a clock is infinite, a
TA has an infinite number of states. The semantics of a TA
is defined as a transition system where each state is a tuple
consisting of the current location and the current values of
clocks. Its semantics is defined as follows.

Definition 2 (Semantics of TA): The semantics of a TA
[[A]] = (Q, q0,Γ,→, QF ) is a timed transition system where
Q = L × RX≥0 is the (infinite) set of states, q0 = (l0, χ0)
is the initial state where χ0 is the valuation mapping every
clock in X to 0, the set of accepting states is QF = F ×RX≥0,
and Γ = R≥0 × Σ is the set of transition labels, that are
pairs composed of a delay and an action. →⊆ Q × Γ × Q
is the transition relation, the set of transitions of the form
(l, χ)

(δ,a)−−−→ (l′, χ′) with χ′ = (χ + δ)[Y ← 0] whenever ∃
(l, g, a, Y, l′) ∈ ∆ s.t χ+ δ |= g for δ ∈ R≥0.
A run of A from a state q ∈ Q to a state q′ ∈ Q over a
timed trace σ = (t1, a1) · (t2, a2) · · · (tn, an) is a sequence of

transitions q0
(δ1,a1)−−−−→ q1 · · · qn−1

(δn,an)−−−−−→ qn, where q = q0,
q′ = qn, t1 = δ1, and ∀i ∈ [2, n] : ti = ti−1 + δi. If there
exists a run from q to q′ over σ, it is denoted by q σ−→ q′ .

The language of A, starting in q and ending in K (for
q ∈ Q and K ⊆ L) denoted as L(A, q,K), defined by

L(A, q,K) = {w | ∃q′ ∈ K × RX≥0 : q
w−→ q′}.

The language of A, denoted as L(A) = L(A, q0, F ) is the
language of A starting from q0 (initial state) and ending in a
state in F .

Example 1 (Timed automaton): Let us now consider an
example. The TA in Fig. 5 defines property P4 presented
in Section II i.e. after an R − wave, another R − wave
can come only after R − P interval. The set of locations is
L = {l0, l1, l2}, and l0 is the initial location. The set of actions
is Σ = {p, q , r}. There are transitions between locations upon
actions. The set X = {x} is the set of real-valued clocks.
On the transitions, there are guards with constraints on clock
values such as x < RP on the transition between l1 and
l2 (where RP ∈ N), and resets of clocks. Upon the first
occurrence of action r , the automaton moves l1 from l0, and
the clock x is reset to 0. If action r occurs in location l1, and
if x ≥ RP , then the automaton remains in l1, resetting the

value of clock x to 0. It moves to location l2 otherwise. For
the property to be satisfied over runs, the state l2 should never
be reached i.e. it is a non-accepting location.

Remark 1 (Complete and Deterministic TA): In the sequel, a
timed property is defined by a timed language ϕ ⊆ tw(Σ) that
can be recognised by a deterministic and complete TA. A TA
A = (L, l0, X, Σ,∆, F ) with its semantics [[A]] is complete
whenever ∀l ∈ L,∀a ∈ Σ :

∨
(l,g,a,Y,l′) g = true. That is, for

any l ∈ L and any a ∈ Σ, the disjunction of the guards of the
transitions leaving l and labeled by a evaluates to true (i.e., it
holds according to any valuation).
A is a deterministic TA if for any location l and any two

distinct transitions (l, g1, a, Y1, l
′
1) ∈ ∆ and (l, g2, a, Y2, l

′
2) ∈

∆ with same source l, the conjunction of guards g1 ∧ g2 is
unsatisfiable.

C. Runtime Verification Monitor

In this section, for any given timed property ϕ, let us see
the definition of the verification monitor.

Definition 3 (RV monitor): Consider a given property ϕ ⊆
tw(Σ) defining the property to monitor that is defined as TA
Aϕ. Function Mϕ : tw(Σ) → D is a verification monitor for
ϕ, where D = {true, false, c true, c false} and is defined as
follows, with σ ∈ tw(Σ) denoting the current observation (a
finite timed word over the alphabet Σ):

Mϕ(σ) =


true if ∀σ′ ∈ tw(Σ) : σ · σ′ ∈ ϕ
false if ∀σ′ ∈ tw(Σ) : σ · σ′ 6∈ ϕ
c true if σ ∈ ϕ ∧ ∃σ′ ∈ tw(Σ) : σ · σ′ 6∈ ϕ
c false if σ 6∈ ϕ ∧ ∃σ′ ∈ tw(Σ) : σ · σ′ ∈ ϕ

In Definition 3, true (true) and false (false) are conclusive ver-
dicts, and currently true (c true), and currently false (c false)
are inconclusive verdicts, where an inconclusive verdict states
an evaluation about the execution seen so far.

If for any continuation σ′ ∈ tw(Σ), σ · σ′ satisfies ϕ
then Mϕ(σ) returns true. Mϕ(σ) returns false if for any
continuation σ′ ∈ tw(Σ), σ · σ′ falsifies ϕ.

Monitor Mϕ(σ) returns inconclusive verdict c true if σ
satisfies ϕ, and if there is a continuation σ′ ∈ tw(Σ) such that
σ ·σ′ does not satisfy ϕ (i.e., not all continuations of σ satisfy
ϕ). Inconclusive verdict c false is returned if σ falsifies ϕ, and
there is a continuation σ′ ∈ tw(Σ) such that σ ·σ′ satisfies ϕ.

Remark 2 (Monitorability): A property ϕ ⊆ tw(Σ) ex-
pressed as a TA Aϕ is monitorable [13], [14] if for any current
observation σ ∈ tw(Σ), there exists a finite word σ′ ∈ tw(Σ)
such that the property ϕ can be evaluated to true or false for
σ · σ′. That is,

∀σ ∈ tw(Σ),∃σ′ ∈ tw(Σ) : Mϕ(σ · σ′) ∈ {true, false}.

Remark 3 (Impartiality and anticipation): For any given
property ϕ ⊆ tw(Σ) (expressed as a TA Aϕ), monitor
Mϕ as per Definition 3 satisfies impartiality and anticipation
constraints [13].

Impartiality means that for a finite trace σ ∈ tw(Σ), Mϕ

provides an inconclusive verdict (c true or c false) if and only



if there exists a continuation of σ leading to another verdict.
That is, if σ itself satisfies ϕ, but there is some extension of
σ which does not, or conversely, if σ does not satisfy ϕ but
some extension it does satisfy, then the monitor must give an
inconclusive verdict on σ.

Anticipation states that for a finite trace σ ∈ tw(Σ), the
monitor Mϕ(σ) should provide a conclusive verdict true (resp.
false) iff every continuation of σ satisfies (resp. violates) ϕ.
Thus, if Mϕ(σ) is true (resp. false), then every continuation
of σ also evaluates to true (resp. false).

TABLE I
EXAMPLE ILLUSTRATING BEHAVIOR OF RV MONITOR FOR PROPERTY P4

σ Mϕ(σ)
(50, p) c true
(50, p) · (208, r) c true
(50, p) · (208, r) · (300, p) c true
(50, p) · (208, r) · (300, p) · (451, r) false

Example 2 (Example illustrating behaviour of an RV moni-
tor): Consider monitoring property P4 from Section II, defined
formally by the TA in Figure 5. Let RP be 900 time units.
Table I illustrates how the monitor for P4 behave when the
input timed word σ = (50, p) · (208, r) · (300, p) · (451, r) is
processed incrementally.

At t = 50, when the current observed input is σ = (50, p),
σ satisfies the property P4 but there are some extensions σ′ ∈
tw(Σ) such that σ · σ′ falsify the property P4. So the verdict
provided by the monitor is c true in the first step. Similarly,
the verdict provided by the monitor is c true in the next two
steps at t = 208 and at t = 300. At t = 451, after observing
the event (451, r) (i.e., when the current observed input is
σ = (50, p) · (208, r) · (300, p) · (451, r)), the property ϕ is
falsified by σ and for any extension σ′ ∈ tw(Σ), σ ·σ′ falsifies
the property ϕ. Thus, the monitor provides a conclusive verdict
(false) immediately after observing (451, r).

IV. OVERVIEW OF THE PROPOSED APPROACH

In Section II, we presented some example of safety prop-
erties that we consider for verifying via runtime monitoring.
In this section, we provide a brief overview of the proposed
approach, and outline the architecture of the heart-pacemaker-
safety monitoring device. Let us recall that, in this work, we
consider the DDD mode in which both atria and ventricles are
sensed as well as paced (see Figure 1).

A. Overview of the approach

The externally wearable device (RV monitor) is assumed
to have more power and computational resources than the
pacemaker and is capable of measuring ECG signals. The
pacemaker, once implanted, is expected to remain inside the
body for an extended period of time. Before implanting it
is programmed by the doctor with the help of a program-
ming unit (outside controller) with direct connection. After
implantation, if the pacemaker has to be reprogrammed, that
should be done wirelessly. The programming unit provides
doctors an interface to interact with the pacemaker through

Fig. 6. Overview.

radio frequency transmission for adjusting running parameters
(timers), changing operation modes, or retrieving stored data
[20].

Whenever the pacemaker is implanted, the doctor programs
the pacemaker’s computer with an external programming unit.
The doctor doesn’t have to use needles or have direct contact
with the pacemaker. The two main types of programming for
pacemakers are demand pacing and rate-responsive pacing.
The doctor will work with the patient to decide which type
of pacemaker is best for the patient. While programming the
doctor essentially sets the pacing mode (eg. DDD), sets the
threshold voltage value of the pacing pulse, sensitivity of the
pacemaker and most importantly the timers such as AVI, and
AEI. If an attacker hacks the pacemaker he/she may try to
increase or decrease any of these timers. Hence, the properties
in Section II are formulated keeping in mind this security
vulnerability.

a) External wearable device: In the approach that we
propose in this work, the patient is given the wearable device
once the pacemaker is implanted. This external wearable
device could be any computing device with an ECG sensor
and an accelerometer such as a smart watch as illustrated in
Figure 6. The doctor also configures the external wearable
device with timing values. Essentially, all the values of the set
timers are stored inside the wearable device’s memory. It also
knows the normal heart rate at which the pacemaker is set to
pace (eg. 60-120 BPM), and has information of the attributes
of the pacing pulses like voltage, current and impedance. The
device has a built-in accelerometer which monitors the activity
of the body.

Via the ECG sensor, the device has access to the surface
ECG signals, and it continuously monitors these signals. After
filtering and processing the ECG data, it extracts all relevant
actions of interest (the peaks of P, Q, R, S, T waves and the
pacing pulses). Depending on the time instances at which the
peaks (actions) are occurring, it checks for any violation of
any of the safety properties using RV monitors. If any of the
desired properties are violated, it generates an alarm for the



user. As illustrated in Figure 6, the device does not have any
direct communication with the Pacemaker.

R waves detection helps in calculating the heartbeat every
minute. Hence, the RV monitoring device can constantly check
for the normal heart rate (beats per minute) too. Also the
detection of pacing pulses, which have different morphology,
provide crucial information about the amplitude of the pulses.
Based on this information the condition of the leads can be
found out, which will help in examining any malfunctions in
the leads.

ECG Processing
Module

RV Monitor
Module

ϕ

Raw ECG Data timed events Verdicts

Fig. 7. Architecture of the monitoring system.

B. Architecture of the monitoring system

In this section, we present the architecture of the proposed
monitoring system which is hosted on the wearable device.
As illustrated in Figure 7, the monitoring system consists of
two modules namely i) ECG_Processing module, and ii)
RV_Monitor module. Both these modules work concurrently
in an on-line manner.

The ECG_Processing module is responsible for filtering
and processing the ECG data. For monitoring the considered
set of properties (P1, · · · , P5 introduced in Section II), we
need to extract all the relevant actions of interest such as P,
Q and R peaks from raw ECG data. The ECG_Processing
is responsible for detecting these actions and feeding them as
input with relevant timing information to the RV_Monitor
module.

The RV_Monitor module takes the property to be verified
(ϕ) and a stream of timed events (fed as input by the ECG
processing module in an online manner) as input, and emits
verdicts providing information whether the input event stream
satisfies (resp. violates) property ϕ.

The ECG_Processing module performs real-time signal
processing of human ECGs to detect the events of interest.
These events are passed in the appropriate format (as timed
events) to the online RV_Monitor module. We elaborate
the ECG_Processing module in Section V, and the online
RV_Monitor module in Section VI.

Remark 4: Note that the properties that we consider to
monitor (P1, · · · , P5) are timed safety properties, formally
expressible as timed automata [11], [15], for which verification
monitors can be synthesised using approaches such as [15].
However, monitoring of these properties, implicitly prevent
attacks as follows. First, as the pacemaker has wireless pro-
grammability, an attacker may gain access to the device and
maliciously change the programmed timing values, which may
cause serious harm. However, the attacker is unable to access
the wearable device as this is secure (through secure authen-
tication mechanisms such as say the use of human biometric)
and is not programmable wirelessly. In this event the attack

will be detected within a short time due to the mismatch in
timing values leading to violation of the properties.

V. ECG SIGNAL PROCESSING MODULE

In this section, we will briefly discuss about the function-
ing of the ECG_Processing module. That is, we discuss
how ECG signals are processed by the wearable device to
extract all the relevant actions of interest for monitoring the
considered set of properties. The ECG_Processing module
is implemented in MATLAB. We have proposed the concept
of the wearable device and have not actually designed it in this
paper. Thus, this paper demonstrates the technical feasibility
of the idea. Hence, we use prerecorded ECG data that have
pacing artifacts and do not actually generate ECG signals. We
then use them as if they are being generated in real time by
feeding one ECG cycle at a time for processing. Thus, the
ECG_Processing module runs in a loop, processing all
ECG cycles in the recording one by one.

A. ECG Database
A huge collections of recorded physiologic signals are avail-

able from [21]. Consequently, the database of ECG signals for
our experiments is also obtained from [21]. The ECG signal
in use is from a 63 year old male patient. The patient is living
with a pacemaker installed in his body. Hence, the ECG signals
from this patient include pacing artifacts. He suffers from a
complete heart block and the PVCs (Premature ventricular
contractions) are multiform. Originally the recorded signal
contains 30,000 samples and is in the form of a .dat file
which is first read in MATLAB. We then break the recording
in 6 segments (5000 samples each) for ease of performing
experiments and convert in to a .mat file to be supplied to
the code for further execution. Pacers distort the typical QRS
complex because the depolarisation wave is not propagated
normally in a paced heart, so the Q-wave and S-wave are not
evidently present to be detected by the code in this recording.
Hence, we only detect the P-wave, R-wave and the pacing
pulses.

B. Pre-processing of ECG signals
Generally, a raw ECG signal (Figure 8(a)) is corrupted

by Baseline wander, Power line interference (50 Hz or 60),
Electromyographic (EMG) or muscle noise, and artifacts due
to electrode motion and Electrode Contact Noise [22]. Hence,
pre-processing of the signal is important to remove unwanted
data and to be able to extract vital information from the sig-
nals. Because of the baseline shift, the signal is not present in
it’s true amplitude. Hence, appropriate detrending is required
for correct detection of events. A lower order polynomial can
be fitted to the signal and then used to detrend it, so that the
signal with it’s actual amplitude can be obtained. Since, the
signal is corrupted with high frequency noise, Savitzky-Golay
filtering is used to remove noise from the signal. MATLAB
“filter design and analysis” application can also be used for
filtering of the ECG signal if the sampling frequency of the
signal is known. A comparison of the raw ECG signal and
pre-processed signal is shown in Figure 9.



(a) Raw ECG signal. (b) Processed ECG signal.

Fig. 8. Raw and processed ECG signals.

Fig. 9. Comparison between raw and pre-processed ECG.

C. Processing of ECG signal

Since we focus on online monitoring, we process one cycle
of ECG signal from the entire recorded signal at a time. We
divide the entire recording into ECG cycles and then apply
pre-processing to remove unwanted data. After the filtering of
the signal, the waves of our interest are detected using peak
analysis.

The peaks of P, R waves and the pacing pulses are ex-
tracted using the function “findpeaks” in MATLAB (in-built
MATLAB function). Originally, the ECG signal had fixed rate
ventricular pacing only. We add synthetic atrial pacing pulse
to the signal, to make it resemble to a DDD mode signal.
The signal begins with a pacing pulse (atrial pacing pulse),
followed by P-wave, then another pacing pulse (ventricular
pacing pulse), followed by R-wave as shown in Figure 8(b).
In Figure 8(b), X-axis denotes time in milliseconds and Y-axis
denote amplitude in millivolts.

After processing the ECG data, the ECG_Processing
module returns arrays of P, R waves and the pacing pulses
(the time in milliseconds at which the peaks are occurring).
Thus, a stream of timed events from the ECG data is ob-
tained. The ECG signal was recorded when the patient was in
resting position. The ECG_Processing module successfully
detects all the relevant events for this recording. The module
would not be able to detect events correctly when the patient
is exercising or is under heavy physical activity. Since the
module also detects pacing pulses, it can differentiate whether

the ECG cycle under observation was paced or intrinsic. If a
pacing spike is detected, the ECG cycle is paced otherwise it
is intrinsic.

VI. ONLINE MONITORING ALGORITHM

In this section, we will focus on the RV_Monitor module,
which is implemented in Python. In Section III-C, we saw a
functional description of a RV monitor for any given timed
property ϕ. Let us now briefly see an online RV monitoring
algorithm, which is similar to the existing RV monitoring
algorithms such as [13], [15].

Consider Aϕ = (Lϕ, l
0
ϕ, Xϕ,Σ,∆ϕ, Fϕ), the TA defining

property ϕ to be verified. Let q0
ϕ be the initial state of [[Aϕ]],

and let and QFϕ be the sets of final states of [[Aϕ]]. Each input
event consists of the absolute time t and the action a ∈ Σ.

Algorithm RV Monitor (see Algorithm 1) is a repeat until
loop that starts from the initial state of the automaton Aϕ.
In the iteration, the algorithm checks the verdict for the
current state. If the verdict is either true or false (i.e., if the
verdict is conclusive), then the loop terminates. Otherwise,
upon receiving an input event (t, a), it updates the current
state (in accordance with the received event), and it does a
new iteration.

In Algorithm 1, Aϕ (the TA defining the property to
monitor) is provided as input parameter. Variable q denotes
state in the semantics of Aϕ, which is initialised with the



Algorithm 1 RV Monitor

1: t0 ← 0

2: F, F ′ ← Fϕ, Lϕ \ Fϕ
3: q ← q0

ϕ

4: repeat
5: if L(A, q, F ′) = ∅ then
6: notify(true)

7: exit

8: else if L(A, q, F ) = ∅ then
9: notify(false)

10: exit

11: else if q ∈ QFϕ then
12: notify(c true)

13: else
14: notify(c false)

15: end if
16: t, a← await event()

17: t0, δ ← t, t− t0
18: q ← move(Aϕ, q, (δ, a))

19: until false

initial states of the automaton. Variable t0 keeps track of the
date of the last received event which is initialised with 0.

Primitive await event is used to wait for a new input event,
and primitive notify notifies the verdict (the result of the
function Mϕ) at every step. Primitive move(A, r, (δ, a)) is a
function that returns a new state r′ reached in [[Aϕ]] from r
with (δ, a).

Remark 5 (Complexity of Algorithm 1): For a TA A =
(L, `0, X,Σ,∆, F ) with semantics [[A]] = (Q, q0,Γ,→, QF ),
consider a state q ∈ Q and K ⊆ L. The language L(A, q,K)
starting from state q and ending in K is empty if K is
not reachable from q. From Algorithm 1, we can notice that
the only computationally expensive steps are the emptiness
tests in line 5 and 8. Since reachability problem is PSPACE-
complete [11], checking emptiness is also PSPACE-complete.

Remark 6 (Computing symbolic states and verdicts off-line):
As discussed in earlier works on monitoring for timed prop-
erties such as [15] based on timed automata, to improve the
real-time performance of the monitor, all the computationally
expensive steps can be pre-computed. In [[A]], all reachable
symbolic states in where a symbolic state is a pair consisting
of a location and a zone can be computed off-line. Moreover,
checking if the set of locations F (resp. F ′) is reachable from
a given symbolic-state can be also computed off-line. Thus,
the verdicts corresponding to all reachable symbolic states can
be computed off-line.

Remark 7: Verifying multiple properties. When a set of
properties ϕ1, · · ·ϕn are considered, where ϕi is defined
as TA Aϕi , we first compute the product of all the TA’s

Fig. 10. Property P2 in UPPAAL format.

Aϕ = Aϕ1
× · · ·Aϕn

, where Aϕ recognises the language
Aϕ1

∩ · · · ∩ Aϕn
. The combined property Aϕ is monitored.

See for instance [11] for formal definition and details related
to computing product of TA’s.

VII. IMPLEMENTATION AND RESULTS

In order to demonstrate the practicality or the proposed
approach, we have developed a prototype that shows how the
monitor reacts when it receives a new event, and identifies
violation(s) of the properties of interest. The prototype consists
of different modules such as the ECG_Processing module
(module to process ECG data and identify events of interest),
and the RV_Monitor module (module that provides a veri-
fication monitor for a property given as input).

The ECG_Processing module has been implemented in
MATLAB. The MATLAB version used for execution was
R2017a. The input to this module is an real ECG signal
recording taken from [21] which is about half an hour long.
After the appropriate processing of the ECG signal, the module
provides arrays of time instances at which the peaks (P,
R) occur. P and R arrays are passed as arguments to the
RV_Monitor module. The monitor is invoked every time
P and R waves are detected. The monitor performs check for
all the properties together.

The RV_Monitor module (implementation of Algorithm
1), is based on the implementation provided with [15], devel-
oped in Python 2.7 using UPPAAL DBM libraries [23]. The
RV monitor module requires as input the set of all the events,
the property to be verified and a sequence of input events
(input event stream to be verified).

a) Input-output behavior of the monitor: Let us consider
property P2 in Section II as the property to be verified (ϕ). The
TA defining Property P2 (in UPPAAL format) is illustrated in
Figure 10. PR interval to be checked is set to 210 milliseconds
for demonstration, and x is the clock. The time intervals
differ from patient to patient. Here, we have taken the average
between the PR intervals for all the ECG cycles and calculated
it to be 210 milliseconds for the verification purpose. The RV
Monitor is invoked passing the property to verify (Figure 10)



TABLE II
EVALUATION RESULTS.

Property No. of ECG cycles Time (ms) (ECG processing) Time (ms) (RV monitor) Total Time (ms)
P1 2 207.80 3.460 211.26
P2 2 207.80 3.507 211.307
P3 2 207.80 3.238 211.038
P4 2 207.80 4.030 211.83
P5 2 207.80 4.022 211.82

and an input event sequence (input sequence to be checked
against the property).

An example of an input event sequence could be
[(‘p′, 50), (‘r′, 250), (‘p′, 86), (‘r′, 300)] (where each event is
associated with a delay, indicating the time elapsed after the
previous event or the system initialization for the first event).
p stands for P-wave, r stands for R-wave and p stands for
paced pulse. Here, the monitor receives the first action p at
t=50. Since, the property is not violated the monitor will
output verdict c true. The second action r comes at t=300,
the monitor will again emit verdict c true since r event
has come before PR interval and the property is not violated.
The third action p comes at t= 386, again the monitor will
emit c true. The fourth action r comes at t=686, here the
property is violated because r event should have come before
PR interval i.e. 210 but r event occurred after PR interval,
the property is violated, therefore the monitor will output
conclusive verdict false, indicating property is violated and
the wearable monitoring device will display an alert message.

b) Performance analysis: We conducted the experiments
on an Intel Core i5-7200 at 2.50GHz CPU, with installed RAM
of 4 GB, running on Ubuntu 16.04, 64-bit operating system.

In order to evaluate the effect of runtime verification algo-
rithm on the execution time, the runtime verification monitor
was tested for all properties. Table II presents the results of
the execution.

For each property, we consider events extracted from two
consecutive ECG cycles, since we need maximum 2 ECG
cycles to verify the properties. Likewise, the experiments are
conducted on the entire recording, performed in a loop. For
the considered ECG data, from table II we can observe that
the total online time (sum of the online time taken by the
ECG_Processing and the RV_Monitor modules) is about
212 ms. The ECG_Processing module takes approximately
130 ms to process one ECG cycle. The average resting heart
rate for adults is between 60-100 bpms, for athletes it can go as
low as 40 bpm [24]. Hence, one ECG cycle is approximately
of 1000 milli-seconds. Thus, the wearable monitoring device
is considerably fast to check for any anomalies in the heart
activity.

VIII. CONCLUSION AND FUTURE WORK

Security vulnerabilities in implantable devices, such as
pacemakers, is of increasing concern [2]. This paper develops
a proposal to tackle this formally by combining run-time
verification (RV) based monitoring of timed properties with a
ECG processing module that identifies and forwards the timing

events of interest to the monitor. A set of safety properties
are used to continuously monitor a set of pre-programmed
timing values into a secure wearable device. We assume that
our monitoring method along with the ECG processing module
is integrated into such a device, which is secured using human
biometrics. Hence, the wearable device is considered tamper
proof. In contrast, the pacemaker is considered insecure, due
to the presence of wireless channels, which are used for
programming the timing parameters of the pacemakers. This is
a realistic assumption considering that attacks on pacemakers,
where a malicious attacker can alter the timing parameters to
induce dangerous situations has been already studied [3], [4].
Since the RV monitors timing values are tamper proof, any
attack that modifies the timing parameters will be detected
by the monitor and an alarm will be sounded. In order to
demonstrate the efficacy of the proposed approach, we have
demonstrated that the overhead of the RV monitor is minimal
and an embedded device that implements such as system is
feasible.

While this works paves the way for formal methods guided
methods for pacemaker security, it is not devoid of limitations.
First, this paper only develops the concept and its technical
feasibility but this yet to be implemented on a real device.
Second, the signal processing part is implemented currently
in Matlab and its efficiency is yet to be carefully studied.
Finally, we have only tested the system using ECG of a single
patient. This may be extended to a larger sample size in the
near future.
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