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Abstract

We present a dynamic deontic logic for specifying and reasoning about complex con-
tracts. The concepts that our contract logicCL captures are drawn from legal contracts,
as we consider that these are more general and expressive than what is usually found in
computer science (like in software contracts, web servicesspecifications, or communi-
cation protocols).CL is intended to be used in specifying complex contracts foundin
computer science. This influences many of the design decisions behindCL. We adopt
anought-to-doapproach to deontic logic and apply the deontic modalities exclusively
over complex actions. On top, we add the modalities of dynamic logic so to be able to
reason about what happens after an action is performed.CL can reason about regular
synchronous actions capturing the notion of actionsdone at the same time. CL incor-
porates the notions of contrary-to-duty and contrary-to-prohibition by attaching to the
deontic modalities explicitly a reparation which is to be enforced in case of violations.
Results of decidability and tree model property are given aswell as specific properties
for the modalities.
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1. Introduction

The present paper reports on the state-of-the-art of the logic for contractsCL. The
goal of CL is to describe and prescribe, at an abstract level, behaviors of complex
systems, as for instance concurrent programs, communicating intelligent agents, web
services, or normative systems. From this point of view,CL needs to be expressive
enough to capture behaviors of such systems. The purpose of this logic is not only
to formalize such behaviors, but also to reason about them. Therefore, we aim at
a decidable logic so to have hopes for automatic verificationusing formal tools like
model-checking and run-time monitoring.

More precisely,CL has been designed to represent and reason about contracts (be-
ing that software contracts, web services, interfaces, communication protocols, etc),
and it combines deontic logic (i.e., the logic of obligations, permissions, and prohibi-
tions) [1] with propositional dynamic logic (PDL, the logicof actions) [2]. The deontic
part of CL can express obligations, permissions and prohibitions over structured ac-
tions, as well as what happens when obligations or prohibitions are not respected. The
dynamic part ofCL expresses what happens after some action (possibly with complex
structure) is performed.

A first version of the languageCL has been presented in [3], where explicit tempo-
ral operators (always, eventually, and until) were part of the syntax. An encoding into
a version of the modalµ-calculus with concurrent actions was used to give semantics.
TheCL language presented in this paper is more expressive and has acleaner syntax
(with no syntactic restrictions); it was first introduced in[4]. A variant ofCL (without
the propositional constants) was used in [5] for doing run-time monitoring of electronic
contracts using a restricted semantics based on traces of actions. This semantics was
specially designed for monitoring the actions of the contracting parties at run-time with
the purpose of detecting when the contract is violated. The presentation of [5] did not
give much explanation nor examples about the intuitions behind the choices in the de-
sign ofCL. We do this in the present paper and discuss the full semantics ofCL based
on normative structures. We focus on the intended properties of the language. This
paper is a revised and extended version of [4], where besidespresenting full proofs we
have the following added contributions: (i) a complete new section on results concern-
ing the underlying action algebra ofCL, (ii) new results concerning the decidability of
the logic, and (iii) further results on its semantics.

In the rest of this introductory section we focus on the informal explanation of the
language and in particular on its design decisions. These design decisions are biased by
the fact thatCL is intended to faithfully capture concepts and natural properties from
electronic contracts and to avoid the main deontic paradoxes.
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1.1. Motivation and design decisions

In this section we motivate the particular choices we made inthe design of the
CL contract specification language. We compare to related works and give informal
intuitions and examples.

The design ofCL and specially its semantics is driven by the need to express and
reason about contracts. More particularly,CL needs to talk about obligations, permis-
sions and prohibitions; but more specific, about actions andthe fact that such actions
are obligatory, permitted or forbidden. Actions abound in contracts, (particularly in le-
gal contracts) as for example: “supply false information”,“notify”, or “pay later”. CL
is working at a rather high level of abstraction and many of the details of the actions
are abstracted away. In fact, much of the open problems and possible continuations for
theCL logic are gathered around making such details of actions explicit and accounted
for in a richer logic.1

BecauseCL talks about obligations applied to actions it can be included in the class
of logics that take the so called ought-to-do approach to deontic logic. But more than
this,CL needs to talk aboutwhat happens after some action, like in the example “after
notification he must...”. Such notions are captured with thePDL part ofCL.

Ultimately CL is a logic which talks aboutcomplex actionsbecause actions can
have some more structure than just simple names like “pay”, “delay”, or “drive”. The
minimal structure that appears in most contracts is:sequencingof actions, where one
must do an action and then do another action, like “lower the Internet traffic and then
pay”; and another kind of structuring ischoices, like “one has the choice to pay with
either euro or dollars”. The structure that is particular toCL is that ofactions done at
the same time, which are typically found in everyday contracts, as for example “drink
and drive” or paraphrasing from our example above “delay andnotify”. Our under-
standing of such concurrent actions and the way to abstract them in a logic is through
the concurrency notion or synchrony. The integration of allthese features is not trivial
and was done in an algebraic formalism in [7]. We summarize the main results needed
for the present paper in Section 2. In what follows we describe some related work.

We adopt a deontic logic over actions, as started by G.H. von Wright [8], and
integrates these deontic operators with the PDL modality. In this senseCL might be
thought of entering the line of dynamic deontic logics as started by J.-J. Ch. Meyer [9],
but this is not the case as inCL the deontic modalities are not expressed in terms of
the PDL modality (or in terms of the modalµ-calculus [10]). But stillCL has both
dynamic and deontic flavor.
CL integrates a notion of concurrent actions (i.e., the synchrony) and in this respect

it intersects with both works from PDL with concurrent actions and with works in the
dynamic deontic logic community.

Another important notion in legal contracts is that of a reparation sentence which
is somehow directly related to the obligation or prohibition that it repairs. This is
somehow related to the well known problem of contrary-to-duty, but inCL we are in
the setting of actions and not in that of standard deontic logic. In CL the standard notion
of contrary-to-duty takes a flavor of reparations enforced after the violating actions.

1For more open problems and research directions see [6].
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The purpose ofCL is to specify and reason about contracts, therefore it integrates
the normative notions ofobligation, permission, andprohibition. These have been
extensively investigated in the deontic logic community since its introduction by von
Wright in [1]. The deontic notions that we introduce inCL are different than the ones in
standard deontic logic (SDL) in several respects, as discussed in the rest of this section.

(1) The deontic modalities are applied only over actions instead of over proposi-
tions (or state of affairs). This is known as the ought-to-doapproach to deontic logic as
opposed to the more classic ought-to-be approach of SDL. Theought-to-do approach
has been advocated by G.H. von Wright [8] which argued that deontic logic would
benefit from a “foundation of actions”, since many of the philosophical paradoxes of
SDL would then not occur; a point which is made clear and precise in [11]. Important
contributions to this approach were done by K. Segerberg forintroducing actions inside
the deontic modalities [12, 13] and by the seminal work of J.-J.Ch. Meyer on dynamic
deontic logic (DDL) [9] (see also [10, 14]).

Compared to [9, 10, 15, 16], which also consider deontic modalities (i.e.,O, P ,
andF ) applied over actions, the investigation presented in thispaper at the level of the
actions is different in several ways as we elaborate below. The formalization of the
actions is summarized in Section 2 and thoroughly investigated in [7] where standard
models are defined for actions and completeness results are established. The semantics
of theCL language is based on this interpretation of the actions as special trees.

(2) The action combinators are the standard+ and· (for choiceandsequence) but
exclude the Kleene star∗. This exclusion is only for the actions appearing inside the
deontic modalities (i.e., the deontic actions); for otherwise we allow the Kleene∗ inside
the dynamic box modality as is standard (as see in Section 4).None of the few papers
that consider repetition (e.g. using∗) as an action combinator under deontic modalities
[15, 10] give a convincing motivation for having such recurring actions inside obliga-
tions, permissions, or prohibitions. In fact its use insidethe deontic modalities seems
counter-intuitive: take the expressionO(α∗) - which, using for now our intuition for
the Kleene∗ and the obligation modalityO, is read “One is obliged to not pay, or pay
once, or pay twice in a row, or...” – which puts no actual obligations; or takeP (α∗)
– “One has the right to do any sequence of actionα” – which is a very shallow per-
mission and is captured by the widespreadClosure Principlein jurisprudence where
what is not forbidden is permitted[12]. Moreover, as pointed out in [10], expressions
like F (α∗) andP (α∗) can be simulated with the propositional dynamic logic (PDL)
modalities along with deontic modalities over actions without the Kleene star∗; an-
ticipating the syntax and semantics that we present later inthis paper, consider e.g.
F (α∗)

△

= [α∗]F (α), where all the discussion above holds forα being the abstraction
of any complex action.

The theory that we develop forCL, i.e., the semantics and various proofs, is al-
ready quite involved without using the∗ inside the deontic modalities. If we were to
add the Kleene∗ to capture some esoteric examples that one might find appealing the
complexity that this would trigger in terms of theory and proofs does not justify its
effort.

(3) CL defines anaction complementoperation which encodes the violation of an

4



obligation. Obligations (and prohibitions) can be violated by not doing the obligatory
action (respectivelydoingthe forbidden action). The action complement that we have
is different from the various notions of action negation found in the literature on PDL
or DDL-like logics [9, 17, 18, 19]. In [9], as in [17], action negation is with respect to
the universal relation which for PDL gives undecidability.Decidability of PDL with
negation of only atomic actions has been achieved in [18]. A so called “relativized ac-
tion complement” is defined in [19] which is the complement ofan action (not w.r.t. the
universal relation but) w.r.t. a set of atomic actions closed under the application of some
action operators. This kind of negation still gives undecidability when several action
operators are involved.

In CL the action complementis a derived operator defined as a function which
takes a compound action and returns another compound action, i.e., it is not a principal
combinator like+, ·, or×. Intuitively the complement comprises ofall the immediate
actions thattake us outsidethe tree of the complemented action [10].

(4) One difference from the standard PDL is that we considerdeterministicac-
tions. This is natural and desired in legal contracts as opposed to the programming
languages community where nondeterminism is an important notion. In programming
languages a nondeterministic action can be “send message through the network” which
may have two outcomes: wither the message is received, or themessage is not received,
as lost by the network. In contrast, a deterministic action (as in eg. deterministic au-
tomata) has a single outcome. In legal contracts the outcomeof an action like “deposit
100$ in the bank account” is uniquely determined. InCL we take inspiration from the
deterministic PDL which has been investigated in [20]. Deterministic PDL is undecid-
able if action negation (or intersection of actions) is added [17].

(5) We add a concurrency operator× to model that two actions aredone at the
same time. The model of concurrency that we adopt is the synchrony model of R. Mil-
ner’s SCCS [21]. Synchrony is a natural choice when reasoning about the notion “at
the same time” for human-like actions as we have in legal contracts (opposed to the
instructions in a programming language). Moreover, from analgebraic point of view,
synchrony is easy to integrate with the other regular operations on actions (the choice
and the sequence).

The notion of synchrony has different meanings in differentareas of computer sci-
ence. Here we take the distinction betweensynchronyandasynchronyas presented
in the SCCS calculus and later implemented in, e.g., the Esterel synchronous pro-
gramming language [22]. We understandasynchronyas when two concurrent sys-
tems proceed at indeterminate relative speeds (i.e., theiractions may have different
non-correlated durations); whereas in thesynchronymodel each of the two concurrent
systems instantaneously perform a single action at each time instant. This is an abstract
view of the actions found in contracts which is good for reasoning about quite a big
range of properties for contracts, like properties that do not take into consideration the
structure or types of the actions. Such properties would look only at the interplay of
actions, temporal ordering, choice, or existence of actions. If one needs actions which
have durations (e.g., “work 3 hours”) or which are parameterized by amounts (e.g.,
“deposit 100$”) thenCL has to be extended accordingly.

Thesynchrony modelof concurrency takes the assumption that time is discrete and
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that basic actions are instantaneous and represent the timestep. Moreover, at each time
step all possible actions are performed, i.e., the system isconsideredeagerandactive.
For this reason, if at a time point there is enabled an obligation to do an action, then this
action must be immediately executed so that the obligation is not violated. Synchrony
assumes a global clock which provides the time for all the actors (participants, parallel
components) in the system. Note that for practical implementation purposes this is a
rather strong assumption which offends the popular view from process algebras [23,
24]. On the other hand the mathematical framework of the synchrony model is much
cleaner and more general than the asynchronous interleaving model (SCCS has the
(asynchronous) CCS as a subcalculus [21]). The synchronouscomposition operator×
is different from the classical‖ of CCS.

The synchrony model is better suited forreasoningabout concurrent actions than
for implementing concurrency as is the more low-level asynchrony model. Because of
the assumption of an eager behavior for the actions the scopeof the obligations (and
of the other deontic modalities too) is immediate, making them transient obligations
which are enforced only in the current point in time. One can get persistent obligations
by using temporal operators, like thealwaysoperator. The eagerness assumption facil-
itates both reasoning about existence of the deontic modalities and about violations of
the obligations or prohibitions.

Regarding the dynamic logic part,CL introduces the synchrony operation×on the
actions inside the dynamic modality. Therefore,CL can use dynamic logic reason-
ing about synchronous actions and, from this point of view, it is included in the class
of extensions of PDL that can reason about concurrent actions: PDL∩ with intersec-
tion of actions [25] which is undecidable for deterministicstructures or concurrent
PDL [26, 27] which adopts ideas from alternating automata [28]. Contrasting with
the discouraging undecidability results from above,CL (with action complement and
synchronous composition over deterministic actions inside the dynamic modality) is
decidable. This makesCLmore attractive for automation of reasoning about contracts.

(6) CL defines aconflict relation#C over actions which represents the fact that
two actions cannot be done at the same time. This is necessaryfor detecting (and for
ruling out) a first kind ofconflictsin contracts: “Obligatory to go west and obligatory to
go east” should result in a conflict because the actions “go west” and “go east” cannot
be done at the same time (i.e., are conflicting). The second kind of conflicts thatCL
rules out are: “Obligatory to go west and forbidden to go west” which is a standard
requirement on a deontic logic.

(7) In CL conditional obligations(or prohibitions) can be of two kinds.

a. The first kind is given with the propositional implication: C1 → OC(α) which is
read as “ifC1 is the case then actionα is obligatory” (e.g., “If Internet traffic is
high then the Client is obliged to pay”).

b. The second kind is given with the dynamic box modality:[β]OC(α) which is
read as “if actionβ was performed then actionα becomes obligatory” (e.g.,
“After receiving necessary data, the Provider is obliged tooffer password”).

(8) Regarding the deontic modalities,CL includes directly in the definition of the
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obligation and prohibition thereparationsin case of violations. The deontic modalities
areOC andFC whereC is a contract clause representing the reparation. This models the
notions of contrary-to-duty obligations (CTDs) and contrary-to-prohibitions (CTPs) as
found in deontic logic applied over actions like DDL [9, 14].These notions are in
contrast with the classical notion of CTD as found in the SDL literature [29, 30]. In
SDL, what we call reparations are secondary obligations which hold in the same world
as the primary obligation. In our setting, where the action changes the context (the
world), one can see a violation of an obligation (or prohibition) only after the action
is performed and thus the reparations are enforced in the next world (in the changed
context).

The approach ofCL to contrary-to-duty rules out many of the problems faced by
SDL (like the gentle murderer paradox). On the other hand it does not capture the
wording of the SDL examples. In the end of Section 4.1 we present the stand ofCL
w.r.t. some of the most important paradoxes of SDL.

(9) Standard deontic logic SDL, and other variants of it, consider one of the three
deontic modalities as primitive (usuallyO or P ) and the other two modalities are de-
fined in terms of this primitive one using the propositional operators. To the contrary,
the deontic modalities arenot interdefinablein CL. Only some of the implications that
SDL makes hold inCL, and we discuss these in Section 3.2.

(10) Thesemanticsof CL is given in terms ofnormative structuresand it is spe-
cially defined to capture several natural properties which are found in legal contracts.
These are motivated (with examples) in Section 4.

A work, close in many respects with our work here, was recently presented in
DEON [31] and is, like us, essentially inspired by [12] and [16]. Their work is partic-
ularly appealing because of the neat algebraic presentation. Moreover, [31] carefully
investigates the different axiomatizations of permissions and prohibitions, where small
differences in the intuitive understanding of their relations are being explicitly formal-
ized by the set of characterizing axioms. Nevertheless, they base their nice presentation
on a simpler set of actions, which are characterized by the nicely behaved Boolean al-
gebra. Because of this they do not investigate sequences of actions, and also do not
have an easy transition to the dynamic actions (i.e., the regular synchronous actions
including the Kleene∗, as we do with the synchronous Kleene algebra formalization).
Another difference withCL is that [31] defines obligation in terms of permission, which
is not the case inCL. At the semantic level, the same notion of markers as we have
in normative structures are used in [31] only that they have amore algebraic view of
the sets of markers related to the interpretation of the actions in the spirit of Boolean
algebra, as opposed to our interpretation in the spirit of Kleene algebra.

2. Synchronous Actions

In this section we present the formalism of the synchronous actions that are the
basis of theCL logic. We provide here important results about synchronousactions
needed in later sections when giving the semantics ofCL. We introduce actions grad-
ually, first definingdeontic actionswhich will be the actions used inside the deontic
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(1) α+ (β+γ)=(α+β)+γ

(2) α+ β = β + α

(3) α+ 0 = 0+ α = α

(4) α+ α = α

(5) α · (β · γ) = (α · β) · γ
(6) α · 1 = 1 · α = α

(7) α · 0 = 0 · α = 0

(8) α· (β+γ)=α· β + α· γ
(9) (α+β)· γ = α· γ +β · γ

(10) α×(β×γ) = (α×β)×γ

(11) α×β = β×α

(12) α×1 = 1×α = α

(13) α×0 = 0×α = 0

(14) a×a = a ∀a ∈ AB

(15) α×(β + γ) = α×β + α×γ

(16) (α+ β)×γ = α×γ + β×γ

(17) (α× · α)×(β× · β) = (α××β×)·(α×β), ∀α×, β× ∈ A×
B

Table 1: Axioms of action equality.

modalities. These actions are then enriched withtestsand the Kleene∗ operator, be-
coming, what we call,dynamic actionsbecause these will be used inside the dynamic
box modality ofCL. All these actions are calledsynchronousbecause all include the
synchrony operator that we mentioned in the introduction.

Definition 2.1 (deontic actions).Consider a finite set ofbasic(or atomic) actionsAB

(denoted bya, b, c, . . . ). The special actions0,1 6∈ AB are called respectively the
violating and theskip actions. The action combinators are: “+” for choiceof two
actions, “·” for sequenceof two actions (or concatenation), and “×” for concurrent
composition(synchronously) of two actions. We generally callcompound actions(or
just actions) terms ofAD (denotedα, β, γ, . . ., possibly primed, double-primed, etc.)
obtained from basic actions,0, and1 using the action combinators. We call×-actions,
denotedα×, β×, γ× (possibly primed, etc.) the subset of actionsA×B ⊂ A

D generated
fromAB using only the×constructor. The actions defined here will be referred to as
deontic actionsand can be seen as generated by the grammar below:

α
△

= a | 0 | 1 | α×α | α · α | α+ α (deontic actions)

To avoid unnecessary parentheses we use the following precedence over the combina-
tors: + < · <×. Table 1 axiomatizes the equality between actions.

Actions as presented here are related to the more general algebraic structure called
synchronous Kleene algebrain [7]. Note that0,1 6∈ A×B and the inclusion of sorts
AB ⊆ A

×
B ⊂ A

D. Also note thatA×B is finite up to the application of the axioms,
becauseAB is finite and× is idempotent over basic actions; see axiom (14). Because
of the idempotence we take the liberty of using⊆ to compare elements ofA×B, asα×
can be seen as the set of basic actions that compose it (e.g.a×b ⊆ a×b×c or a 6⊆ b×c).
We will say thatβ is biggerthanα wheneverα ⊆ β. So, in the example abovea×b×c
is bigger thana×b.

In the rest of the paper we consider the setA×B up to the application of the axioms
of Table 1. Particularly, only axioms (10), (11), and (14) are applicable to×-actions
(i.e., when we talk about×-actions we talk about the representative of an equivalence
class of×-actions w.r.t. axioms (10), (11), and (14)). This representative is the minimal
one, likea×b instead ofa×b×b or a×b×b×b. This is also why theA×B is finite.

With CL we are reasoning about the structure of the complex actions,where the
particular atomic actions ofAB are abstracted away to being just some symbols; these
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can be made concrete by the user, as for example in programming languages where
each assignment that the program makes is one atomic action.In legal contracts an
atomic action can be, e.g., “Client pays 100$”.

Intuitively, we consider that the actions are performed by somebody (being that a
person, a program, or an e-agent). We talk about “performingactions” and one should
not think ofprocesses “executing” actionsand operational semantics like in SCCS; we
do not discuss operational semantics nor bisimulation equivalences in this paper.

Definition 2.2 (conflict relation). Consider a symmetric and irreflexive relation over
basic actionsAB calledconflict relationand denoted by#C ⊆ AB ×AB .

Theconflict relationis a notion often found in legal contracts and is given a priori.
The intuition is that if two actions are in conflict then the actions cannot be done at the
same time. This intuition explains the need for the following equational implication:

(18) a#C b→ a×b = 0 ∀a, b ∈ AB.

There isno transitivity of #C which is natural as also shown by the following
example: action “drive” may be in conflict with both “drink” and “talk at the phone”
but still one can, legally, “drink and talk at the phone” at the same time, though not
possible physically.

From an algebraic point of view, the purpose of the#C relation is to add more
structure on the algebra that was not there before (only fromthe properties of the op-
erators). This extra structure comes from outside, from some properties given by an
oracle (by the user) on the generators of the algebra (i.e., on the basic actions). By
more structure is meant that new equalities hold depending on the information given
through#C . The purpose of#C is different than what is sometimes done in algebra:
eg., on an idempotent semiring one defines a relationα ≤ β iff α + β = β in terms
of some special structure on the algebra, and studies this structure by studying this re-
lation instead (eg.,≤ is reflexive, which means that the properties of the+ operator
are such thatα + α = α, i.e., idempotence). In the case of#C we do not define it in
terms of some existing structure (and properties) in the algebra (i.e., in terms of some
equalities likea×b = 0), but we use#C to impose some more structure on the algebra.
Therefore we added the equational implication (18).

Definition 2.3 (canonical form). We say that an actionα is in canonical form, de-
noted byα, iff it is 0, 1, or has the following form:

α
△

= +i∈I (α
i
× · α

i)

where

a. αi
× 6= α

j
×, for all i, j ∈ I;

b. for all i ∈ I, either

(a) αi
×∈ A

×
B andαi ∈ AD \ {0,1} is an action in canonical form, or

(b) αi
×∈ A

×
B ∪ {1} andαi is absent (i.e., when no more· applications exist).
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Note thatαi
× does not contain twice the same actiona, for anya ∈ AB andi ∈ I,

as it is part ofA×B, thus,a×a is not in canonical form, buta anda×b are. The indexing
setI is finite asA×B is finite andαi

× are different. The purpose of the constraints in
Definition 2.3.b is to not allow1 to appear in the canonical forms, except for some
very special cases: either the whole actionα = 1; or 1 appears in a summation with
other actions as summands. All other possible appearances of 1 are disallowed by this
constraint 2.3.b. Particularly, 2.3.ba does not allow anαi alone to be1 and 2.3.bb says
that aαi

×∈ A
×
B is allowed to take the value1 (which was not the case before, as being

defined fromA×B) only in the case when it is not followed by any other action.

Example 2.1 Consider the complex actionα = (a + b) · (c + d) which is not in canonical
form but is equivalent to the canonical formα = a · (c+ d) + b · (c+ d) (obtained by applying
axiom (9)). On the other handα is equivalent also toa·c+a·d+b·c+b·d (obtained by applying
axioms (9) then (8)) which is not in canonical form because the constrainta in Definition 2.3 is
not met asa appears twice as first element in the summation.

Related to the constraints in Definition 2.3.b the action1 ·a is not in canonical form because
of 2.3.bb (and neither isb+1 ·a), and actiona ·1 is not in canonical form because of 2.3.ba (and
neither isb+ a · 1), but actiona+ 1 is in canonical form because there is nothing following the
branch represented by1 and therefore the constraint of 2.3.bb allows this branch tobe1. From
the same reasons the actiona · (1+ b) is also in canonical form. 2

Theorem 2.4 ([7, Th.2.8]).For anyα there existsα in canonical form s.t.α = α.

The proof in [7, Th.2.8] actually shows how to construct the canonical form of a
given action in an algorithmic fashion.

In rewriting theory, toapply an axiommeans to apply the rule obtained from direct-
ing the axiom, in our case we direct the axioms from left to right; see [32] for details
on rewriting theory.

Theorem 2.5. For a canonical formα = +i∈I αi
× · α

i only axiom (8) can be applied
(and none other of the axioms of Table 1), modulo associativity and commutativity.

Proof : Note first that we work modulo associativity and commutativity of + and×,
and modulo associativity for· (thus we do not consider axioms (1), (2), (5), (10), (11)).
The remaining axioms of Table 1 are considered directed fromleft to right.

In the rest of the proof we argue only for the first level of the canonical form because
the definition is recursive. The same arguments, applied in an inductive manner, hold
for the smaller subactionsαi in canonical form.

Axiom (3) is not applicable becauseαi
× cannot be0 and neither canαi because of

Definition 2.3-b.(a). Axiom (4) is dealt with by the condition in Definition 2.3-a. The
left part of axiom (6) cannot be applied because of the constraint in Definition 2.3-b.(a)
which makesαi 6= 1. The right part of (6) is not applicable becauseαi

× 6= 1 whenαi

exists. Similar arguments using the c.(a) constraint againshow that axiom (7) is not
applicable. Clearly, axiom (9) is not applicable to a canonical form. Axioms (12) and
(13) are dealt with by the fact thatαi

×are fromA×B (contain only basic actions). Axiom
(14) is taken care of by the same argument. The main purpose ofthe canonical form is
to make sure that the axioms for×(like (15), (16), (17)) are applied exhaustively to the
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original action, and cannot be applied any more to the canonical form. In other words
the axioms (15), (16), (17) push the×inside the action until it reaches the basic actions.
2

The following corollary is immediate from the proof of Theorem 2.5 (applying
axiom (8) to a canonical form breaks the canonicity).

Corollary 2.6. The canonical form of an actionα is unique(modulo associativity and
commutativity).

For the deontic modalities, one important notion isaction complement. In our view
action complement encodes the violation of an obligation (as we see later in Section 3).
Intuitively, we say that the complementα of actionα is the action given by all the
immediate actions whichtake us outsidethe tree ofα. This view was aired in [10]
but no formal definition was given. In our case we need to deal with synchronous
actions too. The notion of action complement that we give shares ideas with [9] but it
is not restricted to respect all the axioms of [9]; we want action complement to capture
naturally what it means to violate an obligation in an eager system (where no idling is
possible). Withα it is easy to formally defineα.

Definition 2.7 (action complement).Theaction complementis denoted byα and is
defined as a function : AD → AD (i.e., action complement is not a principal combi-
nator for the actions) and works on the equivalent canonicalformα as:

α = +
i∈I

αi
× · α

i △

= +
β×∈R

β× + +
j∈J

(γj
× · +

i∈I′
j

αi)

ConsiderR
△

= {αi
× | i ∈ I}. The setR contains all the×-actionsβ× with the property

that none of the actionsαi
× are included inβ×:

R
△

= {β× | β×∈ A
×
B and∀i ∈ I, αi

× 6⊆ β×};

andγj
× ∈ A

×
B and∃αi

× ∈ R s.t.αi
× ⊆ γ

j
×. The indexing setI ′j ⊆ I is defined for each

j ∈ J as:
I ′j

△

= {i ∈ I | αi
×⊆ γ

j
×}.

Complement of1 is 0 = 1 and complement of0 is 1 = 0.

The complement operation formalizes the fact that an actionis not performed. In
an eager system not performing an action means that some other action is performed
(because the system is not allowed to idle). For a complex action this boils down
to either not performing any of its immediate actionsαi

×, or by performing one of
the immediate actions and then not performing the remainingaction. Note that to
perform an actionαi

× means to perform any action that includesαi
×. Therefore in the

complement we may have actionsγj
× which include more immediate actions.

Example 2.2 Consider the complex actionα = a · b + c · d, with AB = {a, b, c, d}, and
assume to performγj

× = a×c. At this point we need to look at both actionsb andd in order

11



to derive the complement, e.g. performing nowd means thatα was done, whereas performingc
means thatα was not done (anda×c · c must be part of complement). 2

Our intention is to define theminimalaction that describes the complement of some
α; with the idea that the complement is an action thatimmediatelytakes us outside the
tree ofα. By minimal we refer to the number of single-step actions (or, as we define
later, thelengthof the complement should be minimal; i.e., the length of its sequences).
As soon as an action steps outside the tree ofα there is no point in describing the rest
of the actions that may follow, because no matter which theseare theα still remains
not done. In this way, as shown in Proposition 2.8, the actioncomplement does not
have infinite sequences of actions, and at the same time, thiscomplement is enough
to describe what it means to violate an obligation and, hence, enables us to determine
where the reparations should be placed (see related detailslater in the semantics of the
deontic modalities).

Example 2.3 We give some simple and illustrative examples for action complement. Consider
AB = {a, b}, then:a = b; a · b = b+ a · a; b+ a · b = a · a; 1+ a = 0. 2

The following result states that our notion of action complement always produces
an action in canonical form.

Proposition 2.8. The complement operation returns a (finitely described) deontic ac-
tion which is in canonical form.

Proof : For the first part of the proposition we prove thatα has no infinite application
of the+ constructor (we say “no infinite branching”) and also no infinite application
of the· constructor (we say “no infinite depth”). In both cases we useinduction on the
structure of the action complement. The basis of the induction is clearly satisfied as0,
1, and alla ∈ AB have both finite branching and finite depth.

R is finite becauseR ⊆ A×B , whereA×B is finite, and thus+β×∈R β× is finitely

branching. The indexing setJ is finite (having maximum size|A×B |) thus+j∈J γ
j
×

is finitely branching. Lastly, the indexing setsI ′j are finite subsets of theI, hence
+i∈I′

j
αi is a subaction ofα. Thus we apply the induction hypothesis to it and deduce

that its complement+i∈I′
j
αi is finitely branching, for anyI ′j ⊆ I. We conclude that

α = +β×∈R β× + +j∈J γ
j
× ·+i∈I′

j
αi is finitely branching.

It remains to prove thatα has no infinite depth. The first part of the action comple-
ment (i.e.,+β×∈R β×) introduces only branches of finite depth 1. For the second part

(i.e.,+j∈J γ
j
× · +i∈I′

j
αi) we can apply the induction hypothesis to+i∈I′

j
αi because,

as we discussed before, this is a subaction ofα. Thus, we have that each+i∈I′
j
αi has

finite depth. These are concatenated to theγ
j
× actions which have depth 1, thus, making

all the second choice of finite depth, and hence theα has finite depth.
For the second part of the proposition it is easy to see that the action complement

respects the canonical form. Action complement is a choice of sequences, each se-
quence being either a single×-action (i.e., from+β×∈R β×) or an×-actionγj

× followed

by another action+i∈I′
j
αi which we know by induction that is in canonical form.2

12
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Figure 1: Trees corresponding to0, 1, a ∈ AB , anda×b ∈ A×
B

.

An important result from [7] that we need later is the interpretation of the deontic
actions as rooted trees.

Definition 2.9 (rooted tree). A rooted tree with labeled edgesis an acyclic connected
graph (N , E ,AB) with a designated noder called root node.N is the set ofnodes
andE is the set oflabeled edgesbetween nodes (in graphical notationn

α
−→ m). The

labelsα ∈ 2AB are sets of basic labels. Labels are compared for set equality (or set
inclusion). Note the specialempty setlabel. We consider a special labelΛ to stand for
an impossible label. We restrict our presentation tofinite rooted trees (i.e., there is no
infinite path in the graph starting from the root node). The set of all such defined trees
is denotedT .

Notation: When the label of an edge is not important (i.e. it can be any label) we may
use the notationn −→ m instead ofn

α
−→ m ∀α ∈ 2AB . Each node in{m |n −→ m}

is called achild node ofn. We denote by|n| thedepthof the noden in the tree; which is
the number of edges needed to reachn from the root. A path of a tree is denotedσ ∈ T .
A path which cannot be extended with a new edge is calledfinal. The final nodes on
each final path are calledleaf nodes; denoted byleafs(T ) = {n | n is a leaf node}. The
heightof a tree, denotedh(T ), is the maximum of|n| for all the leaf nodesn. We write
T1

.
= T2 when two trees are equal modulo renaming of the nodes (i.e. isomorphic).

Theorem 2.10 (interpretation of deontic actions [7]).For any actionα there exists
a tree representation corresponding to the canonical formα.

Proof: Therepresentationis an interpretation functionT : AD → T which interprets
all actions as trees. More precisely, given an arbitrary action of AD, the canonical
form is computed first and thenT generates the tree representation of the canonical
form. Because the canonical form of an action is unique, cf. Corollary 2.6, the tree
representation is indeed a function. We do not give an algorithm for computing the
canonical form as one may simply apply exhaustively all the axioms excluding (8).

The functionT is defined inductively, on canonical forms only. The basis ofthe
induction is to interpret0, 1, and each×-action ofA×B as a tree with edges labeled from
2AB , as pictured in Fig. 1. Recall that actions ofA×B∪{0,1} are in canonical form. For
a general action in canonical formα = +i∈I αi

×·α
i the tree is generated by adding one
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Figure 2: Tree interpretation forp · b+ (d×n) · p · p.

branch to the root node for each elementαi
× of the top summation operation. The label

of the branch is the set{αi
×} corresponding to the×-action. The construction continues

inductively by attaching at the end of each newly added branch the tree interpretation
of the smaller actionαi. Intuitively,+ provides the branching in the tree, and· provides
the parent-child relation on each branch. 2

Example 2.4 Consider the interpretation of the actionp · b+ (d×n) · p · p as the tree pictured
in Fig. 2. 2

We now extend our grammar of actions with new constructs, namely the Kleene
star and tests.

Definition 2.11 (dynamic synchronous actions).The dynamic actions add to the de-
ontic actions the Kleene star∗ operator and a set ofBoolean testsdenotedA?. The
elements of the setA? are calledtests(or guards) and are included in the set of actions
(i.e., tests are special actions). Tests are generated froma finite setA?

B of basic tests.
We denote tests byϕ (possibly indexed) and basic tests byφ. The dynamic actions are
constructed with the grammar below:

δ
△

= a | ϕ? | δ + δ | δ · δ | δ×δ | δ∗ (dynamic actions)

ϕ
△

= φ | 0 | 1 | ϕ+ ϕ | ϕ · ϕ | ϕ×ϕ | ¬ϕ (tests)

Note the overloading of the operators+, ·,×, and constants0,1: over arbitrary
actions they have the meaning as before, whereas, over teststhey take the meaning of
the well known disjunction (for+), conjunction (for· and×), falsity and truth (for0
and1). The behavior over tests is given by the axioms that are required, which are
those of Boolean algebra. In particular,· and× respect different axioms when applied
to normal actions, though in the case of tests they turn out tohave the same behavior,
acting both as a Boolean conjunction. This is clear for×, and probably less intuitive
for ·. The reason for the latter behaving as a conjunction is that checking two simple
tests in sequence is independent on which one is tested first,so the result is the same as
checking their conjunction (see details in [7]).
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In [7] it was shown how it can be associated to any dynamic synchronous action an
automaton on guarded synchronous strings; this is similar to the interpretation as trees
that we gave for deontic actions. The completeness result of[7] ensures that working
with the dynamic synchronous actions or with the automata onguarded synchronous
strings is the same (they are interchangeable). This resultcan be instantiated to deontic
actions to ensure that working with the deontic actions or with their tree representations
is the same.

Definition 2.12 (guarded synchronous strings).Over the set of basic testsA?
B we

defineatomsas functionsν : A?
B → {0, 1} assigning a Boolean value to each basic

test. Consider the finite alphabetΣ = 2AB \ {∅} of all nonempty subsets of basic
actions (denotedx, y). Aguarded synchronous string(denoted byu, v, w) is a sequence

w = ν0x1ν1 . . . xnνn, n ≥ 0,

whereνi are atoms. We definefirst(w) = ν0 and last(w) = νn. Denote byAtoms =

{0, 1}A
?

B the set of all atomsν. We call asynchronous stringa guarded synchronous
string stripped of all the atomsνi (i.e., the synchronous string associated with thew

above is justx1 . . . xn).

Proposition 2.13 (automata for guards [7]). AnautomatonA = (S,Σ, S0, ρ, F ) con-
sists of a finite set of statesS together with a transition relationρ between these states
which is labeled by letters from the alphabetΣ. An automaton accepts sets of strings
(also called the language of words accepted by the automaton) where each accepting
string is the sequence of labels coming from a sequence of transitions where the first
transition starts in an initial state fromS0 and the last one ends in a final state fromF .

For the set ofAtoms there exists a class of finite state automata which accept all
and only the subsets of atoms. We denote the set of all such automata byM and one
automaton byM ∈ M.

We can now give the representation of the dynamic synchronous actions as the
two-level hierarchical automata defined below.

Definition 2.14 (automata on guarded synchronous strings).Consider a two level
finite automatonAG = (S,Σ, S0, ρ, F, ⌈·⌉). It consists at the first level of a finite
automaton on synchronous strings(S,Σ, S0, ρ, F ), together with a map⌈·⌉ : S →M.
An automaton on synchronous strings consists of a finite set of statesS, the finite
alphabetΣ = 2AB \ {∅}, a set ofinitial designated statesS0 ⊆ S, a transition relation
ρ : Σ→ S×S, and a set offinal statesF . The mapping⌈·⌉ associates with each state
on the first level an automatonM ∈ M as defined in Proposition 2.13 which accepts
atoms. The automata in the states make the second (lower) level. Denote the language
of atoms accepted by⌈s⌉ withL(⌈s⌉).

Theorem 2.15 (interpretation of dynamic actions [7]). For any dynamic actionδ there
is a corresponding automatonAG(δ) which accepts the same set of guarded syn-
chronous strings thatδ describes.
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Figure 3: Automaton on guarded synchronous strings for(p · b)∗ + (d×n) · ϕ? · p · p. The picture omits
L(⌈ti⌉) = M(Atoms) wheni ∈ {2, 3, 4, 5, 6}.

Example 2.5 Let us consider the automatonAG(δ) for the dynamic synchronous actionδ =

(p · b)∗ + (d×n) · ϕ? · p · p, depicted in Fig. 3. TheAG(δ) automaton has in statet1 (on the
second level) an automatonM(ϕ) corresponding to the testϕ which accepts all and only the
atoms that constitute a satisfying interpretation forϕ. In all the other states ofAG(δ) we have
the trivial automaton for⊤ that accepts any atom. 2

3. Deontic Modalities over Synchronous Actions

In this section we introduce the deontic part of theCL logic and we work only
with deontic modalities over synchronous actions (and the underlying propositional
language).

Definition 3.1. The deontic expressions of theCL logic are constructed by the gram-
mar below:

C := φ | OC(α) | P (α) | FC(α) | C → C | ⊥ (deontic formulas)
α := a | 0 | 1 | α×α | α · α | α+ α (deontic actions)

We call an expressionC a (general)contract clause. A contract clause is built
using the classical propositional implication operator→, where the other operators
∧,∨,¬,↔,⊤,⊕ (exclusive or) are expressed in terms of→ and⊥ as in propositional
logic. The building blocks of a contract clause are the propositional constantsφ drawn
from a finite setΦB and the deontic modalitiesOC(α), P (α), andFC(α).2 These rep-
resent respectively the obligation, permission, and prohibition of performing a given
actionα. Intuitively OC(α) states the obligation to performα, and thereparationC in
case the obligation isviolated, i.e., wheneverα is not performed. The reparation may

2For this article, where the examples ofCL formulas are not big, the notationOC andFC is pleasing
and intuitive; but in the bigger examples these may be cluttering and undesired. In such a case a user
may choose a different notation, likeO(α)⌈C, and an example likeOFC1

(β)∧C2
(α) would look nicer as

O(α)⌈((F (β)⌈C1) ∧ C2).
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be any contract clause. The modalityOC(α) (resp.FC(α)) represents what is called
CTD (resp. CTP) in dynamic deontic logic. Obligations without reparations are writ-
ten asO⊥(α) where⊥ (and conversely⊤) is the Booleanfalse (respectivelytrue).
We usually writeO(α) instead ofO⊥(α). Obligations with no reparation are some-
times in the literature calledcategoricalbecause they must not be violated (i.e., there
is no reparation for their violation, thus a violation wouldgive violation of the whole
contract). The prohibition modalityFC(α) states that the actionα is forbidden and in
case the prohibition is violated the reparationC is enforced. Note that it is possible to
express nested CTDs and CTPs. Permissions have no reparations associated because
they cannot be violated; permissions can only be exercised.The logical expressions of
CL are interpreted over Kripke-like structures which we callnormative structures.

Definition 3.2 (normative structure). A normative structureisKN=(W , R2AB ,V , ̺)
where:
• W is a set ofworlds(also called states);
• 2AB contains thelabelsof the structure as sets of basic actions from the finite set
AB . R2AB : 2AB → 2W×W returns for each label apartial functionon the set
of worlds (written as a relation);
• V : ΦB → 2W is avaluation functionof the propositional constants returning a

set of worlds where the constant holds;
• ̺ : W → 2Ψ is a marking function which marks each world with markers from
Ψ = {◦a, •a | a ∈ AB}. The marking function respects the restriction that no
world can be marked by both◦a and•a, for anya ∈ AB.

A pointed normative structureis a normative structure with a designated worldi
(denoted by〈KN , i〉).

We denote by an indexedt a node of a tree (or byr the root) and by an indexeds
(or i for initial) a state of a normative structure. We use the graphical notations

α
−→ s′

for the transitions of the normative structures too. We sometimes abuse the notation by
writing s ∈ KN for s ∈ W of KN , ands

α
−→ s′ ∈ KN for s

α
−→ s′ ∈ R2AB of KN .

Note that we consider both the tree from before and the normative structures to have
the same set of basic labelsAB.

KN is deterministicas for each label from one world there is at most one successor
world; i.e., the partial function requirement. We use deterministic structures because
in the deontic realm, as in legal contracts, each action (like “deposit 100$ in bank ac-
count”) must have a well determined behavior (i.e., the actions do not have a nondeter-
ministic outcome). The deterministic restriction of Kripke structures was investigated
in [20]. The marking function and the markers are needed to identify obligatory (i.e.,
◦) and prohibited (i.e.,•) actions. Markers with different purposes were used in [9] to
identify violations of obligations, in [15] to mark permitted transitions, and in [16] to
identify permitted events.

As an example let us consider the normative structure in Fig.4, which has five
states and two constant propositionsΦB = {φ, φ′}. The valuation function assigns to
each proposition a set of states, e.g.,V(φ) = {s1, s3, s5}.

A first difference between normative structures and the standard Kripke structures
is that the labels in normative structures can be sets; in Fig. 4 there is one transition la-
beled by{d, n} (i.e.,R2AB ({d, n}) = {(s1, s2)}) and two transitions labeled{p} (i.e.,
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Figure 4: Example of a normative structure.

R2AB ({p}) = {(s2, s3), (s3, s4)}). The second difference is that normative structures
have a marking function, and in our example it markss2 by {◦n, ◦d}, s5 by {•b}, and
s3, s4 by {◦p} each.

A normative structure has essentially two components: the labeled transitions (re-
lated to the actions that can be performed from each state) and the marking function
(related to obligations and prohibitions). Without the marking function we are in the
known setting of Kripke structures where an action logic like the propositional dynamic
logic PDL is what we need to talk about the labeled transitions, i.e., about the actions
and their regular structure. This is enough to talk about programs and their execution,
nondeterminism, or loops.

In order to talk about which actions are obligatory and whichare forbidden we in-
troduce the marking function. This decorates the states of the Kripke structure with
markers, giving rise to what we called normative structure.3 If one needs to talk only
about executions of actions, then the markers are superfluous. But if one needs to talk
about which executions are respecting and which are violating some obligation of a
complex action, then the markers come into play. In fact, thepurpose of normative
structures is to give a representation to a contract (i.e., to obligations and prohibitions),
and this is what we investigate in this paper. Talking about which traces of actions
respect or violate a contract was done in [5] and that work should have formal con-
nections with the present, but these are still work in progress. (See [6, Sec.4.4.1] for
preliminary results in this direction.)

Remarks: the markers ofΨ can be seen as special propositional constants, i.e.,
Ψ ⊂ ΦB, and the marking function as part of the valuation function.Our choice is to
separate these, as the markers have different purpose from the propositional constants
and the valuation. The purpose of the valuation is to represent the outcome of the
actions, whereas the purpose of the markers is to represent the deontic content of the
actions (i.e., which actions are obligatory, permitted, orforbidden). Moreover, the
presentation of the semantics ofCL is more clean.

In order to relate the semantic domain of our language with the underlying algebra
of actions on which the deontic modalities operate on, we will give a formal relation-

3To be precise, a normative structure is also deterministic,whereas a general Kripke structure may not.
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ship between normative structures and trees through a notion of simulation.

Definition 3.3 (simulation). For a treeT = (N , E ,AB) and a normative structure
KN = (W , R2AB ,V , ̺)we define a relationS ⊆ N×W which we call thesimulation
of the tree node by the state of the structure:

tS s iff ∀t
γ
−→t′∈T , ∃s

γ′

−→s′∈KN s.t.γ⊆γ′ ∧ t′Ss′, and

∀s
γ′

−→s′∈KN with γ⊆γ′ impliest′ S s′.
We say that a treeT , with rootr is simulated by a normative structureKN w.r.t. a state
s, denotedT Ss KN , if and only ifr S s.

Note two differences with the classical definition of simulation: first, the labels of
the normative structure may be bigger (a superset) than the labels in the tree. This can
be intuitively motivated by the idea that respecting an obligatory action means execut-
ing an action which includes it (is bigger). We can drop this condition and consider
only γ = γ′, in which case we call the relationstrong simulationand denote bySs .
The second difference is that any transition in the normative structure that can simulate
an edge in the tree must enter under the simulation relation.This is because from the
states′ onwards we need to be able to continue to look in the structurefor the remain-
ing tree (to see that it is simulated). Trivially, any strongsimulation relation is also a
simulation relation. We can weaken the definition of simulation by combining the two

conditions into:∀t
γ
−→ t′ ∈ T , ∀s

γ′

−→ s′ ∈ KN with γ ⊆ γ′ thent′ S̃ s′. We call the
resulting relationpartial simulationand denote it byS̃ .

Example 3.1 Consider the tree from Fig. 2 and denote it byT (α) whereα = p·b+(d×n)·p·p.
This tree is simulated by the normative structureKN of Fig. 4 w.r.t. the states1. It is easy to

check thatr S s1: for the edger
{p}
−→ t4 we find inKN the transitions1

{p,b}
−→ s4 that respects

the inclusion of labels. We also have thatt4 S s4 since for the only edget4
{b}
−→ t5 there is the

transitions4
{b}
−→ s1 in KN simulating it (the second constraint from the definition of simulation

is satisfied trivially fort4
{b}
−→ t5 because there is no other transition froms4 in KN ). Moreover,

for the edger
{p}
−→ t4 the second condition for simulation is satisfied because there is no other

transition froms1 with a label that includes{p}. For the second edger
{d,n}
−→ t1 we find the

transitions1
{d,n}
−→ s2 in KN that respects all the simulation conditions (checking these is done

as before). If we were to change the label of the transition(s1, s4) to {p} then the tree would
still be simulated but it would also bestronglysimulated.

Consider a simpler example of a treeT (b) interpreting the basic actionb. This too is strongly
simulated by the structureKN w.r.t. s1 because, for the only edge of the tree labeled with{b}

we find the transitions1
{b}
−→ s5 which has exactly the same label, and the leaf node of the

tree is trivially simulated bys5 because there are no edges out of it (note that this holds for any
leaf node of a tree). On top, the second simulation conditionalso holds because the only other

transition that has a label that includesb is s1
{p,b}
−→ s4 and for this transitions4 trivially simulates

the leaf node. 2

Given a tree that is simulated by a normative structure, we can isolate a maximal
substructure of the latter that simulates the given tree. Aswe will see later, it is also
useful to identify what parts of the normative structure do not simulate the tree, giving
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place to what we call the non-simulating remainder of the structure. These notions are
formally defined in Definition 3.4 and 3.5.

Definition 3.4 (maximal simulating structure). For a treeT that is simulated by a
normative structureKN w.r.t. the statei (in notationT SiKN ), we denote byKT,i

max =
(W ′, R′

2AB
,V ′, ̺′) and callthe maximal simulating structure w.r.t.T andi of KN the

maximal sub-structure ofKN respecting the following, whereKN = (W , R2AB ,V , ̺):

a. i ∈ W ′, V ′ = V|W′ and̺′ = ̺|W′

b. ∀t
γ
−→ t′ ∈ T then∀s

γ′

−→s′ ∈ KN s.t.tS s ∧ γ ⊆ γ′ ∧ t′ S s′

s′ ∈ W ′ ands
γ′

−→s′ ∈ R′
2AB

.4

Definition 3.5 (non-simulating remainder). We call thenon-simulating remainder of
KN w.r.t.T andi the sub-structureKT,i

rem = (W ′′, R′′
2AB

,V ′′, ̺′′) of KN that is max-
imal and respects the following:

a. s
γ
−→s′′ ∈ R′′

2AB
iff s

γ
−→s′′ 6∈ KT,i

max ∧ s ∈ KT,i
max ∧ ∃s

γ′

−→s′ ∈ KT,i
max,

b. s ∈ W ′′ iff s is part of a transition inR′′
2AB

,

c. V ′′ = V|W′′ , and̺′′ = ̺|W′′ .

For the two formal definitions above consider the following example.

Example 3.2 Take the simple actionb with the trivial treeT (b) which has only one edge

r
{b}
−→ t1. We have discussed above that this tree is strongly simulated by the structure w.r.t.

nodes1 of the normative structure in Fig. 4. The maximal simulatingstructureKT (b),s1
max is the

substructure obtained fromKN by deleting the statess2 ands3 (and the associated transitions

too) as well as the transitions4
b

−→ s1. The non-simulating remainder structure is obtained
from KN by deleting the worldss3, s4, ands5. For the more complex action from Fig. 2 the
non-simulating remainder is the substructure that has onlythe worldss1 ands5 and the transition
between them. 2

Intuitively, the maximal simulating structure captures all and only those transitions
from the initial normative structure that enter in the simulation relation w.r.t. a tree.
The non-simulating remainder structure captures all thosetransitions that do not enter
the simulation relation but that somehow relate to (or simulate) the complement of
the tree (or only that part of the complement tree that is in the normative structure
that we talk about). Anticipating the semantics, the maximal simulating structure is
used for marking states with◦ marks, whereas the non-simulating remainder is used to
determine which state should necessarily not be marked. In few words, the maximal
simulating structure has all and only those transitions from the normative structure that

4Note thatt′ S s′ actually follows from the first two requirements (tS s∧ γ ⊆ γ′). We mention it in the
definition for the convenience of the reader, because it is important to keep in mind that the states that the
definition recursively visits are all simulating some node in the tree.
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KN , i |= ϕ iff i ∈ V(ϕ).
KN , i 6|=⊥
KN , i |= C1 → C2 iff wheneverKN , i |= C1 thenKN , i |= C2.
KN , i |=OC(α) iff T (α) Si KN , and

∀t
γ
−→t′ ∈ T (α), ∀s

γ′

−→s′ ∈ KN s.t.tS s ∧ γ ⊆ γ′,
∀a ∈ AB if a ∈ γ then◦a ∈ ̺(s′), and

∀s
γ′

−→s′ ∈ K
T (α),i
rem ,

∀a ∈ AB if a ∈ γ′ then◦a 6∈ ̺(s′), and
KN , s |= C ∀s ∈ KN with tSs s ∧ t ∈ leafs(T (α)).

KN , i |= FC(α) iff T (α) S̃i KN then
∀σ ∈ T (α) a final path s.t.σ SiKN ,

∀t
γ
−→ t′ ∈ σ, ∀s

γ′

−→ s′ ∈ KN with tS s ∧ γ ⊆ γ′,
∀a ∈ AB if a ∈ γ′ then•a ∈ ̺(s′) and

KN , s |= C ∀s ∈ KN with tS s ∧ t ∈ leafs(σ).
KN , i |= P (α) iff T (α) Si KN , and

∀t
γ
−→ t′ ∈ T (α), ∀s

γ′

−→ s′ ∈ KN s.t.tS s ∧ γ ⊆ γ′,
∀a ∈ AB if a ∈ γ then•a 6∈ ̺(s′).

Table 2: Semantics for the deontic modalities over synchronous actions.

enter the simulation relation. The non-simulating remainder has those transitions that
did not enter in the simulation relation but which are directly connected to the maximal
simulating structure.

We have now all the necessary definitions to introduce the semantics of our deontic
modalities over synchronous actions.

Definition 3.6 (semantics).We give in Table 2 a recursive definition of thesatisfaction
relation |= of a formulaC w.r.t. a pointed normative structure〈KN , i〉; it is written
KN , i |= C and is read as “C is satisfiedin the normative structureKN at statei”.
We writeKN , i 6|= C wheneverKN , i |= C is not the case. We say that “C is globally
satisfiedin KN ”, and write KN |= C iff ∀s ∈ KN , KN , s |= C. A formula is
satisfiableiff ∃KN , ∃s ∈ KN s.t.KN , s |= C. A formula isvalid (denoted|= C) iff
∀KN ,KN |= C.

The propositional connectives have the classical semantics. More interesting and
particular to our logic is the interpretation of the deonticmodalities.

ForOC the semantics has basically two parts:

• The first part of the semantics is the interpretation of the obligation.

– The first line says how to walk on the structure depending on the tree of
the actionα. The test for simulation must succeed, which means that all
the tree of the action is found in the structure also. The simulation relation
is used because in the structure there may be transitions labeled with ac-
tions that are greater than the actions inα, which intuitively, if we do these
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actions then the obligation ofα is still respected. The simulation relation
also takes care that all the choices of an action appear as transitions in the
structure. We cannot specify an obligation of an action thatdoes not appear
as the label of some transition in the normative structure; this would mean
that the action is forbidden (as we see further).

The simulation relation makes sure that in the normative structure however
one would choose some transition that has label respecting the action, from
the state reached the simulation of the rest of the action cancontinue (this
is from the second condition in the Definition 3.3 of simulation). We do
not require only that it exists some such choice of transition (i.e., only the
first condition of Definition 3.3), but that with any such goodchoice one
can continue to simulate the rest of the action.

– The second and third lines mark all the transitions (their ending states) of
the structure which simulate edges from the tree with markers ◦a corre-
sponding to the labels of the simulated edge. This is needed both for the
proof of the synchrony propertyOC(α) ∧OC(β)→ OC(α×β) and also in
provingOC(α)→ ¬FC(α) which relates obligations and prohibitions.

In this part of the semantics we work in the maximal simulating structure.
This part is where is checked that the transitions are actually obligatory (or
precisely, part of their labels, because we are interested only in the labels
of the tree, which may be smaller than those in the maximal simulating
structure). Intuitively, we require that all simulating transitions be labeled
by ◦ markers because otherwise it would mean that there are ways to do
the next step of the action which the normative structure sees as not being
obligatory, but they could even be forbidden.

– Lines four and five ensure that no other reachable relevant transitions of
the structure (i.e., from the non-simulating remainder structure) are marked
with obligation markers◦. This is essential in the proof of the key Lemma
A.1 (see appendix)5 of the synchrony result given in Theorem 3.21.

Because of this last requirement we can have several unwanted implications
(as are called later in Proposition 3.25) an example being that the obligation
of a choice of actions does not imply that one of the choices isobligatory
alone (here this part of the semantics plays a crucial role).

Intuitively we have only one single obligation of a big complex action and
all the transitions in the normative structure that simulate the tree of this
big action are marked according to the lines two and three from before.
Lines four and five say that anything else outside this big action should not
be marked with◦ markers. From the unwanted implications of Proposi-
tion 3.25 one can see that there is little compositionality when it comes to
obligations. A compositional result forCL is that of Theorem 3.21 which
puts together two contract clauses, each specifying the obligation of some

5All lemmas and corollaries starting with ’A’ are auxiliary results presented (together with their proofs)
in the appendix.
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action, into one single obligation of a bigger action that comes from the
synchronous composition of the two smaller actions (i.e., the two actions
must be done at the same time).

• The second part is just the last line and states that if the obligation is violated
(i.e., the complementα of the action is performed) then the reparationC should
hold at every possible violating state. This part of the definition is similar to
the definition of the box modality of PDL only that here it is applied to the
complement of the action. We look at the leafs of the treeT (α) and because the
α contains all possible violating actions it is enough to use strong simulation and
thus look in the normative structure for exactly the same labels as the ones in the
tree of the complement action).

For theFC modality:

• We use partial simulationS̃i in order to have our intuition that if an action is
not present as a label of a transition of the model then the action is by default
considered forbidden.

• In the second line we considerall final paths in order to respect the intuition that
prohibition of a choice must prohibit all, i.e.,F (a + b) = F (a) ∧ F (b). Note
that we are interested only infinal paths simulated by the structure because for
the other paths some of the transitions are missing in the structure and thus there
is some action on the sequence which is forbidden.

• In the third line we consider all the edges on each final path inorder to respect
the intuition that forbidding a sequence means forbidding all the actions on that
sequence. For a chosen edge we look forall the transitions of the normative
structure from the chosen node which have a labelgreaterthan the label of the
edge; this is in order to respect the intuition that forbidding an action implies
forbidding any action that is greater, i.e.,F (a)→ F (a×b). For the same reason
we need to mark with• markers corresponding to the label of the transition and
not to the label of the edge of the tree, as we do for obligations.

• The last line states that if the prohibition is violated thenthe reparationC must
hold in all the states where the violation is observed. A violation of a prohibi-
tion is observed at the states simulating the leaf nodes of the final paths that we
consider. This is because in these states it means that we executed the whole
complex actionα that was prohibited (precisely, one of its branches).

The semantics ofP specifies that• markers should not be present in order to cap-
ture the principle thatwhat is not forbidden is permitted. The semantics ofO, P , or
F hint at the trace-based semantics of Process Logic [33] and to some extent to the
modalities of [15].

Note that we need two kinds of markers:◦ and•. The• marker is for determining
which actions are prohibited. The missing of the• marker is for permissions. Whereas
the◦ marker (which requires that the forbid marker is not present) is for obligations.
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Example 3.3 Consider the normative structure from Fig. 4. In states3 the obligationO(p)6

holds. In fact we could have any reparation because there is no other transition represented in this
normative structure, and therefore, the last condition in the semantics ofO is trivially satisfied
(i.e.,O⊤(p) andOC(p) also hold for any contract clauseC). But the fact that evenO⊥(p) holds
tells us that in this state there is a categorical obligation. This showed that a particular state is
characterized by all the formulas that hold at that state.

In the same structure at states1, O⊤(p) does not hold (i.e.,s1 6|= O⊤(p)) because there are
other outgoing transitions froms1 that are marked with◦. For the same reasons1 6|= O⊤(d×n).
But alsos1 6|= O⊤(p×b) because the◦b is not marking states4. In states1 we actually have an
obligation of a choice:s1 |= O⊤(p + d×n). There are other more informative formulas that
hold in s1, formulas that talk about the possible reparations in case of violating this obligation:
s1 |= O(φ∧φ′)(p+ d×n).

In the same states1 we have also a prohibition:F⊤(b) because states5 is marked by•b.
Actually the same reparation as before can be attached to this prohibition also:s1 |= F(φ∧φ′)(b).

3.1. Decidability for deontic modalities

We prove that the deontic modalities over synchronous actions have thetree model
property. It was argued [34, 35] that the tree model property is an morebasic property
of many modal logics than decidability is. Decidability proofs for modal logics are
often based on a tree model property; and this is the method that we use in this section.
There are several ways of proving decidability starting from a tree model property. In
this section we use theselectionmethod. Moreover, there are modal logics that have
the tree model property but are not decidable. In Section 4 weshow that the general
CL logic has the tree model property, but we do not manage to showfull decidability.

The road-map for this section is to show first that the deonticmodalities as defined
above have the tree model property (in Corollary 3.10). Thenwe use the method of
selectionto show that this tree can be pruned in such a way that we are left with a finite
tree (cf. Lemma 3.15) that is related to the initial structure and formula in the way that
if the formula holds in the initial structure at some node then it will also hold in the
root of this finite tree (i.e., Theorem 3.9). From this we get the result of decidability
of satisfiability for the deontic modalities ofCL; i.e., we can check if a formula is
satisfiable, and this amounts to checking all such finite trees related to the formula in
question.

Intuitively, the tree model property says that instead of working with arbitrary
Kripke-like models, which have a graph structure, it is enough to work with models
that have a tree-like structure. Trees are much simpler and well behaved structures
than graphs are. Moreover, there are well established techniques for modal logics and
trees.

Definition 3.7. A pointed tree structure〈TKN , ε〉 = (WT , RT
2AB

,VT , ̺T ), is a pointed
normative structure〈KN , s〉 satisfying the restrictions of Definition 2.9 and:

a) the nodes are characterized by strings over natural numbersWT ⊂ N
∗, with

s = ε;

6Recall that we omit the reparation when this one is just⊥.
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b) for each labelα ∈ 2AB the partial functionRT
2AB

(α) : WT → WT respects
the restriction:RT

2AB
(α)(x) = xn wherex, xn ∈ WT andn ∈ N;

c) for anyα 6= β ∈ 2AB thenRT
2AB

(α)(x) 6= RT
2AB

(β)(x) for anyx ∈ WT .

Condition a) above labels each state with a (unique) string over natural numbers.
Condition b) guarantees that the structure contains no cycles, and c) that two transi-
tions starting in the same state and with different labels (actions) go to different states.
The definition is for standard tree structures (with labels on their edges) but the nota-
tion used is adapted to the proofs below (the notation is taken from similar proofs of
decidability, e.g. in [17, 36]).

The following lemma shows that it is always possible to obtain a pointed tree struc-
ture from a given pointed normative structure (it is an adaptation of the standard un-
folding construction).

Lemma 3.8 (tree model).Given a pointed normative structure〈KN , i〉 we can con-
struct an associated tree structure〈TKN , ε〉.

Proof : The technique that we use is known in modal logics as the tree unfolding of a
Kripke structure [37, 17]. For a pointed normative structure〈KN , i〉 = (W , R2AB ,V , ̺)
we can view the set of worldsW = {0, 1, 2, . . .} to be the natural numbersN; and we
define the setWT [i] ⊂ N

∗ to be the set of finite paths starting fromi. Moreover, we
enrich the paths to contain also the labels by which the path was formed. For this we in-
terplace between the nodes labels from2AB . More precisely,i is considered the empty
stringε, the paths of depth one areεαs such thats ∈ W andi

α
−→ s is a transition

in KN . We define a functionρ : WT [i] → W which assigns to each path the state
in which the path ends; e.g.ρ(εαs′βs′′) = s′′. Note that two pathsxαs andxβs are
regarded as different. Consider the setW [i] = {ρ(x) | x ∈ WT [i]} of states reachable
(by any path) from the nodei. The functionρ :WT [i]→W [i] is a surjection therefore
it exists the corresponding functionρ−1 which returns sets of traces fromWT [i].

For the pointed normative structure〈KN , i〉 we construct the pointed tree structure
〈TKN , ε〉 = (WT [i], RT

2AB
,VT , ̺T ). The functionRT

2AB
assigns a partial function

RT
2AB

(α) : WT [i] → WT [i] to eachα (we write the partial functions as sets of pairs
of argument/value) which is defined as:

RT
2AB

(α) = {(x, xαs) | (ρ(x), s) ∈ R2AB (α)}.

The valuation functionVT is defined in terms ofV :

VT (φ) = ρ−1(V(φ)).

Above, we used the standard pointwise extension of the function ρ−1 over a set of
elements as argument. The marking function̺T is defined in terms of̺:

̺T (x) = ̺(ρ(x)).

It is easy to see that〈TKN , ε〉 is a tree structure with root nodeε. We can check that
〈TKN , ε〉 is a normative structure. The restrictions imposed by Definition 3.7 on the
functionRT

2AB
are met. Precisely, for any of the partial functionsRT

2AB
(α) it cannot
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be the case thatRT
2AB

(α)(x) = yαs wherex 6= y (i.e., the first restriction is met).
Take now two different actionsα 6= β then it cannot be the case thatRT

2AB
(α)(x) =

RT
2AB

(β)(x) becauseRT
2AB

(α)(x) = xαs 6= xβs′ = RT
2AB

(β)(x) even ifs = s′. 2

The following result relates satisfiability of a contract intrees and normative struc-
tures. It is the essence of the tree model property. Intuitively, if a formula holds at a
state in a normative structure then the formula holds at the root of the tree obtained
from the unfolding of the normative structure starting withthat particular state.

Theorem 3.9. For a pointed structure〈KN , i〉 we have:

TKN , x |= C iff KN , ρ(x) |= C (1)

TKN , ε |= C iff KN , i |= C (2)

Proof: The proof of (2) follows from (1) by replacingx with ε (and thusρ(ε) = i). The
proof of (1) is done by induction on the structure of the formula C. It has lengthy but
easy cases as it needs to prove each of the conditions in the definitions of the semantics
of the deontic modalities.

Basis: The case for whenC = ⊥ is trivial. The second base case is whenC = φ.
ThenTKN , x |= φ iff x ∈ VT (φ) which means thatρ(x) ∈ ρ(VT (φ)). By the
definition ofVT from Lemma 3.8 it means thatρ(x) ∈ ρ(ρ−1(V(φ))) which isρ(x) ∈
V(φ). This is equivalent toKN , ρ(x) |= φ and the proof is finished.

Case forC = P (α). We prove thatTKN , x |= P (α) iff KN , ρ(x) |= P (α).
First we prove thatT (α) Sx TKN iff T (α) Sρ(x) K

N , which is equivalent to
proving r S x iff r S ρ(x), wherer is the root ofT (α). Because we use this re-
sult in several places we refer to it as thesimulation result. The Definition 3.3 says
that from r S x we have that∀r

α×
−→ t ∈ T (α) then ∃x

γ
−→ xγs ∈ TKN s.t.

α× ⊆ γ andtS xγs (where, throughout this proof, we considers ∈ N). More pre-
cisely,x

γ
−→ xγs ∈ TKN means that(x, xγs) ∈ RT

2AB
(γ), which, by the definition

of RT
2AB

from Lemma 3.8, implies that(ρ(x), s) ∈ R2AB (γ). Thus we have that

∀r
α×
−→ t ∈ T (α) then∃ρ(x)

γ
−→ s ∈ KN s.t.α× ⊆ γ. By applying a recursive

reasoning withtS xγs we also get thattS s in KN . The recursive reasoning is pos-
sible because the trees associated to deontic actions are finite, i.e., have finite height.
This means that eventually we reach a leaf node in the tree (say t); and any leaf node is
trivially simulated by any state (as from a leaf there is no edge to look at). To finish the
simulation result we prove the second condition from the definition of the simulation
relation. We usereductio ad absurdumand assume∃ρ(x)

γ
−→ s ∈ KN with α× ⊆ γ

for which tS s is not the case. From Lemma 3.8 we know that∃x
γ
−→ xγs ∈ TKN ,

and fromT (α) Sx TKN we also know that∀x
γ
−→ xγs ∈ TKN with α× ⊆ γ we

havetS xγs which, by a similar recursive argument, means thattS s, hence the con-
tradiction. The proof for the right to left direction is analogues, using Lemma 3.8.

We continue to prove the second condition from the definitionof the semantics of
P ; i.e.

∀r
γ
−→ t ∈ T (α), ∀x

γ′

−→ xγ′s ∈ TKN s.t.r S x ∧ γ ⊆ γ′
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then∀a ∈ AB if a ∈ γ then•a 6∈ ̺T (xγ′s)
⇔

∀r
γ
−→ t ∈ T (α), ∀ρ(x)

γ′

−→ s ∈ KN s.t.r S ρ(x) ∧ γ ⊆ γ′

then∀a ∈ AB if a ∈ γ then•a 6∈ ̺(s).

Consider the implication “⇒”. For an arbitraryρ(x)
γ′

−→ s ∈ KN we know from

Lemma 3.8 that∃x
γ′

−→ xγ′s ∈ TKN and from the hypothesis we know that∀a ∈ AB

if a ∈ γ then•a 6∈ ̺T (xγ′s). By the definition of̺ T , from Lemma 3.8, we know that
̺T (xγ′s) = ̺(ρ(xγ′s)) = ̺(s), and thus, we have our conclusion∀a ∈ AB if a ∈ γ

then•a 6∈ ̺(s).

Consider now “⇐”. For an arbitraryx
γ′

−→ xγ′s ∈ TKN we know that we have

∃ρ(x)
γ′

−→ s ∈ KN with ∀a ∈ AB if a ∈ γ then•a 6∈ ̺(s). Consider now, byreductio
ad absurdum, that∃a ∈ AB with a ∈ γ and•a ∈ ̺T (xγ′s). By the definition of̺ T

we have that•a ∈ ̺(s) which is a contradiction with the hypothesis. Thus the case is
finished.

Inductive step:
Case forC = OC(α).7 We prove thatTKN , x |= OC(α) iff KN , ρ(x) |= OC(α)

under the inductive hypothesis∀x ∈ TKN thenTKN , x |= C ⇔ KN , ρ(x) |= C.
We have proven thatT (α) Sx TKN iff T (α) Sρ(x) K

N in thesimulation result.
We now prove the second requirement from the definition of thesemantics of obliga-
tions, i.e., we prove the double implication:

∀r
γ
−→ t ∈ T (α), ∀x

γ′

−→ xγ′s ∈ TKN s.t.r S x ∧ γ ⊆ γ′

then∀a ∈ AB if a ∈ γ then◦a ∈ ̺T (xγ′s)
⇔

∀r
γ
−→ t ∈ T (α), ∀ρ(x)

γ′

−→ s ∈ KN s.t.r S ρ(x) ∧ γ ⊆ γ′

then∀a ∈ AB if a ∈ γ then◦a ∈ ̺(s).

The proof is similar to what we did for permissions. We consider only the “⇒”

implication. For an arbitraryρ(x)
γ′

−→ s ∈ KN we know that we havex
γ′

−→ xγ′s ∈
TKN and from the hypothesis we know that∀a ∈ AB if a ∈ γ then◦a ∈ ̺T (xγ′s).
By the definition of̺ T we have that∀a ∈ AB if a ∈ γ then◦a ∈ ̺(s).

To prove the third condition from the definition of the semantics ofOC(α) we prove
the following double implication:

∀x
γ
−→xγs ∈ TK

T (α),x
rem then∀a ∈ AB if a ∈ γ then◦a 6∈ ̺T (xγs)

⇔
∀ρ(x)

γ
−→s ∈ K

T (α),ρ(x)
rem then∀a ∈ AB if a ∈ γ then◦a 6∈ ̺(s).

We do the proof of “⇒” using thereductio ad absurdumprinciple (the proof of
“⇐” is analogous). Suppose that∃ρ(x)

γ
−→s ∈ K

T (α),ρ(x)
rem and∃a ∈ AB with a ∈ γ

7For notation simplicity we use the same symbolC, but theC in the subscript ofO, the reparation, is not
the same as the one on the left of the equal sign, which comes from the initial enunciation of the theorem.
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s.t.◦a ∈ ̺(s). This implies that there also exists the transitionx
γ
−→ xγs ∈ TKN for

which, from the definition of̺ T from Lemma 3.8, it also holds that◦a ∈ ̺T (xγs) =
̺(s). This requires two subcases:

a. x
γ
−→ xγs ∈ TK

T (α),x
rem which, from the precondition of the implication, means

that◦a 6∈ ̺T (xγs), resulting in a contradiction;

b. x
γ
−→ xγs 6∈ TK

T (α),x
rem . From the assumption∃ρ(x)

γ
−→ s ∈ K

T (α),ρ(x)
rem , by

way of Definition 3.5, it means thatρ(x) ∈ K
T (α),ρ(x)
max and∃ρ(x)

α×
−→ s′ ∈

K
T (α),ρ(x)
max . This implies thatx ∈ TK

T (α),x
max and∃x

α×
−→ xα×s

′ ∈ TK
T (α),x
max ,

which, together with the assumption of this case and by way ofDefinition 3.5,
means thatx

γ
−→ xγs ∈ TK

T (α),x
max . By the Definition 3.4 of the maximal

simulating structure it implies that∃r
α′

×

−→ t ∈ T (α) s.t. r S x ∧ (α′
× ⊆ γ) ∧

tS xγs. By the reasoning we did at the beginning for theT (α) Sx TKN we
conclude thatr S ρ(x) ∧ (α× ⊆ γ) ∧ tS s which means thatρ(x)

γ
−→ s ∈

TK
T (α),ρ(x)
max . Thus we have a contradiction.

We need to prove the last condition from the definition of the semantics ofOC(α);
i.e., we prove the double implication:

TKN , x |= C ∀x ∈ TKN with tSs x ∧ t ∈ leafs(T (α))
⇔
KN , s |= C ∀s ∈ KN with tSs s ∧ t ∈ leafs(T (α)).

Here we use the induction hypothesis. We prove only the forward implication by
reductio ad absurdumand assume that∃s ∈ KN s.t. s is reached by followingex-
actly (because of the strong simulation conditionSs ) one final path in the tree of the
complemented actionT (α). For this state we assumeKN , s 6|= C. We have, thus, the

sequence of transitions inKN : r
α1

×

−→ 1, 1
α2

×

−→ 2, . . . , n − 1
αn
×

−→ n (recall that we
consider the states ofKN to be labeled with natural numbers) wheren = s. For each

of these transitions there is a transition inTKN : ∃ε
α1

×

−→ εα1
×1, ∃εα1

×1
α2

×

−→ εα1
×1α

2
×2,

. . . , ∃εα1
× . . . n − 1

αn
×

−→ εα1
× . . . αn

×n. From this and the left part of the implica-
tion we have thatTKN , εα1

× . . . αn
×n |= C. By the inductive hypothesis it means that

KN , ρ(εα1
× . . . αn

×n) |= C which isKN , n |= C (or KN , s |= C). Hence, the contra-
diction and the end of the proof.

For the natural obligations from Definition 3.19 in the next section we need to treat
the naturalness condition too; this means proving the following double implication:

∃γ s.t.T (α×γ)
.
= TK

T (α),x
max

⇔
∃γ′ s.t.T (α×γ′)

.
= TK

T (α),ρ(x)
max .

We actually prove thatTKT (α),x
max

.
= TK

T (α),ρ(x)
max which implies thatγ = γ′

solves the double implication. Note first thatTK
T (α),ρ(x)
max is the tree unfolding of

the K
T (α),ρ(x)
max maximal simulating structure ofKN w.r.t. the stateρ(x), whereas,

28



TK
T (α),x
max is the maximal simulating structure coming from the tree unfolding ofKN

w.r.t. the stateρ(x). We use a recursive reasoning working on levels of the two trees,
beginning at the first level of edges, those starting in the roots of the two trees.

Pick some arbitrary edgeε
γ
−→ εγs ∈ TK

T (α),ρ(x)
max for which we want to find a

corresponding edge inTKT (α),x
max . This means that it existsρ(x)

γ
−→ s a transition in

K
T (α),ρ(x)
max .8 Becausex is the root ofTKT (α),x

max we can find the edgex
γ
−→ xγs ∈

TK
T (α),x
max , which is the edge we were looking for.
For the forward direction pick some arbitrary edgex

γ
−→ xγs ∈ TK

T (α),x
max . This

means that we have an edgeρ(x)
γ
−→ s ∈ K

T (α),ρ(x)
max which means that we have the

desired edgeε
γ
−→ εγs ∈ TK

T (α),ρ(x)
max , asρ(x) = ρ′(ε).

The case forC = FC(α) follows similar reasoning as forOC only that care must be
taken when dealing with the partial simulation relationS̃ .

The case for the propositional implicationuses simple structural induction. 2

Note that we have proven Theorem 3.9 both for generalCL (i.e., with general
obligations) and forCL restricted to natural obligations, as in the next section, i.e.,
where we can reason only about natural obligations as the semantics constrains us to.

Corollary 3.10 (tree model property).
If C has a modelKN then it has a tree modelTKN .

Proof: This follows immediately from equation (2) of the Theorem 3.9 which says that
if a formulaC is true in a statei of a modelKN then there exists a tree modelTKN ,
as in Lemma 3.8, in which the formula is true at stateε. 2

Next we prove that the deontic modalities alone have thefinite model property.
There are several techniques for proving decidability of modal logics by establishing
a finite model property; where a known one is calledfiltration. Filtration is especially
used for dynamic logics, like the PDL, from which we borrow the dynamic box modal-
ity in CL in the next section. However, it is rather hard to use the filtration technique
in our case. In PDL the clever Fischer-Ladner closure was needed so to determine the
subformulas of a dynamic modality with a complex action inside (e.g.[a · (b + c)]ϕ).
In our case we do not know what are subformulas of an obligation of a complex action
like OC(a · (b + c)). We use, instead, theselectiontechnique for proving the finite
model property [36, sec.2.3]. Selection is known especially for modal logics where
a tree model property has been established, like is our case.The basic idea is that
given a possibly infinite model, the selection technique selects and removes (possibly
infinite) parts of this model eventually ending up with a finite model. This selection
and removing is done carefully so that the satisfiability of the formula of interest is not
broken.

8Note that there should be twoρ functions, one coming from the unfolding ofKN (which is the one
in the double implication) and anotherρ′ function (which is not visible) coming from the unfolding ofthe

K
T (α),ρ(x)
max . Actually hereρ′(ε) = ρ(x).
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Before proving the finite model property (Theorem 3.16) we give some necessary
definitions and prove auxiliary results.

Definition 3.11 (action length). The length of an actionα is defined (inductively) as
a functionl : AD → N from deontic actions to natural numbers.

• l(1) = l(0) = 0,

• l(a) = 1, for any basic actiona ofAB ,

• l(α×β) = l(α+ β) = max(l(α), l(β)),

• l(α · β) = l(α) + l(β).

The length function counts the number of actions in a sequence of actions given
by the· constructor. It returns the maximum from all the choices in an action, i.e., the
length of the maximal sequence.

The following proposition states that complementing a (complex) action does not
increase its length.

Proposition 3.12. For any actionα we have l(α) ≤ l(α).

Proof : A careful inspection of the Definition 2.7 of action complement easily shows
thatα does not add· combinators at bigger length than those in the canonical form ofα.
The complement operation is applied recursively and at eachrecursive step it generates
paths of length1 for paths of length1 or greater in the originalα; or it generates paths
of length1+ length generated in the next recursive step. This happens for each· found
in α. Therefore,α cannot have paths of greater length than the paths inα.

It remains to show that the length of an action is greater thanthe length of its canon-
ical form. Because to obtain the canonical form of an action it is enough to apply the
axioms of Table 1 except (8), cf. Theorem 2.5, we check that for each axiom the left ac-
tion has length greater or equal to the right action (as the axioms are directed from left
to right). This check is easy and we skip details. For axioms (1), (2), (10), (11) the left
hand side (lhs) has the same length as the right hand side (rhs) because of the associativ-
ity and commutativity properties of themax operation on natural numbers. Also equal
lengths of the actions on both sides of the axioms (4) and (14)comes from idempotence
of max. For (5) use associativity of+ over natural numbers. Also equality for axioms
(9) and (15), (16) comes from the distributivity of+ overmax and ofmax overmax,
respectively. For (3), (12), and (6) use the facts that the number0 is the neutral element
for respectivelymax and+. For axiom (17) we observe that the length of theα× and
β× is 1 and also ofα××β×; from these,max(1+ l(α), 1+ l(β)) = 1+max(l(α), l(β)).
The only two axioms for which the length of the lhs is strictlygreater that the length
of the rhs are (7) and (13), as it is clear that the right hand sides have length0 which is
less than whatever length the actions on the left hand side have. 2

We now relate the length of an action with the height of its tree.

Corollary 3.13. For any actionα we have h(T (α)) ≤ h(T (α)) = l(α).
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Proof: This is a corollary of both Theorem 2.10 and Proposition 3.12. 2

Definition 3.14 (depth of formula). We define thedepthof a formula inductively as a
functiond from formulas to natural numbers:

• d(φ) = d(⊥) = 0;

• d(C1 → C2) = max(d(C1), d(C2));

• d(P (α)) = l(α);

• d(OC(α)) = d(FC(α)) = l(α) + d(C).

Example 3.4 Consider the actionδ = p · b+ (d×n) · p · p with its corresponding tree pictured
in Fig. 2. The length ofδ is 3, equal to the length of its longer right branch. The tree in Fig. 2 has
clearly hight also3. For a formula likeOF⊥(d)(δ) the depth is3 + 1, being equal to the length
of δ plus the depth ofF⊥(d) which isl(d) = 1 plus the depth of⊥ which is0. 2

Lemma 3.15. Take a formulaC with depthk. If TKN , ε |= C thenC holds in the root
of the tree structure〈TKN , ε〉 restricted to paths of maximum depthk (i.e., where all
nodes of depth greater than are removed).

Proof: We use induction on the structure of the formulaC.

Base case: The proof for formulas⊥ andφ which have depth0 is simple as we
need to inspect only the root nodeε therefore we need only nodes of depth0 in the tree
structure.

For the formulaP (α) which has depthl(α) we need to inspect only those nodes
of 〈TKN , ε〉 that respect the simulation relation. Therefore, the maximum depth of a
node is the maximum length in the final paths ofT (α), and thus the maximum depth
of the nodes in〈TKN , ε〉 is h(T (α)) which, by Corollary 3.13, isl(α).

Inductive step: WhenC is of the formC1 → C2 the depth of the formula is the
maximum of the depths of the two subformulas. The semantics says that we need
to check first ifC1 holds, which by the inductive hypothesis it means that we need a
subtree of depth at mostd(C1). If C1 holds we need to check alsoC2 which, by the
inductive hypothesis, requires also a subtree of depth at mostd(C2). Overall, we need
to check a subtree of〈TKN , ε〉 with depth at mostmax(d(C1), d(C2)).

The proof for the formulasOC(α) andFC(α) is similar and we treat here only the
proof for obligations. The semantics ofOC(α) says that we need to check first the
obligation alone which requires nodes of depth at mosth(T (α)) = l(α) because of the
simulation relation. Secondly, we need to check that the reparationC holds at the states
corresponding to the leaf nodes of the complementα. By Corollary 3.13 we know that
these states are at depth at mostl(α). The induction hypothesis says that to checkC it is
required a tree of height at most the depthd(C). Therefore, to checkOC(α) it requires
to check a subtree of〈TKN , ε〉 where the nodes have a depth at mostl(α) + d(C). 2

Based on the above auxiliary results we can prove now the finite model property.
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Theorem 3.16 (finite model property). If a formula has a model then it has a finite
model.

Proof : We can work equivalently in pointed structures and then we need to prove
that if a formula is satisfied in a pointed structure then it issatisfied in a finite pointed
structure. Take a formulaC of depthk which is satisfiable in the pointed structure
KN , i. By Corollary 3.10 we know thatC is satisfied in the tree-like pointed structure
TKN , ε. Note that the tree might have both infinite depth and infinitebranching.

By Lemma 3.15 we put a bound on the depth of the tree which is related to the
formula. Because we work with deterministic structures andbecause the set of labels
2AB is finite we have a guaranteed finite branching. Therefore themodel is finite. 2

As a corollary of the above theorem we have a (relative) decidability result.

Corollary 3.17 (decidability).

a. The logic with general obligations as in the semantic Definition 3.6 is decidable.

b. The logic with natural obligations is decidable iff the naturalness constraint is
decidable.

As a side remark, we have proven the tree model property in Theorem 3.9 for gen-
eral obligations as well as for natural obligations. Therefore, in both cases it is enough
to check finite trees for satisfiability, but the difference is that when checking for natural
obligations we need to test that the naturalness constraintis satisfied. The decidability
of whether an actionγ satisfies the naturalness constraint (cf. Propositional 3.20) has
been an open problem for a while. Recent results in [38] (see details in the technical re-
port [39]) show an algorithm to find a suitableγ if one exists (i.e., a decision procedure
is given).

3.2. Properties of the deontic modalities

The semantics of the deontic modalities is rather involved;it is based on an alge-
braic formalism for the actions which are interpreted as rooted trees. The information
in the trees (compared to sets of traces [33]) is used by the particular notion of sim-
ulation relation to know how to walk on the normative structure in the search of the
markings to determine the truth value of the deontic modality. The rest of the compli-
cations in the semantics are necessary for capturing several intuitive properties of the
deontic modalities which we discuss in this section.

The following validities are the counterparts of the ones found in SDL only that here
they are in an ought-to-do setting where the deontic modalities are applied over actions.
The following examples give intuition for the logical validities of Proposition 3.18
(taken from [40] ):

• Obligation of an action implies that the action is permitted:
|= OC(α)→ P (α)

E.g.: “Client is obliged to pay” then “Client has the right topay”.
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• Permission of performing an action implies that the action is not forbidden:
|= P (α)→ ¬FC(α)

E.g.: “Provider has the right to alter personal data” then “Provider is not forbid-
den to alter personal data”.

• If two action expressions represent the same action then theobligation of one
action should imply the obligation of the other action:

if α = β then |= OC(α)↔ OC(β)

E.g.: “pay or delay” is the same as “delay or pay” then “Clientis obliged to pay
or delay” should be the same as “Client is obliged to delay or pay”.

• The obligation of the violating action cannot appear in a contract (|= ¬OC(0));
obligation of terminating the contract can be modeled. The obligation to do
nothing can be trivially inserted in any contract (|= OC(1)).

Proposition 3.18 (validities). The following statements hold:

|= ¬OC(0) (3)

serial |= OC(1) (4)

|= P (α)→ ¬FC(α) (5)

|= OC(α)→ P (α) (6)

if α = β then |= OC(α)↔ OC(β) (7)

|= OC(α)→ ¬FC(α) (8)

Proof : For the proof of (3), i.e.,|= ¬OC(0), we need to show that there is no model
which makesOC(0) true. This is because of the definition of¬OC(0) asOC(0) →⊥
which is true only ifOC(0) is false. Byreductio ad absurdumsuppose that it exists
a model which makesOC(0) true. This means (by the definition of the semantics of
O) that the tree interpreting0 must be simulated by the model. But this is not possible
because of the special labelΛ appearing in the tree of0 which does not appear in the
labels of the normative structures.

To prove (4), i.e., thatOC(1) is valid in theserial normative structures, take any
normative structure that respects the seriality conditionfrom standard modal logics;
i.e., that from each state there exists an outgoing transition. The tree interpreting1
is trivially simulated by any normative structure because the only edge of the tree is
labeled with the empty set and thus any transition of the structure simulates the edge.
The second condition in the semantics ofO is satisfied as there is no basic labela in the
label of the edge. It is clear that any edge on the first level ofthe structure enters into
the maximal simulating structure and therefore the non-simulating remainderKI(1),i

rem

is empty, and the third condition is trivially satisfied. Because1 = 0 then there is no
states to satisfy the requirements of the last condition and thus itis trivially satisfied
too.

Note thatOC(1) is valid only in the serial normative structures, i.e., having from
each state at least one outgoing transition. We consider that seriality is natural to have
because in order to be able to say that something is obligatory that something must
exists in the structure (i.e., the action must label some transition, even in the case of the
empty action1 and the empty label{ } that models it).

For the proof of (6), i.e.,|= OC(α) → P (α), take an arbitrary pointed normative
structureKN , i which makesOC(α) true. This means thatT (α) SiKN . This is the
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first part from the semantics ofP (α). Moreover, from the semantics ofOC(α) we have

that∀t
γ
−→ t′ ∈ T (α), ∀s

γ′

−→ s′ ∈ KN s.t. tS s ∧ γ ⊆ γ′ then∀a ∈ γ we have
◦a ∈ ̺(s′). Because of the restriction on the marking function we get∀a ∈ γ we have
•a 6∈ ̺(s′). This makes the second requirement in the semantics ofP (α).

For the proof of (5), i.e.,|= P (α) → ¬FC(α), we usereductio ad absurdumand
assume that it exists a pointed structureKN , i which satisfiesP (α) and alsoFC(α).
From the semantics ofP , knowing that S ⊆ S̃ , we conclude thatT (α) S̃i KN .
Now take any final pathσ in the tree ofα; from the semantics ofP it holds that
σ Si KN . Moreover, for any edget

γ
−→ t′ ∈ σ it holds, by the semantics ofP , that

∀s
γ′

−→ s′ ∈ KN with tS s then∀a ∈ γ, •a 6∈ ̺(s′). But the semantics ofFC(α)
requires that∀a ∈ γ′ then•a ∈ ̺(s′) which is not possible asγ ⊆ γ′ (i.e., it exists at
least one•a 6∈ ̺(s′) with a ∈ γ′).

To prove (7) notice that the semantics ofO is based on the interpretation of the
actions as trees. Therefore, because the actions are equal,the tree interpretations denote
the same tree (up to isomorphism). Thus, the semantics forOC(α) is the same as that
for OC(β) because they are working with the same treeT (α)

.
= T (β).

The proof of (8) can be obtained from (6) and (5). 2

In our ought-to-do setting, the formulaOC(1) is the counterpart of theO(⊤) from
standard deontic logic. As the proof above shows, this formula is not valid in any nor-
mative structure, but only in the serial ones. This formula essentially says that in any
contract any agent is obliged to do action “skip”. This fact is harmless because if there
is any other “real” obligation (in the same world) then the property from Theorem 3.21
below would combine the two obligations and by virtue of the fact that1 is identity
element for×, theOC(1) will be essentially swallowed by the real obligation. In conse-
quence,OC(1) is not visible when other obligations are present. Alone,OC(1) requires
that any normative structure is serial, i.e., that from any world there is an outgoing tran-
sition. Otherwise, obligation to “skip” does not impose anything; does not impose any
markings in the structure and does not impose any particularlabeling of any transition.
It has an analogous behavior withO(⊤) of SDL.

In Theorem 3.21 (see below) we give a property for obligations over synchronous
actions. The theorem states that if ”there exists an obligation to do actionα and there
is also an obligation to do actionβ” (in the same current world) then we should be able
to infer that “there is an obligation to do both actionsα andβ at the same time”. This
property does not hold for general obligations (with the definition that we gave before),
but only for some restricted obligations, which we callnatural obligations.

The purpose of natural obligations is not necessarily a technical one but also a
practical one. The naturalness constraint refers mainly tochoices of actions; when
deciding which of the actions to choose the model should not influence the decision.

Definition 3.19 (natural obligations). An obligationOC(α) is callednaturaliff in ad-
dition to the semantics of Definition 3.6 the followingnaturalness constraintis re-
spected:

∃γ s.t. T (α×γ)
.
= TKT (α),ε

max (9)
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{b}{a} {a, c} {b, d}

s0 s0

s1 s1s2 s2
◦a ◦a◦b ◦b

(i) (ii)

Figure 5: Examples for natural obligations.

The following result is intended to be the algebraic equivalent of naturalness, and
hence, algebraic methods can be employed to solve it. The proposition provides a
practical way to check that the naturalness constraint is satisfied.

Proposition 3.20. The naturalness constraint reduces to showing that there exists a
deontic actionγ s.t.α×γ = αT , whereαT is the action in canonical form correspond-
ing to the treeTKT (α),ε

max .

Proof: This is a consequence of the definition above and of the completeness result of
[7] which says that for any tree as in Theorem 2.10 there is a corresponding action.2

Example 3.5 Let us consider the model of Fig. 5-(i) in whichO(a + b) holds at states0.
Change this model by adding ac to the left label and ad to the right label, as in Fig. 5-(ii).
O(a + b) still holds at states0, but is not a natural obligation; intuitively, when deciding which
of a or b to choose one needs to take into account the two distinct actionsc andd. If we were to
add the same labelc to both branches then the naturalness constraint is satisfied, as one does not
care about the extra actionc when choosing. 2

Theorem 3.21 (synchrony property). For natural obligations we have:

|= OC(α) ∧OC(β)→ OC(α×β) (10)

Proof : We need to prove thatKN , i |= OC(α×β) under the assumptionKN , i |=
OC(α) ∧ OC(β). Using Lemma A.4 we have thatT (α×β) SiKN which is the first
requirement in the semantics ofOC . For the proof of Lemma A.4 the naturalness
constraint is essential. The proofs of Lemma A.7 and Lemma A.8 are also based on the
naturalness constraint. These two lemmas give the second and the third requirement in
the semantics ofOC(α×β). The last requirement is proven as Lemma A.9. 2

We now show how the above result can be generalized to the conjunction of obli-
gations containing different reparations.

Proposition 3.22. For natural obligations we have:

|= OC1
(α) ∧OC2

(β)→ OC1∨C2
(α×β) (11)
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Proof : The proof of this result is the same as that for Theorem 3.21 until we need to
use Lemma A.9. The statement of this last lemma needs to be changed accordingly
and the new proof needs only little change as we discuss here.What we need to prove
now is that ifKN , i |= OC1

(α) ∧ OC2
(β) thenKN , s |= C1 ∨ C2 ∀s ∈ N with

tSs s∧t ∈ leafs(T (α×β)). The proof of this result is essentially the same as the proof
of Lemma A.9 with the following observations. In the forth paragraph we proved that
from the condition∀αi

××β
j
× : αi

××β
j
× 6⊆ γ we can conclude that either∀αi

× : αi
× 6⊆ γ

or ∀βj
× : βj

× 6⊆ γ. This is used in the last paragraph by taking one of the hypothesis
for which this holds, because it does not make a difference which hypothesis we take
as both have the same reparationC. This is not the case for the present corollary. Here
it is important which of∀αi

× : αi
× 6⊆ γ or ∀βj

× : βj
× 6⊆ γ holds; but we do not know.

Therefore we use the disjunction of the reparationsC1 ∨C2, and regardless of which of
the two holds we use the appropriate hypothesis to make the disjunction true. 2

The following corollary points outconflictsthat are avoided in the logic because
of the semantics. These are usual requirements when reasoning about legal contracts.
A contract with two clauses “Obliged to pay” and “Forbidden to pay” can never be
respected. The same with a contract stating “Obliged to go west” and “Obliged to go
east” (as “go west” and “go east” cannot be done at the same time, i.e., are conflicting).

Corollary 3.23 (conflicts). The following statements hold:

|= ¬(OC(α) ∧ FC(α)) (12)

|= ¬(P (α) ∧ FC(α)) (13)

if α#C β then |= ¬(OC(α) ∧OC(β)) (14)

Proof : The proof of (12) follows by propositional reasoning from (8) and the proof
of (13) follows from (5). The proof of (14) follows from (3) and Theorem 3.21 as we
show next. Becauseα#C β thenα×β = 0, by axiom (18), and thereforeOC(α×β)
is OC(0). From Theorem 3.21 we get that|= ¬(OC(α) ∧OC(β)) ← ¬OC(α×β) and
from the above we have that|= ¬(OC(α) ∧ OC(β)) ← ¬OC(0). By modus ponens
using (3) we get|= ¬(OC(α) ∧OC(β)). 2

We give now some examples for the validities presented in Proposition 3.24 below.

• Prohibition of an action implies that anybiggeraction is prohibited:
FC(α)→ FC(α×β)

E.g.: “Client is forbidden to supply false information” then we also know that
“Client is forbidden to supply false information and at the same time supply
correct information”.

We comment more on this property. One may think of an example like “One is
forbidden to smoke” but still “One is permitted to smoke and (at the same time)
sit outside in the open air”. This example seems to contradict the above property.
The confusion comes from the wording of the above example. A more correct
wording would be: “One is forbidden to smoke and (at the same time) sit in a
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public place” where this action is no longer smaller than theaction “smoke and
(at the same time) sit outside in the open air” and thus the prohibition and the
permission go along together.

• The prohibition of a choice of two actionsα or β is the same as having both
prohibition ofα and prohibition ofβ:

FC(α+ β)↔ FC(α) ∧ FC(β)

E.g.: “Client is forbidden to pay in dollars or to pay in euros” implies that “Client
is forbidden to pay in dollars” and that “Client is forbiddento pay in euros”.

• Permission of a choice of actions is the same as permission ofall the actions in
the choice; i.e., validity (17).

Proposition 3.24. The following statements hold:

|= FC(α)→ FC(α×β) (15)

|= FC(α+ β)↔ FC(α) ∧ FC(β) (16)

|= P (α+ β)↔ P (α) ∧ P (β) (17)

Proof: We give first quick proof arguments. The proof of the first validity is based on
the fact that paths inT (α×β) contain (i.e., have bigger labels than) paths ofT (α). The
proof of the second validity is based on the fact the the pathsof T (α+β) which satisfy
the condition in the semantics are the same as the paths ofT (α) andT (β) together.

For the proof of (15) consider an arbitrary pointed structure〈KN , i〉which satisfies
FC(α). In order to show thatKN , i |= FC(α×β) we need to take an arbitrary final path
σ ∈ T (α×β) which satisfiesσ Si KN and show that for any edget

γ
−→ t′ on this path

we have∀s
γ′

−→ s′ ∈ KN with tS s∧γ ⊆ γ′ then∀a ∈ AB if a ∈ γ′ then•a ∈ ̺(s′).
Note that if a pathσ ∈ T (α×β) exists then it exists also a pathσ′ ∈ T (α) which has all
the labels on the edges smaller than the corresponding ones in σ. Therefore, together
with the assumptionσ Si KN it means thatσ′ also satisfiesσ′ Si KN . Because of
this, we can apply the semantics for the expressionFC(α) to deduce that for all edges

t
γ
−→ t′ ∈ σ′ all transitionss

γ′

−→ s′ ∈ KN satisfyingγ ⊆ γ′ also satisfy∀a ∈ AB

if a ∈ γ′ then•a ∈ ̺(s′). For these edges we can find corresponding edges inσ that
have labelsγ′′ which includesγ. Becauseγ ⊆ γ′′ it means that all the transitions

s
γ′

−→ s′ ∈ KN that respectγ′′ ⊆ γ′ are among (possibly fewer than) the transitions
before, forσ′. But all these transitions we know that respect∀a ∈ AB if a ∈ γ′ then
•a ∈ ̺(s′). The proof is finished.

It should be simple to see that the opposite implication doesnot always hold; i.e.,
6|= FC(α×β) → FC(α). This is because we cannot guarantee that by taking all the
pathsσ′ ∈ T (α×β) which satisfyσ′ SiKN we will consider all the pathsσ ∈ T (α),
because there may be paths with labels smaller that those inT (α×β) which are still
good paths forT (α) (see Proposition 3.25 for a counterexample).

The proof of|= FC(α + β) ↔ FC(α) ∧ FC(β) is simpler. It is easy to see that the
treeT (α+β) contains all the final pathsσ of the two treesT (α) andT (β)which satisfy
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σ Si KN . Therefore, the double implication is immediate: if we considerFC(α + β)
true than the traces inT (α+ β) respect all the conditions of the semantics and thus all
the traces inT (α) respect the conditions in the semantics, makingFC(α) true (and the
same forFC(β)).

The proof of (17) is similar to the proof of (16). 2

In the design decisions forCL we give special attention to what we callunwanted
implications. This kind of “properties” are rather scarce and neglected in the literature.
We give here unwanted implications that are related only to the deontic modalities
(Proposition 3.25).

• The prohibition of doing two actions at the same time does notimply that any of
the two actions is prohibited (i.e., the converse of (15) does not always hold).

6|= FC(α×β)→ FC(α)

E.g.: “One is forbidden to drink and drive at the same time” does not imply that
“One is forbidden to drink” and neither that “One is forbidden to drive”.

• Obligation of an actionα does not imply obligation of any concurrent action that
containsα. Similarly, obligation of a concurrent action does not imply obligation
of any of its composing actions.

6|= OC(α)→ OC(α×β);
6|= OC(α×β)→ OC(α).

E.g.: “Obligation to drive” should not imply “Obligation todrive and drink at
the same time”. For the second unwanted implication consider “Obligation to
smoke and sit outside” which should not imply “Obligation tosmoke”.

• Similarly with permissions:
6|= P (α)→ P (α×β)
6|= P (α×β)→ P (α)

E.g.: “Permitted to smoke and sit outside in open air” does not imply “Permitted
to smoke” because if one sits inside a restaurant then one is forbidden to smoke.

The first implication is related to the free choice permission paradox on page 45
in the setting of concurrent actions, where from permissionto smoke one would
imply the permission to smoke and kill at the same time.

• Obligation of a choice of actions constrains that only the actions in the choice
can be done but the choice itself is left open, the one on whichthe obligation
is enforced has the freedom of choosing. Therefore, none of the actions in the
choice is obligatory by itself because the freedom of choosing would be lost.

6|= OC(α+ β)→ OC(α).
6|= OC(α)→ OC(α+ β);

E.g.: “Client is obliged to pay or to delay payment” should not imply that “Client
is obliged to delay payment”. For the second unwanted implication “Obliged to
mail the letter” should not imply “Obliged to mail the letteror burn the letter”.
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Figure 6: Counterexamples for Prop.3.25.

• As consequence of the above we have:
6|= OC(α+ β)→ OC(α×β);
6|= OC(α×β)→ OC(α+ β).

Proposition 3.25 (unwanted implications).The following statements hold:

6|= OC(α)→ OC(α×β) (18)

6|= OC(α×β)→ OC(α) (19)

6|= OC(α+ β)→ OC(α×β) (20)

6|= OC(α×β)→ OC(α+ β) (21)

6|= OC(α)→ OC(α + β) (22)

6|= OC(α+ β)→ OC(α) (23)

6|= FC(α×β)→ FC(α) (24)

6|= P (α×β)→ P (α) (25)

6|= P (α)→ P (α×β) (26)

6|= P (α)→ P (α+ β) (27)

Proof : The proof is simple by giving for each not valid statement a counterexample,
all of which are collected in Fig.6. The model of Fig. 6(i) makesOC(a) true in state
i butOC(a×b) does not hold (for (18)) and neither doesOC(a + b) (for (22)). In the
model of Fig. 6(ii)OC(a×b) holds in statei butOC(a) does not hold (for (19)) and
alsoOC(a+ b) does not hold (for (21)). In the model of Fig. 6(iii)OC(a+ b) holds in
statei butOC(a×b) does not hold (for (20)) and alsoOC(a) does not hold (for (23)).
The model of Fig. 6(iv) makesFC(a× b) true in statei but the same state does not
makeFC(a) true (for (24)). For (25) take the structure in Fig. 6(ii) which is a model
for P (α×β) but not a model forP (α). For (26) Fig. 6(i) is an obvious example, and
as well for (27) because the model satisfiesP (a) but notP (a+ b). 2

4. The Full Contract Logic

The contract logicCL adds to the deontic modalities from Section 3 the dynamic
logic modality applied over synchronous actions.

Definition 4.1. The syntax ofCL is given in Table 3. The dynamic logic modality[·]C
is parameterized by the dynamic actionsδ. The expression[δ]C is read as: “after the
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C := φ | OC(α) | P (α) | FC(α) | C → C | [δ]C | ⊥ (CL expressions)
α := a | 0 | 1 | α×α | α · α | α+ α (deontic actions)
δ := a | 0 | 1 | δ×δ | δ · δ | δ + δ | δ∗ | ϕ? (dynamic actions)
ϕ := φ | 0 | 1 | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ (tests)

Table 3: Syntax of the contract languageCL.

action δ is performedC must hold”. The other propositional operators are, as be-
fore, defined in terms of two (functionally complete set){→,⊥}, whereas the dynamic

existential modality〈δ〉C is defined as the dual of box:〈δ〉C
△

= ¬[δ]¬C.

In CL we can writeconditionalobligations, permissions and prohibitions of two
different kinds. As an example let us consider conditional obligations. The first kind is
represented by[δ]O(α), which may be read as “after performingδ, one is obliged to
doα”. The second kind is modeled using the implication operator: C → O(α), which
is read as “IfC holds then one is obliged to performα”.

Propositional dynamic logic (PDL) makes an interplay between the actions and
the formulas; i.e., it has formulas as actions (testsϕ?) and it has actions defining the
formulas (the box modality[δ]). The intuition of thetest actionis thatϕ? can be
performed only if the formulaϕ holds in the current world. A sequence actionϕ? · α
can be viewed as aguardedaction becauseα can be performed only if the testϕ?
succeeds. Note that we use, what is called,poor testsas we do not allow for a modal
formula to be a test, but only Boolean tests; i.e., we cannot ask modal questions using
the dynamic or the deontic modalities.

There are two differences between the actionsδ which appear inside the PDL
modality [·] and the actionsα which are allowed inside the deontic modalities. We
argued before against not having the Kleene∗ for theα actions. Regarding the tests, if
we allowdeontic test actions, like F (α)? inside the deontic modalities it would break
the ought-to-do approach because they introduce the formulas inside the action for-
malism; i.e., we could write formulas likeOC(F (α)?). This constitutes a combination
of ought-to-do and ought-to-be (for this direction check [41]). Moreover, adding tests
inside the deontic modalities does not integrate with our way of giving semantics; we
do not know how to mark obligatory (or prohibited) tests, as we do with the actions.
Moreover, in case of violation, the reparationC is enforced in the same world as the
O and theF , i.e., there is no state change. Therefore, we could reason only with the
propositional logic part ofCL. The exampleOC(F (α)?) is read as “It is obligatory (in
the current world) that the testF (α)? holds (in the current world), otherwise (if the test
does not hold) the reparationC should be enforced afterwards”. Compared to deontic
actions, tests do not change the world: if a tests succeeds then we remain in the same
world and execute the next action, if the test fails then the whole action sequence fails.
We can achieve the same by only using theCL language as it is. The example above
is specified inCL asF (α) ∨ (¬F (α) ∧ C) which is read as above (we reword it here
to match the formula better): “(In the current world) it is forbidden to doα or it is not
forbidden to doα and the formulaC holds”.
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KN , i |= [δ]C iff ∀s ∈ KN with (i, s) ∈ R2AB (δ) thenKN , s |= C.

R2AB (δ) = {(s, s′) | ∃k, ∃σ = σ0 . . . σk a final path inAG(δ),
∃s0 . . . sk ∈ KN with s0 = s andsk = s′, and
∀0 ≤ i ≤ k, V(si) ∈ L(⌈σi⌉), and

∀0 ≤ i < k with σi

αi
×

−→ σi+1 ∈ σ then(si, si+1) ∈ R2AB (αi
×)}

Table 4: Semantics forCL.

Definition 4.2 (semantics).The semantics for the dynamic modality ofCL is given in
Table 4. The rest of the syntactic constructs ofCL (i.e., the deontic and propositional
operators) have the semantics from Table 2.

The expression[δ]C is evaluated in a statei of the normative structureKN , depend-
ing on the automata representation of the dynamic actionδ. Essentially, the semantics
needs to evaluate the expressionC to true in all statess reachable from the initial state
i by following the automatonAG(δ) of the dynamic actionδ. All the statess reached
from i are given by the relation described by the dynamic action, i.e.,(i, s) ∈ R2AB (δ).
The relationR2AB (δ) is not as simple to describe as was the case with the deontic ac-
tions where we needed to look only at single steps. In the caseof dynamic actions we
need to look several steps in the structure. We take the approach introduced in [42] and
use the automataAG(δ), as in Definition 2.14, interpreting the dynamic actionsδ.

The relationR2AB (δ) is defined as the set of all pairs of states(s, s′) having the
property that there is an accepting pathσ in AG(δ) that is matched by a sequence of

states inKN . A sequence of states matches the pathσ iff all the edgesσi
α×
−→ σi+1 ∈ σ

are matched by the corresponding transitions(si, si+1) ∈ R2AB (α×) (i.e., the indexes
have to match as well as the labelsα×) and the valuation for the states has to conform
with the sets of atoms of the corresponding nodes on the path (i.e.,V(si) ∈ L(⌈σi⌉)).
From this matching sequence of states take the first and the final state as the pair we
are looking for. The conformance testV(si) ∈ L(⌈σi⌉) is required to ensure than any
test action fromδ is satisfied at the particular state; i.e., if the valuation of the state
corresponds to one of the atoms (atoms are encodings of valuations) that are encoded
by the automaton⌈σi⌉ of the nodeσi.

Example 4.1 Consider the normative structure of Fig. 4 changed s.t. the transition(s1, s4)
is labeled only by{p}. Also consider the automatonAG(δ) from Fig. 3 corresponding to the
dynamic actionδ = (p · b)∗ + (d×n) · ϕ? · p · p. This time we assume that the complex test
ϕ? is a conjunction that containsφ′; therefore this test fails in all states where the propositional
constantφ′ is not present. We want to check if the formula[δ]φ holds in states1. The automaton
AG(δ) has the following final paths:{(r, t1, t2, t3), (r, t6), (r, t4, t5), (r, t4, t5, (t4, t5)∗)}. We
calculateR2AB (δ) = {(s1, s1)}. At a closer look, the path(r, t1, t2, t3) does not contribute to
theR2AB (δ) becauseV(s2) 6∈ L(⌈t1⌉) (i.e., the automaton⌈t1⌉ accepts only atoms that make
ϕ true, butV(s2) makesφ′ false, henceϕ false). Also path(r, t6) does not contribute, but the
paths(r, t4, t5, (t4, t5)∗) are matched by sequences of statess1, s4, s1 ands1, s4, s1, (s4, s1)∗.
Therefore,s1 |= [δ]φ becauses1 |= φ. Consider now a slight modificationδ′ = (p · b)∗ + (d×

n) · p · p (i.e., the testϕ? does not appear). In this case the languageL(⌈t1⌉) is the universal
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language (i.e., all the atoms) and hence, the path(r, t1, t2, t3) now contributes toR2AB (δ) by
adding the pair(s1, s4). Because of thiss1 6|= [δ′]φ since one of the pairs inR2AB (δ) does
not respect the condition of the semantics; i.e.,s4 6|= φ. Consider a subsequent modification
δ′′ = (p · b)∗ + (d×n) · p (i.e., the lastp action is removed). The automatonAG(δ) from Fig. 3
has the nodet3 removed, and thus the final path(r, t1, t2) contributed toR2AB (δ) with the pair
(s1, s3). In this cases1 |= [δ′′]φ because in boths1 ands3 the formulaφ holds. Consider a last
modification ofδ′′ to δ′′′ = (p ·φ′? ·b)∗+(d×n) ·p. In this case all the paths(r, t4, t5, (t4, t5)∗)
cannot contribute toR2AB (δ) any more because the valuationV(s4) does not makeφ′ true and
hence is not part ofL(⌈t4⌉) which contains only those atoms that makeφ′ true; nevertheless
s1 |= [δ′′′]φ since in the only remaining states3 we haves3 |= φ. 2

4.1. Properties of theCL logic

The validities and non-validities results for the deontic modalities of Section 3.2
hold forCL also. Adding the dynamic modality does not affect these. Besides, we have
extra properties that deal with the combination of deontic and dynamic modalities.

Denote byany = +α×∈A
×

B
α× the choice betweenall the×-actions. For allα× ∈

A×B denote by〈〈α×〉〉C the formula〈α××any〉C and by[[α×]]C the formula[α××any]φ.
Note that〈〈·〉〉 and[[·]] are duals in this definition. Extend[[·]] to all actionsα ∈ A, as
is done in the standard PDL (the definition for〈〈·〉〉 is analogous):

[[α+ β]]C = [[α]]C ∧ [[β]]C

[[α · β]]C = [[α]][[β]]C

[[α∗]]C = C ∧ [[α]][[α∗]]C

Remark that the syntactic construct[[·]] enhances the[·] only locally, i.e., only for
one step moves. It enhances in the sense that it contains not only those single transitions
labeled by{α×} but also those labeled by set labels that include{α×}, i.e., are bigger,
up to the biggest labelAB.

An important requirement when modeling electronic contracts is that the obliga-
tion of a sequence of actionsOC(α · α′) must be equal to the obligation of the first
actionOC(α) and after the first obligation is respected the second obligation must hold
OC(α

′). To respect the obligationOC(α) means to do any action bigger thanα which
is captured with the syntactic construction[[·]]. Note that ifOC(α) is violated then the
reparationC must be enforced (must hold) and the second obligation is discarded, i.e.,
is not necessarily enforced.

Proposition 4.3. The following statements hold:

|= [[α×]]C → [[α××β×]]C (28)

|= OC(α · β)↔ OC(α) ∧ [[α]]OC(β) (29)

|= FC(α · β)↔ F⊤(α) ∧ [[α]]FC(β) (30)

whereα×, β×∈ A
×
B .
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Proof: The proof of (28) is easy as we are concerned only with×-actions. Trivially, for
an actionα× the tree of the actionα××any has all edges with labels includingα× (the
tree has height1). Similarly, all the edges of the tree ofα××β××any containα××β×
and, becauseα× ⊆ α××β×, they contain alsoα×. Because of these, all the transitions
in the structure that are relevant for evaluating[[α××β×]]C are part of the transitions
relevant for[[α×]]C and, hence,C holds in all their ending states. Proof finished as
whenever[[α×]]C holds in a state,[[α××β×]]C holds too.

To prove (29) we need a series of results which are easy to check but tedious; we
just state these results. To prove the left to right implication it is easy to see thatOC(α ·
β) → OC(α) as we discuss further. Trivially,T (α) ⊂ T (α · β) from which it is easy
to deduce that ifT (α ·β) Si KN thenT (α) Si KN (i.e., the first line in the semantics

of OC(α)). From the same results above it is clear that all the transitionss
γ′

−→ s′ ∈
KN that are relevant for the semantics ofOC(α) are among the transitions that are
relevant in the semantics ofOC(α · β) and hence they respect the second condition in

the semantics of obligation. A second result easy to verify is thatKT (α),i
rem ⊂ K

T (α·β),i
rem

which implies trivially the third condition in the semantics ofOC(α). Related to this
result is thatT (α) ⊆ T (α · β) which means thatleafs(T (α)) ⊆ leafs(T (α · β)) which
makes the last requirement in the semantics ofOC(α) trivially true.

To finish the left to right implication we proveOC(α ·β)→ [[α]]OC(β). Recall that
the construction ofT (α · β) first constructsT (α) andT (β) and then just attaches the
wholeT (β) to all the leafs ofT (α) (i.e., replaces each leaf with the root ofT (β)). The
actionα is a deontic action and, hence, its interpretation is a tree and the semantics
of [[·]] follows all the transitions inKN that are bigger than the edges of this tree.
Therefore, these are all the transitions that participate in theT (α · β) Si KN ; actually
in the second condition of the simulation relation. This simple observation gives all the
rest of the proof; it implies that all the states where we haveto evaluateOC(β) are part
of T (α · β) Si KN , actuallyT (β) Ss KN wheres is related to the leafs ofT (α). The
second and third conditions in the semantics ofOC(β) in the statess follow similarly.
The last condition holds becauseT (β) ⊆ T (α · β).

The proof of the right to left implication follows a similar tedious argument but the
main intuition is as follows. To get the semantics ofOC(α · β) we need to achieve
two main goals: (1) to walk on theKN structure according toT (α · β) and to find all
the appropriate◦ markers, (2)C must hold at the appropriate violating states. Walking
onKN goes well and finds all the necessary markers until reaching the leaf nodes of
the first part of the tree, i.e., ofT (α), because it comes from the semantics ofOC(α).
Nevertheless, we can continue because all these states are the same as the states reached
through[[α]]. Therefore, because of the semantics ofOC(β) from all these states we
can continue until we reach the leaf nodes of the big treeT (α · β). For the second part
it is easy to see that all the states ofKN reached because of the treeT (α · β) are the
same as the states reached because of the treeT (α) together with those reach through
making firstα and then followingT (β).

The proof of (30) is similar only that it reasons about partial simulations. To remark
is that the first prohibition has a trivial reparation. From apractical point of view the
prohibition is irrelevant because it does not impose any restrictions. Technically, the
reparationC holds (is enforced) only in the states corresponding to the leafs of the tree
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T (α · β), therefore, there is no information about what holds at the leafs ofT (α). 2

The validity (30) hints at the fact that prohibitions as defined inCL could be mod-
eled using the dynamic operator[·] (or maybe using the syntactic construct[[·]]), but
this is a simply a conjecture at the moment of writing this paper.

The PDL version with automata inside the dynamic modality from [42] is proven
decidable with a method that builds finite models based on a variant of Fischer-Ladner
closure and using Hintikka-like sets. This proof can be easily adapted to our automata
over guarded synchronous strings and to our dynamic modality over synchronous ac-
tions. Therefore, if we consider only the propositional part and the dynamic modality
of CLwe have a decidable extension of PDL which can talk about synchronous actions.
Unfortunately, we could not give a proof of decidability forthe deontic modalities us-
ing a Fischer-Ladner closure method. Therefore, we cannot combine the proof based
on finite tree models for the deontic modalities with a proof based on Fischer-Ladner
closure for the dynamic modality to obtain the decidabilityof the full CL.

On the other hand, the PDL logic does not have the finite tree model property be-
cause of the Kleene∗. This applies to our dynamic modality over synchronous actions
too. However, we show in Theorem 4.4 that the dynamic modality over synchronous
actions has the tree model property. This together with Theorem 3.9 give the tree
model property for fullCL. From the tree model one just needs to find the right se-
lection method to obtain a bounded tree model property (i.e., bounded branching) as
was done for the modalµ-calculus [43, 44]. Using this, one can prove decidability by
a standard translation into the SnS logic which is decidable[45]. Although standard,
these techniques are specific and quite involved. In consequence we left the work of
investigating and adapting these techniques to the settingof CL as an open problem for
future work.

Theorem 4.4 (tree model forCL). For a pointed structure〈KN , i〉 we have:

TKN , x |= [δ]C iff KN , ρ(x) |= [δ]C (31)

Proof: The proof follows the semantics of[·] and uses an argument similar to what we
did in the proof of Theorem 3.9 for the last part of the case forobligations. This means
we use structural induction and assumeTKN , x′ |= C iff KN , ρ(x′) |= C.

For the left to right implication we usereductio ad absurdumand assume that∃s ∈
KN s.t.(ρ(x), s) ∈ R2AB (δ) for whichKN , s 6|= C. Having(ρ(x), s) ∈ R2AB (δ) it
means that∃σ = σ0 . . . σk a final path inAG(δ) and∃s0 . . . sk ∈ KN s.t.s0 = ρ(x),

sk = s, ∀0 ≤ i ≤ k, V(si) ∈ L(⌈σi⌉), and for anyσi

αi
×

−→ σi+1 ∈ σ we have
(si, si+1) ∈ R2AB (αi

×). By Lemma 3.8 it means that for(ρ(x), s1) ∈ R2AB (α0
×)

we find (x, xα0
×s1) ∈ RT

2AB
(α0

×); and the same for alli, ending with the transition

(xα0
× . . . sk−1, xα

0
× . . . αk−1

× sk) ∈ RT
2AB

(αk−1
× ). Because the valuation functionsV

andVT agree on all propositional constantsφ it means thatVT (xα0
× . . . si) ∈ L(⌈σi⌉).

In this way we have found for the final pathσ the sequence of statesx, xα0
×s1, . . . ,

xα0
× . . . αk−1

× sk in the tree model that satisfy the conditions for(x, xα0
× . . . αk−1

× sk) ∈
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RT
2AB

(δ) and, by the left part of the implication, we haveTKN , xα0
× . . . αk−1

× sk |= C.

We use the inductive hypothesis to obtainKN , ρ(xα0
× . . . αk−1

× sk) |= C which is the
same asKN , sk |= C; butsk = s and hence we get the contradiction.

The right to left implication follows analogous arguments. 2

In the following we argue that the most important paradoxes of deontic logic are
avoided inCL, either because they are not expressible in the language or because they
are excluded by the semantics.

Ross’s Paradox [46] in natural language it is expressed as:a. “It is obligatory that
one mails the letter”; b. “It is obligatory that one mails the letter or one burns
the letter”. In SDL these are expressed as:a. O(p), b. O(p∨ q). The problem is
that in SDL one can make the inferenceO(p)→ O(p ∨ q).

Remark 4.5. Ross’s paradox does not hold inCL.

Argumentation : Basically, Ross’s paradox says that it is counter intuitiveto have
O(a) → O(a + b) (e.g.,“Obligation to drink implies obligation to drink or to kill”).
In CL this inference is not possible as witnessed by Proposition 3.25(22).

The Good Samaritan Paradox [47] in natural language it is expressed as:a. “It ought
to be the case that Jones helps Smith who has been robbed”; b. “It ought to be
the case that Smith has been robbed”; and the natural inferencec. “Jones helps
Smith who has been robbed if and only if Jones helps Smith and Smith has been
robbed”. In SDL the first two are expressed as:a. O(p ∧ q), b. O(q). The
problem is that in SDL one can derive thatO(p ∧ q) → O(q) which is counter
intuitive in the natural language.

Remark 4.6. The Good Samaritan paradox can not be expressed inCL.

Argumentation: The Good Samaritan paradox usesought-to-beand is more delicate
to transform it into ourought-to-doapproach. The transformation looks like:ϕ →
O(a) which means that“If Smith has been robbed (i.e.,ϕ) then John is obliged to help
Smith (i.e.,O(α))” . We can not express inCL obligations over conjunction of two
actions that are not performed concurrently as this paradoxis expressed in SDL. Also,
with our representation of the paradox we cannot deduceϕ; i.e., thatSmith has been
robbed.

The Free Choice Permission Paradox [46]in natural language it is expressed as:
a. “You may either sleep on the sofa or sleep on the bed”; b. “You may sleep
on the sofa and you may sleep on the bed”. In SDL this is: a. P (p ∨ q),
b.P (p)∧P (q). The natural intuition tells thatP (p∨q)→ P (p)∧P (q). In SDL
this leads toP (p)→ P (p∨q) which isP (p)→ P (p)∧P (q), soP (p)→ P (q).
As an example:“If one is permitted something, then one is permitted anything” .

Remark 4.7. The Free Choice Permission paradox does not exist inCL.
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Argumentation: The Free Choice Permission paradox basically says that fromhaving
one permission we may infer that we have any permission. Thatis: P (a)→ P (a+ b)
or P (a) → P (a) ∧ P (b). Neither of the two implications hold in our approach. The
second one is obvious. The first one is ruled out by Corollary 3.25-(27) which is a
consequence of Proposition 3.24-(17).

Sartre’s Dilemma [48] in natural language is expressed as:a. It is obligatory to meet
Jones now (as promised to Jones);b. It is obligatory to not meet Jones now (as
promised to Smith). In SDL this is:a. O(p), b. O(¬p). The problem is that
in the natural language the two obligations are intuitive and often happen, where
the logical formulas are inconsistent when put together (inconjunction) in SDL.

Remark 4.8. Sartre’s Dilemma is not expressible in our approach.

Argumentation: In CL we cannot write negation of actions, likenot meet Jones, and
thus cannot have obligations on top. Thus, syntactically isnot possible to write this
paradox inCL. However, Sartre’s dilemma can be reformulated in contracts termi-
nology as:Obliged to meet John and Forbidden to meet John. This is written inCL
asO(a) ∧ F (a) which is a well formed formula. But this results in a contradiction
because of Corollary 3.23-(12). In conclusion, neither this reformulation that can be
represented inCL does not constitute a paradox because the formula does not hold.

Chisholm’s Paradox [49] in natural language is expressed as:a. John ought to go to
the party;b. If John goes to the party then he ought to tell them he is coming;
c. If John does not go to the party then he ought not to tell them heis coming;
d. John does not go to the party. In SDL these are expressed as:a. O(p), b.
O(p → q), c. ¬p → O(¬q), d. ¬p. The problem is that in SDL one can infer
O(q) ∧O(¬q) which is due to statementb.

Remark 4.9. The Chisholm’s paradox is avoided inCL.

Argumentation: The propositions of the Chisholm’s paradox are expressed inCL as:
a. O(a), b. [a]O(b), c. [a]O(b). Note first that formulasa. andc. give the CTD
formulaOC(a) of CL whereC = O(b). The problem in SDL was that one may infer
bothO(b) andO(b) holding in the same world. This is not our case becauseO(b) holds
only after doing actiona, whereO(b) holds only after doing the contradictory action
a. Therefore, we can not have in the same world bothO(b) andO(b).

5. Conclusion

In this paper we have presented the action-based contract logic CL. As our ob-
jective has been to present the theoretical background ofCL including its Kripke-like
semantics and further results concerning the decidabilityof (fragments of) the logic,
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we could not expand on applications. Case studies on how to useCL for writing spec-
ifications of contracts are presented elsewhere (e.g. see [40, 50]).

Concerning verification, an encoding of a variant of the logic presented here into
NuSMV has been presented in [40], while the papers [50, 51] present the theory and a
tool for conflict analysis. With the development of a Kripke semantics, we are now in
conditions to develop a specific model checker forCL.

Besides the development of a model checker, future work includes the development
of a proof system, further investigation on full decidability of the logic, the study of
the use ofCL as a semantic framework for other languages for services lacking formal
semantics, and an extension with real-time. The latter in particular is appealing as most
real contracts contain timing constraints.

Acknowledgements:We thank Martin Steffen and Olaf Owe for useful comments on
earlier versions of this work.
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A. Additional Proofs

The following lemmas are helper results used in the proof of Theorem 3.21.
The following lemma guarantees that the conjunction of obligations implies equal-

ity between the structures of the conjuncts, or strict inclusion of one into the other.
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Lemma A.1. If KN , i |= OC(α)∧OC(β) thenKT (α),i
max = K

T (β),i
max otherwiseKT (α),i

max ⊂

K
T (β),i
max otherwiseKT (α),i

max ⊃ K
T (β),i
max .

Proof : Take an arbitrary pointed structureKN , i and supposeKN , i |= OC(α) ∧
OC(β). The proof of this lemma usesreductio ad absurdumand is based on the fact
that lines two and three in the semantics of obligation add◦ markers to the states, and
line four removes◦ markers thus resulting in a contradiction.

If KN , i |= OC(α) ∧ OC(β) thenKN , i |= OC(α) andKN , i |= OC(β). From
the first we have by the semantics thatT (α) Si KN which means that there exists
the maximal simulating structureKT (α),i

max . From the semantics ofOC(β) we obtain

similarly K
T (β),i
max . Both maximal simulating structures are substructures of the same

KN .
Suppose that there exists a transitionk

γ
−→ k′ ∈ K

T (α),i
max s.t.k

γ
−→ k′ 6∈ K

T (β),i
max

and there is a transitions
γ′

−→ s′ ∈ K
T (β),i
max s.t. s

γ′

−→ s′ 6∈ K
T (α),i
max . Without loss

of generality we will work with the transitionk
γ
−→ k′ which from the semantics of

OC(α) we have that∀a ∈ AB if a ∈ γ then◦a ∈ ̺(k′). On the other hand the

transitionk
γ
−→ k′ is not part ofKT (β),i

max and becausek ∈ K
T (β),i
max and we know that

it exists at least one transition inKT (β),i
max (for example the transitions

γ′

−→ s′) then it
means thatk

γ
−→ k′ ∈ K

T (β),i
rem . By the semantics ofOC(β) we know that∀a ∈ AB

if a ∈ γ then◦a 6∈ ̺(k′). This results in a contradiction and therefore the initial
supposition is wrong. 2

Corollary A.2.

a. If KT (α),i
max = K

T (β),i
max then

(a) TK
T (α),i
max = TK

T (β),i
max and

(b) K
T (α),i
rem = K

T (β),i
rem .

b. If KT (α),i
max ⊂ K

T (β),i
max then

(a) TK
T (α),i
max ⊂ TK

T (β),i
max and

(b) ∀k
γ
−→ k′ ∈K

T (α),i
rem eitherk

γ
−→ k′ ∈K

T (β),i
rem or k

γ
−→ k′ ∈K

T (β),i
max .

c. If KT (α),i
max ⊃ K

T (β),i
max then

the same as before but interchangeα with β.

Lemma A.3. For anyα, β, γ′, γ′′ ∈ AD if T (α×γ′) = T (β×γ′′) = T then∃γ′′′ ∈ AD

s.t.T = T (α×β×γ′′′).

Proof : From the completeness result of the algebra of actions we getthat because
T (α×γ′) = T (β×γ′′) we haveα×γ′ = β×γ′′ = θ. We need to prove that∃γ′′′ ∈ AD
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s.t.α×β×γ′′′ = θ = α×γ′ = β×γ′′ which by the completeness results means that
T = T (α×β×γ′′′).

The interpretation functionI is applied to the canonical almost normal form, and
therefore we consider the actionsα×γ′ andα×β×γ′′′ to be incanf . Because the
canonical form is defined inductively it is w.l.o.g. that we look only at the first levels
of the actions (i.e., only at the×-actionsαi

× of the canonical form). For a simple nota-
tion we denote the×-actions on the first level ofα by α1, α2, . . . , αk; note that there
arek actions in total. For the actionβ we denote the×-actions on the first level by
β1, β2, . . . , βl. For the actionθ we denote the×-actions byτi.

To prove the lemma we use the proof principlereductio ad absurdumand suppose
thatα×β×γ′′′ 6= θ is the case. According to the above this supposition is equivalent
to saying that the×-actions on the first level ofθ are not constructed from the actions
on the first level ofα×β. This may be from several reasons.

First consider that a×-action ofα×β, sayα1×β1 is not contained in any of the
×-actionsτi on the first level ofθ. Considerτ iα1

to be thoseτi which containα1; and
similarly considerτ jβ1

thoseτi which containβ1. From the supposition we know that

β1 does not appear in any of theτ iα1
; and similarlyα1 does not appear in anyτ jβ1

. From
the hypothesisθ = β×γ′′ we know that in allτ it appears one of theβj×-actions. This
means that in each of theτ iα1

it appears one of theβj wherej 6= 1. Consider w.l.o.g.
one of these actionsτ1α1

= α1×β2×γ for someγ which may also be empty. From
the same hypothesisθ = β×γ′′ and knowing thatα1×β2×γ is a×-action on the first
level of θ then it means thatα1γ is an action on the first level ofγ′′. This means that
between the actionsτ of the first level ofθ there exists each of the actionsα1×γ×βj

with j 6= 2 (because we already have the index 2). In other words, the action α1×γ

must be combined with any of the actionsβj includingβ1.
We thus obtained the contradiction (i.e., there exists an action τ which contains

α1×β1). Therefore, each of theαi×βj of θ = α×β×γ′′′ are contained inτi. In other
words we have proven that all the×-actions on the first level of the actionα×β are
found among the×-actions on the first level ofθ. Moreover, the discussion above also
proves that∀τ ∈ θ, τ = αiβjγ; which says that there is no×-action on the first level
of θ which does not contain an action from the first level ofα×β.

The only way to still have the (bad) supposition is to say thatit is not the case that
for all pairsαiβj there exits a sameγ such thatαi×βj×γ = τ is a×-action on the first
level of θ. To explain it differently, this supposition wants to contradict the second×
operator in the conclusion of the lemma(α×β)×γ′′′ which by the definition it must be
that for eachγ an action on the first level ofγ′′′ it must be combined with each action
αi×βj of α×β.

We take an arbitrary pairαi×βj, sayα1×β1 and w.l.o.g. suppose it has some extra
actionγ× which may be also empty. Thusα1×β1×γ× is an action on the first level of
θ. From the hypothesisβ×γ′′ = θ and knowing thatβ1 is combined with the action
α1×γ× it implies that all otherβj with j 6= 1 must be combined with the same action.
Therefore, the following are also actionsτ : α1×β2×γ×, . . . , α1×βn′′×γ×. On the
other hand, from the hypothesisα×γ′ = θ and knowing thatα1×β1×γ× is aτ action
it means that all otherαi actions must be combined withβ1×γ×. Therefore, we also
have asτ actions:α2×β1×γ×, . . . , αk×β1×γ×.
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We continue to apply recursively the same reasoning on the new deduced actions
like α2×β1×γ and we obtain in the end that all the actionsαk×βl appear among the
actionsτ on the first level ofθ combined with the same actionγ×. Thus, the second
false supposition is contradicted.

The last way of contradicting the lemma is trivial and it supposes that it is not the
case that all theτ actions ofθ come from combination by×with the actionsαi×βj.
More clearly this tries to say that there exit otherτ actions that do not follow the
pattern deduced by the first two reasonings we had before. This cannot be as if there
were another action besidesαi×βj×γ×, sayτ ′ we have proven by contradicting the
first supposition that this must be of the formαi×βj×γ′

×and by the second supposition
we again get that there exist all theαi×βj×γ′

×as actionsτ on the first level ofθ.
The proof of the lemma is finished, as the bad supposition is always contradicted.

2

Lemma A.4. For anyKN a normative structure andα, β two distinct actions we have
that if KN , i |= OC(α) ∧OC(β) thenT (α×β) SiKN .

Proof: We use Lemma A.3 and mainly the naturalness constraint on obligations from
Definition 3.19.

From the statement of the lemmaKN , i |= OC(α)∧OC(β) by applying the Lemma

A.1 we get thatKT (α),i
max = K

T (β),i
max (we treat the two cases with strict inclusion at the

end). This implies (see Corollary A.2) that the corresponding trees which unfold these
maximal substructures are the same; i.e.,TK

T(α),i
max = TK

T(β),i
max = TKN

max
.

Moreover, from the hypothesis of the lemma we get thatKN , i |= OC(α) and
KN , i |= OC(β). Considering thenaturalnessconstraint it implies that:

∃γ′ s.t.T (α×γ′) = TKT(α),i
max

∃γ′′ s.t.T (β×γ′′) = TKT(β),i
max

From these and knowing that the maximal simulating structures are the same we
get thatT (α×γ′) = T (β×γ′′) = TKmax . By applying the Lemma A.3 we get that
TKmax = T (α×β×γ′′′).

Following the Definition 3.3 of the simulation relationSi , in order to prove the
conclusionT (α×β) SiKN we need to prove that:

(1) ∀r
γ
−→ t′ ∈ T (α×β), ∃i

γ′

−→ k′ ∈ KN s.t.γ ⊆ γ′ andt′ S k′,

(2) ∀i
γ′

−→ k′ ∈ KN with γ ⊆ γ′ thent′ S k′.

Using the results of the previous lemmas the proofs of (1) and(2) become simple.
As T (α×β×γ′′′) = TKN

max
which is the tree unfolding of the substructureKN

max =

K
T (α),i
max = K

T (β),i
max ofKN , then it is simple to see that for any edger

γ
−→ t′ ∈ T (α×β)

there is a transitioni
γ′

−→ k′ ∈ TKN
max

which clearlyγ ⊆ γ′ depending onγ′′′.

Therefore,i
γ′

−→ k′ ∈ KN
max and thusi

γ′

−→ k′ ∈ KN . The fact thatt′ S k′ is true is
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obvious by applying a similar recursive reasoning and descending one level in the tree.
Note that the recursive reasoning stops when the tree nodet′ has no more children (i.e.,
no more edgest′

γ
−→ t′′ exist inT (α×β)); and this is always the case as the tree is

finite.
For proving (2) we use a similar recursive reasoning as before. From the condition

γ ⊆ γ′ it implies thatγ′ = γ×γ′′. Becauseγ′ is a label of a transition inT (α×
β×γ′′′) thenγ′ = α×β×γ′′′

× ×γ′′ which because it containsα it enters under the
application of the hypothesisT (α) Si KN (and similarly because it containsβ we
can applyT (β) Si KN ). Applying the hypothesis leads to the fact there there are the
edgesr

γ
−→ t′α ∈ T (α) andr

γ
−→ t′β ∈ T (β) with t′α S k

′ andt′β S k
′. On the other

handt′ comes from the combination of the twot′α andt′β and thus a simple recursive
reasoning givest′ S k′. The recursive reasoning stops again when the nodet′ has no
more children.

Note that if we consider inclusion among the maximal simulating structures (in-
stead of the equality as we did) then the discussion above does not change. The
TK

T(α×β),i
max is the same as the interpretationT (α×β×γ′′′). 2

In what follows we present two corollaries of Lemmas A.1 and A.4: the first shows
what is the maximal simulating structure with respect toT (α×β); and the second states
that the obligation ofα×β respects the naturalness constraint. Corollary A.5 is usedin
the proofs of both Lemma A.7 and Lemma A.8.

Corollary A.5. For anyKN a normative structure andα, β two distinct actions we
have that ifKN , i |= OC(α) ∧OC(β) then either

K
T (α),i
max = K

T (β),i
max = K

T (α×β),i
max or

K
T (α),i
max ⊂ K

T (β),i
max = K

T (α×β),i
max or

K
T (β),i
max ⊂ K

T (α),i
max = K

T (α×β),i
max .

Corollary A.6. If KN , i |= OC(α) ∧OC(β) thenO(α×β) is a natural obligation.

Lemma A.7. If KN , i |= OC(α) ∧OC(β) then

∀t
γ
−→ t′∈T (α×β) and∀s

γ′

−→s′∈KN s.t.tS s ∧ γ⊆γ′ is the case that
∀a∈AB if a∈γ then◦a ∈ ̺(s′).

Proof : It is simple to see, by looking at Definition 3.4, that all transitionss
γ′

−→ s′

mentioned in the lemma make up exactly the maximal simulating structureKT (α×β),i
max .

By Corollary A.5 this is the same as the maximal simulating structures forT (α) and
T (β).

To finish the proof we take one arbitrary edget
α××β×
−→ t′∈T (α×β) and one arbitrary

transitions
γ
−→ s′ ∈K

T (α×β),i
max s.t. tS s andγ = α××β××γ′ whereγ′ may also be

1. These satisfy the conditions in the lemma. The edget
α××β×
−→ t′ comes from the

combination of two edgest
α×
−→ t′ ∈ T (α) and t

β×
−→ t′ ∈ T (β). On the other hand

we have for the transitions
γ
−→ s′ that bothα× ⊆ γ andβ× ⊆ γ hold. This means

that we can apply the hypothesis of the lemma (i.e., apply thedefinition forOC to both
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OC(α) andOC(β)) to get that◦a ∈ ̺(s′), ∀a ∈ α× and◦a ∈ ̺(s′), ∀a ∈ β× (because
the definition says that for all transitions this happens). This implies the result of the
lemma, i.e.,◦a ∈ ̺(s′), ∀a ∈ α××β×. 2

Lemma A.8. If KN , i |= OC(α) ∧OC(β) then

∀s
γ′

−→s′ ∈ K
T (α×β),i
rem then∀a ∈ AB if a ∈ γ′ then◦a 6∈ ̺(s′).

Proof : Following from Corollary A.5 is thatKT (α×β),i
rem = K

T (α),i
rem = K

T (β),i
rem (the

cases for inclusion are treated at the end). From the hypothesisKN , i |= OC(α) we

have that∀s
γ′

−→ s′ ∈ K
T (α),i
rem then∀a ∈ AB if a ∈ γ′ then◦a 6∈ ̺(s′) which makes

our proof goal also true by replacingKT (α),i
rem with its equalKT (α×β),i

rem .
In the case whenKT (α),i

max ⊂ K
T (β),i
max = K

T (α×β),i
max then we work as before but

consider the structure forβ instead. 2

Lemma A.9. If KN , i |= OC(α) ∧OC(β) then
KN , s |= C ∀s ∈ N with tSs s ∧ t ∈ leafs(T (α×β)).

Proof : The conclusion of the lemma should be read as: the formulaC holds in all
those statess ∈ KN which can be reached by “following” the tree interpretationof
the action complementα×β to the leafs. By “to follow” we mean that the normative
structure simulatesstrictly the treeT (α×β). The simulation must be strict so that we
follow exactlythe tree.

Recall the Definition 2.7 of the action complement. The complement of a com-
pound actionα works on each level of the complemented actionα. For the proof of
this lemma it is enough to look at the behavior for only the first level, and for the rest
we apply a similar recursive reasoning. Moreover, note thatwe need to look only at the
leafs of the trees (i.e., at the states from the end of the finalpaths of the tree interpreta-
tion of the complemented action). Thus, the first level in thecomplement contains the
choice+γ∈R γ (defining the full branches; we look at the other full branches when we
reason recursively at lower levels of the tree).

Thus, we need to prove that∀t
γ
−→ t′ ∈ T (+γ∈R γ) with γ ∈ A×B a×-action s.t.

∀αi
××β

j
× a×-action on the first level of the tree of the complemented actionα×β we have

thatαi
××β

j
× 6⊆ γ then it is the case that if∃s

γ
−→ s′ ∈ KN thenKN , s′ |= C. Take an

arbitrary transitiont
γ
−→ t′ for which the above hold and for which∃s

γ
−→ s′ ∈ KN

and we show thatKN , s′ |= C.
From the condition∀αi

××β
j
×, α

i
××β

j
× 6⊆ γ we can conclude that either∀αi

×, α
i
× 6⊆ γ

or ∀βj
×, β

j
× 6⊆ γ. This is done by using the proof principlereductio ad absurdumand

we suppose that neither of the∀αi
×, α

i
× 6⊆ γ nor ∀βj

×, β
j
× 6⊆ γ hold. This means that

∃i′, j′ s.t.αi′

× ⊆ γ ∧ βj′

× ⊆ γ which implies thatαi′

××β
j′

× ⊆ γ. By looking again at the

definition of the×operation we see thatαi′

××β
j′

× must be an action among theαi
××β

j
×.

Therefore, the conclusion that we have just drawn before enters into contradiction with
the initial condition∀αi

××β
j
×, α

i
××β

j
× 6⊆ γ.
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By using one of the hypothesis of the lemma, sayKN , i |= OC(α) we conclude
from the definition of the semantics ofOC that the transition that we work witht

γ
−→ t′

respects the fact that∀αi
×, α

i
× 6⊆ γ and thus in the end state of the transitions

γ
−→ s′ ∈

KN we haveKN , s′ |= C. This is the conclusion of the lemma. 2
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