A Dynamic Deontic Logic for Complex Contraéts

Cristian Prisacarit?, Gerardo Schneid®f

aDepartment of Informatics — University of Oslo, Norway
bDepartment of Computer Science and Engineering — Chalirigrsversity of Gothenburg, Sweden

Abstract

We present a dynamic deontic logic for specifying and resmgpabout complex con-
tracts. The concepts that our contract lagit captures are drawn from legal contracts,
as we consider that these are more general and expressivgltiaais usually found in
computer science (like in software contracts, web sengpesifications, or communi-
cation protocols)CL is intended to be used in specifying complex contracts faond
computer science. This influences many of the design desisiehind’ L. We adopt
anought-to-doapproach to deontic logic and apply the deontic modalitietusively
over complex actions. On top, we add the modalities of dynaagjic so to be able to
reason about what happens after an action is perfor@£&dctan reason about regular
synchronous actions capturing the notion of actidose at the same timé& L incor-
porates the notions of contrary-to-duty and contrary+thjbition by attaching to the
deontic modalities explicitly a reparation which is to béggned in case of violations.
Results of decidability and tree model property are givewalsas specific properties
for the modalities.

Key words: e-contracts, legal contracts, deontic logic, PDL, synofireemantics,
normative structure, decidability, synchronous acti@etipn negation
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1. Introduction

The present paper reports on the state-of-the-art of thie fogcontractsCL. The
goal of CL is to describe and prescribe, at an abstract level, beltsawiocomplex
systems, as for instance concurrent programs, commumiciatielligent agents, web
services, or normative systems. From this point of viéW, needs to be expressive
enough to capture behaviors of such systems. The purpos$gsdbgic is not only
to formalize such behaviors, but also to reason about thefrerefore, we aim at
a decidable logic so to have hopes for automatic verificatising formal tools like
model-checking and run-time monitoring.

More preciselyC £ has been designed to represent and reason about contects (b
ing that software contracts, web services, interfaces,nconication protocols, etc),
and it combines deontic logic (i.e., the logic of obligagppermissions, and prohibi-
tions) [1] with propositional dynamic logic (PDL, the logi actions) [2]. The deontic
part of CL can express obligations, permissions and prohibitions stvactured ac-
tions, as well as what happens when obligations or probitstare not respected. The
dynamic part o€ £ expresses what happens after some action (possibly witpleam
structure) is performed.

A first version of the language. has been presented in [3], where explicit tempo-
ral operators (always, eventually, and until) were parhefsgyntax. An encoding into
a version of the modal-calculus with concurrent actions was used to give sermantic
TheCL language presented in this paper is more expressive anddi@areer syntax
(with no syntactic restrictions); it was first introduced4i. A variant ofCL (without
the propositional constants) was used in [5] for doing fiumetmonitoring of electronic
contracts using a restricted semantics based on tracesiofiacThis semantics was
specially designed for monitoring the actions of the casitng parties at run-time with
the purpose of detecting when the contract is violated. Thegntation of [5] did not
give much explanation nor examples about the intuitionsrizetne choices in the de-
sign ofCL. We do this in the present paper and discuss the full sensaoftitC based
on normative structuresWe focus on the intended properties of the language. This
paper is a revised and extended version of [4], where bepi@sgnting full proofs we
have the following added contributions: (i) a complete neati®n on results concern-
ing the underlying action algebra 6%, (ii) new results concerning the decidability of
the logic, and (iii) further results on its semantics.

In the rest of this introductory section we focus on the infat explanation of the
language and in particular on its design decisions. Thesigiidecisions are biased by
the fact thaC £ is intended to faithfully capture concepts and natural proes from
electronic contracts and to avoid the main deontic parasloxe



1.1. Motivation and design decisions

In this section we motivate the particular choices we madthéndesign of the
CL contract specification language. We compare to related svankl give informal
intuitions and examples.

The design o £ and specially its semantics is driven by the need to expmeds a
reason about contracts. More particulady, needs to talk about obligations, permis-
sions and prohibitions; but more specific, about actionstaadact that such actions
are obligatory, permitted or forbidden. Actions aboundantcacts, (particularly in le-
gal contracts) as for example: “supply false informatidnigtify”, or “pay later”. CL
is working at a rather high level of abstraction and many efdketails of the actions
are abstracted away. In fact, much of the open problems asgilpge continuations for
theC/L logic are gathered around making such details of actionlognd accounted
for in a richer logict

Becaus& L talks about obligations applied to actions it can be inctlideghe class
of logics that take the so called ought-to-do approach tatietogic. But more than
this,C L needs to talk abowthat happens after some actidike in the example “after
notification he must...”. Such notions are captured withRB& part ofCL.

Ultimately CL is a logic which talks aboutomplex actiondecause actions can
have some more structure than just simple names like “pa@lay”, or “drive”. The
minimal structure that appears in most contractsequencin@f actions, where one
must do an action and then do another action, like “lower therhet traffic and then
pay”; and another kind of structuring choices like “one has the choice to pay with
either euro or dollars”. The structure that is particula€ 1bis that ofactions done at
the same timewhich are typically found in everyday contracts, as forragée “drink
and drive” or paraphrasing from our example above “delay rotify”. Our under-
standing of such concurrent actions and the way to abstrant tn a logic is through
the concurrency notion or synchrony. The integration oftake features is not trivial
and was done in an algebraic formalism in [7]. We summarigenhin results needed
for the present paper in Section 2. In what follows we descsitime related work.

We adopt a deontic logic over actions, as started by G.H. veigw[8], and
integrates these deontic operators with the PDL modalitythis sens&€ £ might be
thought of entering the line of dynamic deontic logics astethby J.-J. Ch. Meyer [9],
but this is not the case as (hC the deontic modalities are not expressed in terms of
the PDL modality (or in terms of the modatcalculus [10]). But stillCL has both
dynamic and deontic flavor.

CL integrates a notion of concurrent actions (i.e., the syoryyrand in this respect
it intersects with both works from PDL with concurrent aascand with works in the
dynamic deontic logic community.

Another important notion in legal contracts is that of a r@fian sentence which
is somehow directly related to the obligation or prohibitithat it repairs. This is
somehow related to the well known problem of contrary-ttydiout inCL we are in
the setting of actions and not in that of standard deonticldg C £ the standard notion
of contrary-to-duty takes a flavor of reparations enfordtef @he violating actions.

1For more open problems and research directions see [6].



The purpose of £ is to specify and reason about contracts, therefore it iateg
the normative notions ofbligation, permission and prohibition. These have been
extensively investigated in the deontic logic communitycsi its introduction by von
Wrightin [1]. The deontic notions that we introduceds are different than the ones in
standard deontic logic (SDL) in several respects, as disclis the rest of this section.

(1) The deontic modalities are applied only over actionteiag of over proposi-
tions (or state of affairs). This is known as the ought-taagproach to deontic logic as
opposed to the more classic ought-to-be approach of SDL ouét-to-do approach
has been advocated by G.H. von Wright [8] which argued thahtie logic would
benefit from a “foundation of actions”, since many of the phdphical paradoxes of
SDL would then not occur; a point which is made clear and geeiti [11]. Important
contributions to this approach were done by K. Segerberigfayducing actions inside
the deontic modalities [12, 13] and by the seminal work af.@Ch. Meyer on dynamic
deontic logic (DDL) [9] (see also [10, 14]).

Compared to [9, 10, 15, 16], which also consider deontic riteek (i.e., O, P,
and ") applied over actions, the investigation presented inghjger at the level of the
actions is different in several ways as we elaborate beloe férmalization of the
actions is summarized in Section 2 and thoroughly invewiya [7] where standard
models are defined for actions and completeness resultstatdished. The semantics
of theCL language is based on this interpretation of the actionsedairees.

(2) The action combinators are the standarand- (for choiceandsequencgbut
exclude the Kleene stdr This exclusion is only for the actions appearing inside the
deontic modalities (i.e., the deontic actions); for otheawve allow the Kleenginside
the dynamic box modality as is standard (as see in SectioNahe of the few papers
that consider repetition (e.g. usifigas an action combinator under deontic modalities
[15, 10] give a convincing motivation for having such red@ugractions inside obliga-
tions, permissions, or prohibitions. In fact its use indide deontic modalities seems
counter-intuitive: take the expressioha*) - which, using for now our intuition for
the Kleeng" and the obligation modalit®, is read “One is obliged to not pay, or pay
once, or pay twice in a row, or...” — which puts no actual odligns; or takeP(a*)

— “One has the right to do any sequence of actidr- which is a very shallow per-
mission and is captured by the widespré&zdsure Principlein jurisprudence where
what is not forbidden is permitteld 2]. Moreover, as pointed out in [10], expressions
like F(a*) and P(«*) can be simulated with the propositional dynamic logic (PDL)
modalities along with deontic modalities over actions withthe Kleene staf; an-
ticipating the syntax and semantics that we present laténignpaper, consider e.g.
F(a*) £ [o*]F(a), where all the discussion above holds fobeing the abstraction
of any complex action.

The theory that we develop fa@tZ, i.e., the semantics and various proofs, is al-
ready quite involved without using theinside the deontic modalities. If we were to
add the Kleené to capture some esoteric examples that one might find apgehie
complexity that this would trigger in terms of theory and gi©odoes not justify its
effort.

(3) CL defines araction complemerdperation which encodes the violation of an



obligation. Obligations (and prohibitions) can be viotht®y not doing the obligatory
action (respectivelgloingthe forbidden action). The action complement that we have
is different from the various notions of action negationrfdun the literature on PDL

or DDL-like logics [9, 17, 18, 19]. In [9], as in [17], actioregation is with respect to
the universal relation which for PDL gives undecidabilifyecidability of PDL with
negation of only atomic actions has been achieved in [18]o Aadled “relativized ac-
tion complement” is defined in [19] which is the complemenrapfaction (not w.r.t. the
universal relation but) w.r.t. a set of atomic actions ctbseder the application of some
action operators. This kind of negation still gives undebitity when several action
operators are involved.

In CL the action complemenis a derived operator defined as a function which
takes a compound action and returns another compound aic#igiit is not a principal
combinator like+, -, orx. Intuitively the complement comprises alff the immediate
actions thatake us outsidéhe tree of the complemented action [10].

(4) One difference from the standard PDL is that we consi#gerministicac-
tions. This is natural and desired in legal contracts as s@gdo the programming
languages community where nondeterminism is an importaticm In programming
languages a nondeterministic action can be “send messamgyththe network” which
may have two outcomes: wither the message is received, orésage is not received,
as lost by the network. In contrast, a deterministic actemi( eg. deterministic au-
tomata) has a single outcome. In legal contracts the outodae action like “deposit
100$ in the bank account” is uniquely determinedClhwe take inspiration from the
deterministic PDL which has been investigated in [20]. Deiaistic PDL is undecid-
able if action negation (or intersection of actions) is atide’].

(5) We add a concurrency operatoto model that two actions amone at the
same timeThe model of concurrency that we adopt is the synchrony hafde. Mil-
ner's SCCS [21]. Synchrony is a natural choice when reagoaiout the notion “at
the same time” for human-like actions as we have in legalrectg (opposed to the
instructions in a programming language). Moreover, fronalgrebraic point of view,
synchrony is easy to integrate with the other regular operaton actions (the choice
and the sequence).

The notion of synchrony has different meanings in diffeaetas of computer sci-
ence. Here we take the distinction betwesymchronyandasynchronyas presented
in the SCCS calculus and later implemented in, e.g., ther&@ssgnchronous pro-
gramming language [22]. We understaaslynchronyas when two concurrent sys-
tems proceed at indeterminate relative speeds (i.e., #wgipns may have different
non-correlated durations); whereas in fymchronymodel each of the two concurrent
systems instantaneously perform a single action at eaehitistant. This is an abstract
view of the actions found in contracts which is good for redsg about quite a big
range of properties for contracts, like properties that diotake into consideration the
structure or types of the actions. Such properties wouldt twdy at the interplay of
actions, temporal ordering, choice, or existence of astitihone needs actions which
have durations (e.g., “work 3 hours”) or which are paranie¢er by amounts (e.g.,
“deposit 100$”) ther £ has to be extended accordingly.

Thesynchrony modedf concurrency takes the assumption that time is discrete an



that basic actions are instantaneous and represent thetémeMoreover, at each time
step all possible actions are performed, i.e., the syst@orisiderestagerandactive
For this reason, if at a time point there is enabled an olitigab do an action, then this
action must be immediately executed so that the obligatiomt violated. Synchrony
assumes a global clock which provides the time for all theradjparticipants, parallel
components) in the system. Note that for practical impleatéan purposes this is a
rather strong assumption which offends the popular vieunfprocess algebras [23,
24]. On the other hand the mathematical framework of the lsyory model is much
cleaner and more general than the asynchronous intergpavadel (SCCS has the
(asynchronous) CCS as a subcalculus [21]). The synchrammposition operatox

is different from the classicd|l of CCS.

The synchrony model is better suited feasoningabout concurrent actions than
for implementing concurrency as is the more low-level abyany model. Because of
the assumption of an eager behavior for the actions the sufoihe obligations (and
of the other deontic modalities too) is immediate, makingnthtransient obligations
which are enforced only in the current point in time. One cainpgrsistent obligations
by using temporal operators, like th&vaysoperator. The eagerness assumption facil-
itates both reasoning about existence of the deontic ntatatind about violations of
the obligations or prohibitions.

Regarding the dynamic logic paéf introduces the synchrony operatigion the
actions inside the dynamic modality. Therefo€&, can use dynamic logic reason-
ing about synchronous actions and, from this point of viévwg included in the class
of extensions of PDL that can reason about concurrent actiBBL" with intersec-
tion of actions [25] which is undecidable for determinissicuctures or concurrent
PDL [26, 27] which adopts ideas from alternating automag.[2Zontrasting with
the discouraging undecidability results from aba¥g&, (with action complement and
synchronous composition over deterministic actions msite dynamic modality) is
decidable. This mak&s more attractive for automation of reasoning about congract

(6) CL defines aonflict relation #¢ over actions which represents the fact that
two actions cannot be done at the same time. This is necefssatgtecting (and for
ruling out) a first kind ottonflictsin contracts: “Obligatory to go west and obligatory to
go east” should result in a conflict because the actions “ggi’veed “go east” cannot
be done at the same time (i.e., are conflicting). The secamd &f conflicts that L
rules out are: “Obligatory to go west and forbidden to go Weagtich is a standard
requirement on a deontic logic.

(7) InCL conditional obligationgor prohibitions) can be of two kinds.
a. The first kind is given with the propositional implicatiahy — O¢(«) which is

read as “ifC; is the case then actiamis obligatory” (e.g., “If Internet traffic is
high then the Client is obliged to pay”).

b. The second kind is given with the dynamic box modalit§}O¢ () which is
read as “if actions was performed then actiom becomes obligatory” (e.g.,
“After receiving necessary data, the Provider is obligedffer password”).

(8) Regarding the deontic modaliti€s, includes directly in the definition of the



obligation and prohibition theeparationsin case of violations. The deontic modalities
areO¢ andF¢ whereC is a contract clause representing the reparation. This lntue
notions of contrary-to-duty obligations (CTDs) and congrto-prohibitions (CTPs) as
found in deontic logic applied over actions like DDL [9, 14]These notions are in
contrast with the classical notion of CTD as found in the Sidérature [29, 30]. In
SDL, what we call reparations are secondary obligationgkwhold in the same world
as the primary obligation. In our setting, where the actibanges the context (the
world), one can see a violation of an obligation (or prohdsi} only after the action
is performed and thus the reparations are enforced in thewad (in the changed
context).

The approach of £ to contrary-to-duty rules out many of the problems faced by
SDL (like the gentle murderer paradox). On the other handésdnot capture the
wording of the SDL examples. In the end of Section 4.1 we mriees stand o€ L
w.r.t. some of the most important paradoxes of SDL.

(9) Standard deontic logic SDL, and other variants of it,sider one of the three
deontic modalities as primitive (usually or P) and the other two modalities are de-
fined in terms of this primitive one using the propositionpéoators. To the contrary,
the deontic modalities areot interdefinablén CL. Only some of the implications that
SDL makes hold i€ £, and we discuss these in Section 3.2.

(10) Thesemanticof CL is given in terms ohormative structureand it is spe-
cially defined to capture several natural properties whiehfaund in legal contracts.
These are motivated (with examples) in Section 4.

A work, close in many respects with our work here, was regeptesented in
DEON [31] and is, like us, essentially inspired by [12] an@][1Their work is partic-
ularly appealing because of the neat algebraic presentatimreover, [31] carefully
investigates the different axiomatizations of permissiand prohibitions, where small
differences in the intuitive understanding of their reda are being explicitly formal-
ized by the set of characterizing axioms. Neverthelesg,lihise their nice presentation
on a simpler set of actions, which are characterized by ttelynbehaved Boolean al-
gebra. Because of this they do not investigate sequencegiohs, and also do not
have an easy transition to the dynamic actions (i.e., thelaegynchronous actions
including the Kleené, as we do with the synchronous Kleene algebra formalization
Another difference witl€ £ is that [31] defines obligation in terms of permission, which
is not the case iI€L. At the semantic level, the same notion of markers as we have
in normative structures are used in [31] only that they haweoge algebraic view of
the sets of markers related to the interpretation of theastin the spirit of Boolean
algebra, as opposed to our interpretation in the spirit eelie algebra.

2. Synchronous Actions

In this section we present the formalism of the synchronatisms that are the
basis of theCL logic. We provide here important results about synchrorsmti®ns
needed in later sections when giving the semanticsfWe introduce actions grad-
ually, first definingdeontic actionavhich will be the actions used inside the deontic



(1) a+ (B+7)=(a+pB)+y (10) ax(Bxy) = (axf)xy

@) a+p=8+a (11) axp =fBxa
B)a+0=0+a=« (12) axl=1xa =«

@ ata=«a (13) ax0=0xa =0
B)a-(B-v)=(a-B)-v (@b axa=a Vae€ Ap
6)a-1=1-a=«a 15) ax(B+7v) =axB+axy
7 a-0=0-aa=0 (16) (a+ B)xy = axy+ Bxy

) a-(B+y)=a-B+ay (17) (ax-a)x (B - B) = (axx Bx)-(ax B), Vax, B € Ap
) (@tB) vy=av+8 v

Table 1: Axioms of action equality.

modalities. These actions are then enriched waisand the Kleené operator, be-
coming, what we calldynamic actiondecause these will be used inside the dynamic
box modality ofCL. All these actions are callesi/nchronou®ecause all include the
synchrony operator that we mentioned in the introduction.

Definition 2.1 (deontic actions). Consider a finite set dbasic(or atomic) actionsd
(denoted by, b, c,...). The special action®,1 ¢ Ap are called respectively the
violating and theskip actions. The action combinators are+" for choiceof two
actions, “” for sequenc®f two actions (or concatenation), anck*for concurrent
composition(synchronously) of two actions. We generally @@mpound actionéor
just actions) terms ofA” (denotedw, 3,7, ..., possibly primed, double-primed, etc.)
obtained from basic action®, and1 using the action combinators. We calhctions
denotedn, By, 1« (possibly primed, etc.) the subset of actiotis ¢ AP generated
from Ap using only thex constructor. The actions defined here will be referred to as
deontic actiongind can be seen as generated by the grammar below:

o = a|0|1|axala-a|a+a  (deontic actions)

To avoid unnecessary parentheses we use the followinggeace over the combina-
tors: + < - < x. Table 1 axiomatizes the equality between actions.

Actions as presented here are related to the more geneehlralg structure called
synchronous Kleene algebia [7]. Note that0,1 ¢ A% and the inclusion of sorts
Ap C A5 c AP. Also note thatd’; is finite up to the application of the axioms,
becaused g is finite andx is idempotent over basic actions; see axiom (14). Because
of the idempotence we take the liberty of usingo compare elements of’,, asoy
can be seen as the set of basic actions that compose it¢ehdz axbxcora € bxc).

We will say thats is biggerthana whenevern C 3. So, in the example abovexbx ¢
is bigger tharu x b.

In the rest of the paper we consider the 4&f up to the application of the axioms
of Table 1. Particularly, only axioms (10), (11), and (14¢ applicable to<-actions
(i.e., when we talk about-actions we talk about the representative of an equivalence
class ofx-actions w.r.t. axioms (10), (11), and (14)). This repréagve is the minimal
one, likea x b instead ofa x bx b or a x bx bxb. This is also why thed’; is finite.

With CL we are reasoning about the structure of the complex actighsre the
particular atomic actions ofl z are abstracted away to being just some symbols; these



can be made concrete by the user, as for example in progragriariguages where
each assignment that the program makes is one atomic adtidegal contracts an
atomic action can be, e.g., “Client pays 100$".

Intuitively, we consider that the actions are performed dmynsbody (being that a
person, a program, or an e-agent). We talk about “performatigns” and one should
not think ofprocesses “executing” actiorend operational semantics like in SCCS; we
do not discuss operational semantics nor bisimulationvadgnces in this paper.

Definition 2.2 (conflict relation). Consider a symmetric and irreflexive relation over
basic actions4 s calledconflict relationand denoted by#: C Ap x Ag.

Theconflict relationis a notion often found in legal contracts and is given a prior
The intuition is that if two actions are in conflict then the&ians cannot be done at the
same time. This intuition explains the need for the follogvéguational implication:

(18) a#cb—axb=0 Va,be Ap.

There isno transitivityof #¢ which is natural as also shown by the following
example: action “drive” may be in conflict with both “drink’hd “talk at the phone”
but still one can, legally, “drink and talk at the phone” a¢ ttame time, though not
possible physically.

From an algebraic point of view, the purpose of thfe relation is to add more
structure on the algebra that was not there before (only fraproperties of the op-
erators). This extra structure comes from outside, fromespnoperties given by an
oracle (by the user) on the generators of the algebra (ireth@ basic actions). By
more structure is meant that new equalities hold dependintp® information given
through+#¢ . The purpose of#. is different than what is sometimes done in algebra:
eg., on an idempotent semiring one defines a relation g iff « + 8 = S in terms
of some special structure on the algebra, and studies thististe by studying this re-
lation instead (eg.< is reflexive, which means that the properties of th@perator
are such that + o = «, i.e., idempotence). In the case ¢ we do not define it in
terms of some existing structure (and properties) in thekalg (i.e., in terms of some
equalities likeaxb = 0), but we usef#t- to impose some more structure on the algebra.
Therefore we added the equational implication (18).

Definition 2.3 (canonical form). We say that an action is in canonical form de-
noted by, iff itis 0, 1, or has the following form:

£ +ier (ai Oé_z)

o
where
a. ol £ ol foralli,j e I;
b. foralli € I, either
(@) of, € A5 anda’ € AP\ {0, 1} is an action in canonical form, or
(b) o € A5 U{1}anda’ is absent (i.e., when no morapplications exist).



Note that! does not contain twice the same actigrfor anya € Ap andi € I,
as itis part of4’;, thus,axa is notin canonical form, but andaxb are. The indexing
set! is finite asA’; is finite andal are different. The purpose of the constraints in
Definition 2.3.b is to not allowd to appear in the canonical forms, except for some
very special cases: either the whole actioe= 1; or 1 appears in a summation with
other actions as summands. All other possible appearafdeare disallowed by this
constraint 2.3.b. Particularly, 2.3.ba does not allowséalone to bel and 2.3.bb says
that aa! € A% is allowed to take the value (which was not the case before, as being
defined fromA4’;) only in the case when it is not followed by any other action.

Example 2.1 Consider the complex action = (a + b) - (¢ + d) which is not in canonical
form but is equivalent to the canonical fomn= a - (c+ d) + b - (c + d) (obtained by applying
axiom (9)). On the other handis equivalent also ta-c+a-d+b-c+b-d(obtained by applying
axioms (9) then (8)) which is not in canonical form becaugedbnstrainf in Definition 2.3 is
not met as: appears twice as first element in the summation.

Related to the constraints in Definition 2.3.b the acfiom is not in canonical form because
of 2.3.bb (and neither i+ 1 - @), and actiorz - 1 is not in canonical form because of 2.3.ba (and
neither isb + a - 1), but actiona + 1 is in canonical form because there is nothing following the
branch represented liyand therefore the constraint of 2.3.bb allows this brandbetb. From
the same reasons the action(1 + b) is also in canonical form. O

Theorem 2.4 ([7, Th.2.8]). For any« there existgy in canonical form s.ta = a.

The proof in [7, Th.2.8] actually shows how to construct th@anical form of a
given action in an algorithmic fashion.

In rewriting theory, taapply an axiommeans to apply the rule obtained from direct-
ing the axiom, in our case we direct the axioms from left thitigee [32] for details
on rewriting theory.

Theorem 2.5. For a canonical formy = +;¢; of - o' only axiom (8) can be applied
(and none other of the axioms of Table 1), modulo assodiativid commutativity.

Proof: Note first that we work modulo associativity and commutéagiaf + andx,
and modulo associativity for(thus we do not consider axioms (1), (2), (5), (10), (11)).
The remaining axioms of Table 1 are considered directed fedino right.

In the rest of the proof we argue only for the first level of theanical form because
the definition is recursive. The same arguments, applied im@uctive manner, hold
for the smaller subactiong in canonical form.

Axiom (3) is not applicable becausé cannot bed and neither can’ because of
Definition 2.3-b.(a). Axiom (4) is dealt with by the conditiin Definition 2.3-a. The
left part of axiom (6) cannot be applied because of the camtin Definition 2.3-b.(a)
which makesy’ # 1. The right part of (6) is not applicable becaugge# 1 whena®
exists. Similar arguments using the c.(a) constraint aghow that axiom (7) is not
applicable. Clearly, axiom (9) is not applicable to a canahiorm. Axioms (12) and
(13) are dealt with by the fact that, are from.A’; (contain only basic actions). Axiom
(14) is taken care of by the same argument. The main purpdbe chnonical form is
to make sure that the axioms foflike (15), (16), (17)) are applied exhaustively to the
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original action, and cannot be applied any more to the caabférm. In other words
the axioms (15), (16), (17) push tkénside the action until it reaches the basic actions.
a

The following corollary is immediate from the proof of Theon 2.5 (applying
axiom (8) to a canonical form breaks the canonicity).

Corollary 2.6. The canonical form of an actiom is unique(modulo associativity and
commutativity).

For the deontic modalities, one important notioadsion complementn our view
action complement encodes the violation of an obligatisw{@ see later in Section 3).
Intuitively, we say that the complementof action« is the action given by all the
immediate actions whictake us outsid¢he tree ofa. This view was aired in [10]
but no formal definition was given. In our case we need to detd synchronous
actions too. The notion of action complement that we giveeshadeas with [9] but it
is not restricted to respect all the axioms of [9]; we wanicactomplement to capture
naturally what it means to violate an obligation in an eagstesn (where no idling is
possible). Withu it is easy to formally definer.

Definition 2.7 (action complement). Theaction complemenis denoted byy and is
defined as a function : A” — AP (i.e., action complement is not a principal combi-
nator for the actions) and works on the equivalent canorficah « as:

+ Bt + (B T+ )
il B.cR = i€l)

ConsiderR £ {al | i € I}. The sefR contains all the<-actionsg, with the property
that none of the actions!, are included in3.:

R= {B| B Ay andVi € 1,0l Z B}

andy! € A} and3af € Rst.ol C ). The indexing sef; C I is defined for each
j € Jas:
12 el ol g}

Complement of is 0 = 1 and complement d@f is 1 = 0.

The complement operation formalizes the fact that an adiowt performed. In
an eager system not performing an action means that someaatti@n is performed
(because the system is not allowed to idle). For a complérrathis boils down
to either not performing any of its immediate actioms or by performing one of
the immediate actions and then not performing the remaiattgpn. Note that to
perform an actiom means to perform any action that includes Therefore in the

complement we may have actiopSwhich include more immediate actions.

Example 2.2 Consider the complex action = a - b + ¢ - d, with Agp = {a,b,¢,d}, and
assume to perforn‘yﬁ = axc. At this point we need to look at both actiohsndd in order

11



to derive the complement, e.g. performing néwneans thatv was done, whereas performing
means thatv was not done (and x ¢ - ¢ must be part of complement). m|

Our intention is to define theinimalaction that describes the complement of some
«; with the idea that the complement is an action thahediatelytakes us outside the
tree ofo. By minimal we refer to the number of single-step actions ésrwe define
later, thdengthof the complement should be minimal; i.e., the length oféigLences).
As soon as an action steps outside the tree thfere is no point in describing the rest
of the actions that may follow, because no matter which tlagsghex still remains
not done. In this way, as shown in Proposition 2.8, the aatmmplement does not
have infinite sequences of actions, and at the same timecdhiplement is enough
to describe what it means to violate an obligation and, hegrables us to determine
where the reparations should be placed (see related datailsn the semantics of the
deontic modalities).

Example 2.3 We give some simple and illustrative examples for actionglement. Consider
Ap = {a,b}, then:a = b; a-b=b+a-a, b+a-b=a-a, 1+a=0. O

The following result states that our notion of action compéat always produces
an action in canonical form.

Proposition 2.8. The complement operation returns a (finitely describedntie@c-
tion which is in canonical form.

Proof: For the first part of the proposition we prove tiaahas no infinite application
of the + constructor (we say “no infinite branching”) and also no iiéirmpplication
of the- constructor (we say “no infinite depth”). In both cases weiodaction on the
structure of the action complement. The basis of the indads clearly satisfied &3,
1, and alla € A have both finite branching and finite depth.

R is finite becaus&k C Aj;, where A, is finite, and thust; 5 B« is finitely

branching. The indexing set is finite (having maximum sizeA%|) thus+;c s ~
is finitely branching. Lastly, the indexing sef$ are finite subsets of thé, hence
+ier o' is a subaction ofv. Thus we apply the induction hypothesis to it and deduce
that its complemenheljf_ o is finitely branching, for any’; C 1. We conclude that
a=+5 5 Bx + +jes Wi - Fier «t is finitely branching.

It remains to prove that has no infinite depth. The first part of the action comple-
ment (i.e.,.+, . Bx) introduces only branches of finite depth 1. For the secomt pa

(e, +jes - +ier ') we can apply the induction hypothesis{@eq o' because,
as we discussed before, this is a subaction.ofhus, we have that eaahiefjf, o' has

finite depth. These are concatenated tm@bactions which have depth 1, thus, making
all the second choice of finite depth, and hencedtas finite depth.

For the second part of the proposition it is easy to see tlaattion complement
respects the canonical form. Action complement is a chofcgequences, each se-
quence being either a singteaction (i.e., fromt, 5 B.) or anx-action~y;, followed

by another actiorh-e[]z ' which we know by induction that is in canonical formd
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(i) (if) (iif) (iv)
Figure 1: Trees corresponding®1, a € Ag, andaxb € A%,.

An important result from [7] that we need later is the intetation of the deontic
actions as rooted trees.

Definition 2.9 (rooted tree). A rooted tree with labeled edgisan acyclic connected
graph (N, &, Ap) with a designated node called root node. \V is the set ofnodes
and¢ is the set oflabeled edgebetween nodes (in graphical notatian-+ m). The
labelsa € 247 are sets of basic labeld_abels are compared for set equality (or set
inclusion). Note the speciaimpty setabel. We consider a special labglto stand for
an impossible label. We restrict our presentatioritote rooted trees (i.e., there is no
infinite path in the graph starting from the root node). Theafell such defined trees
is denotedr .

Notation: When the label of an edge is not important (i.e. it can be aogl)ave may
use the notation — m instead ofn —~ m Va € 245. Each node ifm |n — m}
is called achild node ofn. We denote byn| thedepthof the noder in the tree; which is
the number of edges needed to readlom the root. A path of atree is denoted= T'.
A path which cannot be extended with a new edge is cdiled. The final nodes on
each final path are calléeaf nodesdenoted byeafs(T') = {n | nis a leaf nodé. The
heightof a tree, denotetl(T'), is the maximum ofrn| for all the leaf nodes. We write
Ty = T> when two trees are equal modulo renaming of the nodes (@mdgphic).

Theorem 2.10 (interpretation of deontic actions [7]). For any actiona there exists
a tree representation corresponding to the canonical farm

Proof: Therepresentatioris an interpretation functiof : AP — 7 which interprets

all actions as trees. More precisely, given an arbitrarjoaadf AP, the canonical
form is computed first and thefi generates the tree representation of the canonical
form. Because the canonical form of an action is unique, ofoltary 2.6, the tree
representation is indeed a function. We do not give an dlyorfor computing the
canonical form as one may simply apply exhaustively all tieras excluding (8).

The functionT is defined inductively, on canonical forms only. The basishef
induction is to interpre®, 1, and eaclx-action of.A}; as a tree with edges labeled from
245 as pictured in Fig. 1. Recall that actions4f, U{0, 1} are in canonical form. For
ageneral action in canonical form= +,c; -« the tree is generated by adding one
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{r} {d,n}

{} {r}

Figure 2: Tree interpretation for- b 4+ (dxn) - p - p.

branch to the root node for each elemeff the top summation operation. The label
of the branch is the sdi’} corresponding to the-action. The construction continues
inductively by attaching at the end of each newly added birdhe tree interpretation
of the smaller action’. Intuitively, + provides the branching in the tree, antovides
the parent-child relation on each branch. ]

Example 2.4 Consider the interpretation of the actipnb + (dxn) - p - p as the tree pictured
in Fig. 2. m|

We now extend our grammar of actions with new constructs,atathe Kleene
star and tests.

Definition 2.11 (dynamic synchronous actions) The dynamic actions add to the de-
ontic actions the Kleene staroperator and a set oBoolean testslenoted4’. The
elements of the set” are calledtests(or guard3 and are included in the set of actions
(i.e., tests are special actions). Tests are generated &dimite setA’; of basic tests
We denote tests hy (possibly indexed) and basic testsdayThe dynamic actions are
constructed with the grammar below:

0
4

ale?|6+36]6-0]%xd |8 (dynamic actions)
o101 [o+ole-olexe| ¢ (tests)

A
A

Note the overloading of the operatofs -, %, and constant®, 1: over arbitrary
actions they have the meaning as before, whereas, ovethegttake the meaning of
the well known disjunction (for), conjunction (for- andx), falsity and truth (foro
and1). The behavior over tests is given by the axioms that areireduwhich are
those of Boolean algebra. In particulagndx respect different axioms when applied
to normal actions, though in the case of tests they turn obat@ the same behavior,
acting both as a Boolean conjunction. This is cleandoand probably less intuitive
for -. The reason for the latter behaving as a conjunction is thetking two simple
tests in sequence is independent on which one is testedéirte result is the same as
checking their conjunction (see details in [7]).
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In [7] it was shown how it can be associated to any dynamiclsyormus action an
automaton on guarded synchronous strindss is similar to the interpretation as trees
that we gave for deontic actions. The completeness res{iff @hsures that working
with the dynamic synchronous actions or with the automatguarded synchronous
strings is the same (they are interchangeable). This resnlbe instantiated to deontic
actions to ensure that working with the deontic actions o ieir tree representations
is the same.

Definition 2.12 (guarded synchronous strings) Over the set of basic testd}, we
defineatomsas functionss : A% — {0,1} assigning a Boolean value to each basic
test. Consider the finite alphab&t = 24z \ {()} of all nonempty subsets of basic
actions (denoted, y). Aguarded synchronous strifdenoted by, v, w) is a sequence

w = VTV ...TpVp, N >0,

wherey; are atoms. We definérst(w) = vy andlast(w) = v,. Denote byAtoms =
{0, 1}““73 the set of all atoms. We call asynchronous string guarded synchronous
string stripped of all the atoms; (i.e., the synchronous string associated with the
aboveisjustry ... xy,).

Proposition 2.13 (automata for guards [7]). Anautomatord = (S, X, So, p, F') con-
sists of a finite set of statéstogether with a transition relatiop between these states
which is labeled by letters from the alphal¥t An automaton accepts sets of strings
(also called the language of words accepted by the automatbere each accepting
string is the sequence of labels coming from a sequence mditi@ans where the first
transition starts in an initial state fronSy and the last one ends in a final state frdm

For the set ofdtoms there exists a class of finite state automata which accept all
and only the subsets of atoms. We denote the set of all sucmat# byM and one
automaton byl € M.

We can now give the representation of the dynamic synchr®iaations as the
two-level hierarchical automata defined below.

Definition 2.14 (automata on guarded synchronous strings)Consider a two level
finite automatond9 = (5,3, So, p, F,[-]). It consists at the first level of a finite
automaton on synchronous string$ X, So, p, F'), together with a magp-] : S — M.

An automaton on synchronous strings consists of a finite fsstatessS, the finite
alphabet: = 242\ {()}, a set ofinitial designated stateS, C S, atransition relation
p: X — S xS, and a set ofiinal statesF’. The mapping-| associates with each state
on the first level an automatall € M as defined in Proposition 2.13 which accepts
atoms. The automata in the states make the second (lowel) [Renote the language
of atoms accepted by with £([s]).

Theorem 2.15 (interpretation of dynamic actions [7]). For any dynamic action there
is a corresponding automatoA? (§) which accepts the same set of guarded syn-
chronous strings that describes.
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Figure 3: Automaton on guarded synchronous stringggorb)* + (dxn) - ¢? - p - p. The picture omits
L([t;]) = M(Atoms) wheni € {2,3,4,5,6}.

L([t1]) = M(p)

{r}

to
%p}
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Example 2.5 Let us consider the automatotf’ () for the dynamic synchronous actién=
(p-b)* + (dxn) - ¢?-p-p, depicted in Fig. 3. ThelY(§) automaton has in statg (on the
second level) an automatay (¢) corresponding to the test which accepts all and only the
atoms that constitute a satisfying interpretationgorin all the other states af9(5) we have
the trivial automaton foiT that accepts any atom. m|

3. Deontic Modalities over Synchronous Actions

In this section we introduce the deontic part of thé logic and we work only
with deontic modalities over synchronous actions (and theetying propositional
language).

Definition 3.1. The deontic expressions of tG&€ logic are constructed by the gram-
mar below:

C

«

¢ | Oc(a)| Pla) | Fe(a) |[C—C | L (deontic formulas)
al0]l]axa|la-ala+a (deontic actions)

We call an expressiod a (general)contract clause A contract clause is built
using the classical propositional implication operater where the other operators
A, V, -, 4>, T, @ (exclusive or) are expressed in terms-efand_L as in propositional
logic. The building blocks of a contract clause are the psitimmal constante drawn
from a finite setb 3 and the deontic modalitieSc (o), P(a), andF¢(a).2 These rep-
resent respectively the obligation, permission, and fitibih of performing a given
actiona. Intuitively O¢ () states the obligation to perform and thereparationC in
case the obligation igiolated i.e., whenevet is not performed. The reparation may

2For this article, where the examples ®f formulas are not big, the notaticRc and F¢ is pleasing
and intuitive; but in the bigger examples these may be clotjeand undesired. In such a case a user
may choose a different notation, like(a)[C, and an example Iiké)Fcl (8)AC, (@) would look nicer as

O(a)[((F(B)[C1) ACa).
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be any contract clause. The modalidy («) (resp. F¢(«)) represents what is called
CTD (resp. CTP) in dynamic deontic logic. Obligations witlhoeparations are writ-
ten asO (o)) where L (and conversely’) is the Booleanfalse (respectivelytrue).
We usually writeO(«) instead ofO, («). Obligations with no reparation are some-
times in the literature calledategoricalbecause they must not be violated (i.e., there
is no reparation for their violation, thus a violation wowie violation of the whole
contract). The prohibition modalit§¢ («) states that the actiom is forbidden and in
case the prohibition is violated the reparatiis enforced. Note that it is possible to
express nested CTDs and CTPs. Permissions have no reparasisociated because
they cannot be violated; permissions can only be exerciBeellogical expressions of
CL are interpreted over Kripke-like structures which we calfmative structures

Definition 3.2 (normative structure). Anormative structuris KV= (W, Ryap,V,0)
where:
e W is a set ofworlds(also called states);
¢ 245 contains thdabelsof the structure as sets of basic actions from the finite set
Ap. Roap : 248 5 2WV>XW returns for each label gartial functionon the set
of worlds (written as a relation);
e V: ®&p — 2" is avaluation functiorof the propositional constants returning a
set of worlds where the constant holds;
e o0: W — 2% is a marking function which marks each world with markersrfro
U = {o4,e, | a € Ag}. The marking function respects the restriction that no
world can be marked by both, ande,, for anya € Ap.
A pointed normative structuiis a normative structure with a designated wotld
(denoted by KV, 1)).

We denote by an indexeda node of a tree (or by the root) and by an indexed
(ori for initial) a state of a normative structure. We use the biegd notations —— s’
for the transitions of the normative structures too. We dames abuse the notation by
writing s € KV fors e Wof KV, ands - s’ € KN for s - s’ € Rya,, of KV,
Note that we consider both the tree from before and the narenstructures to have
the same set of basic labelss.

K is deterministicas for each label from one world there is at most one successor
world; i.e., the partial function requirement. We use deieistic structures because
in the deontic realm, as in legal contracts, each actioe (lileposit 100$ in bank ac-
count”) must have a well determined behavior (i.e., theoastido not have a nondeter-
ministic outcome). The deterministic restriction of Krgktructures was investigated
in [20]. The marking function and the markers are neededéatity obligatory (i.e.,
o) and prohibited (i.e.e) actions. Markers with different purposes were used in¢9] t
identify violations of obligations, in [15] to mark permed transitions, and in [16] to
identify permitted events.

As an example let us consider the normative structure in &igvhich has five
states and two constant propositiehs = {¢, ¢’'}. The valuation function assigns to
each proposition a set of states, eW¢) = {s1, s3, 55}

A first difference between normative structures and thedstethKripke structures
is that the labels in normative structures can be sets; irdRigere is one transition la-
beled by{d,n} (i.e., Ryay ({d,n}) = {(s1, s2)}) and two transitions labeleg} (i.e.,
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Figure 4: Example of a normative structure.

Roap ({p}) = {(s2, s3), (s3,54)}). The second difference is that normative structures
have a marking function, and in our example it maskdy {o,,, 04}, s5 by {e;}, and
s3, s4 by {0, } each.

A normative structure has essentially two components:aheléd transitions (re-
lated to the actions that can be performed from each state)renmarking function
(related to obligations and prohibitions). Without the kiag function we are in the
known setting of Kripke structures where an action logie like propositional dynamic
logic PDL is what we need to talk about the labeled trans#tjom., about the actions
and their regular structure. This is enough to talk abougjms and their execution,
nondeterminism, or loops.

In order to talk about which actions are obligatory and wtdoh forbidden we in-
troduce the marking function. This decorates the stateheKripke structure with
markers, giving rise to what we called normative strucfuteone needs to talk only
about executions of actions, then the markers are supesfligut if one needs to talk
about which executions are respecting and which are vimjatbme obligation of a
complex action, then the markers come into play. In fact,pgose of normative
structures is to give a representation to a contract (@@btigations and prohibitions),
and this is what we investigate in this paper. Talking abohictv traces of actions
respect or violate a contract was done in [5] and that workighbave formal con-
nections with the present, but these are still work in pregiréSee [6, Sec.4.4.1] for
preliminary results in this direction.)

Remarks: the markers of can be seen as special propositional constants, i.e.,
¥ C dp, and the marking function as part of the valuation functiGuoir choice is to
separate these, as the markers have different purposetieprapositional constants
and the valuation. The purpose of the valuation is to reptetse outcome of the
actions, whereas the purpose of the markers is to reprdsaebntic content of the
actions (i.e., which actions are obligatory, permitted farbidden). Moreover, the
presentation of the semantics@®f is more clean.

In order to relate the semantic domain of our language wetutiderlying algebra
of actions on which the deontic modalities operate on, wegiike a formal relation-

3To be precise, a normative structure is also deterministigreas a general Kripke structure may not.
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ship between normative structures and trees through amotisimulation.

Definition 3.3 (simulation). For a treeT = (N, &, Ap) and a normative structure
KN = (W, Ryay;, V, 0) we define arelatiolS € A x W which we call thesimulation
of the tree node by the state of the structure:

tSs iff Vi—t' €T, Is1s' e KN st.yCH AE'Ss’, and

Vs—s' e KN withy C+/ impliest’ S s'.
We say that a tre@, with rootr is simulated by a normative structuféV w.r.t. a state
s, denotedl’ S, KV, if and only ifr S s.

Note two differences with the classical definition of sintida: first, the labels of
the normative structure may be bigger (a superset) tharabiedd in the tree. This can
be intuitively motivated by the idea that respecting angdtibry action means execut-
ing an action which includes it (is bigger). We can drop thosdition and consider
only v = «+/, in which case we call the relati®trong simulatiorand denote byS* .
The second difference is that any transition in the norreativucture that can simulate
an edge in the tree must enter under the simulation relafibis is because from the
states’ onwards we need to be able to continue to look in the struéturtae remain-
ing tree (to see that it is simulated). Trivially, any straigulation relation is also a
simulation relation. We can weaken the definition of simalaby combining the two

conditions into:vt — ' € T, Vs —— s’ € K™V with v C 4/ thent’ S 5. We call the
resulting relatiorpartial simulationand denote it bysS .

Example 3.1 Consider the tree from Fig. 2 and denote itB{ey) wherea = p-b+ (dxn)-p-p.
This tree is simulated by the normative structlifé” of Fig. 4 w.r.t. the state;. It is easy to

check thatr S s;: for the edger e} t4 we find in KV the transitions; ey s4 that respects

the inclusion of labels. We also have thatS s4 since for the only edge; 2N ts there is the

transitions, ﬂ s1in K% simulating it (the second constraint from the definitioniofiglation

is satisfied trivially fort4 AL t5 because there is no other transition frepin K*V). Moreover,

for the edge- el t4 the second condition for simulation is satisfied becausestiseno other
transition froms; with a label that includegp}. For the second edge )4 we find the
transitions; Y s9 in KV that respects all the simulation conditions (checkingetisglone
as before). If we were to change the label of the transitianss) to {p} then the tree would
still be simulated but it would also tsronglysimulated.

Consider a simpler example of a tr€€b) interpreting the basic actidn This too is strongly
simulated by the structurg™ w.r.t. s; because, for the only edge of the tree labeled With

we find the transitions; RLIN s5 which has exactly the same laheind the leaf node of the
tree is trivially simulated bys because there are no edges out of it (note that this holdsjor a

leaf node of a tree). On top, the second simulation conddisn holds because the only other

transition that has a label that includeis s b} s4 and for this transition, trivially simulates

the leaf node. O

Given a tree that is simulated by a normative structure, weisiglate a maximal
substructure of the latter that simulates the given treewAwwill see later, it is also
useful to identify what parts of the normative structure dbsimulate the tree, giving
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place to what we call the non-simulating remainder of thecstire. These notions are
formally defined in Definition 3.4 and 3.5.

Definition 3.4 (maximal simulating structure). For a treeT" that is simulated by a
normative structurésV w.r.t. the state (in notationT’ S; K*V), we denote byx .7 =
(W', Ri,.,, V', ¢') and callthe maximal simulating structure w.rf.and: of KN the

maximal sub-structure dt* respecting the following, wheie”V = (W, Ryap, V), 0):

a.i €W,V =V ando = gl

b. Vt—st' € TthenVs —»s' € KN st.tSsAy Cy At'Ss'
o 4
s'eWands——s' € R4, .
Definition 3.5 (non-simulating remainder). We call thenon-simulating remainder of
KN w.rt. T andi the sub-structurd(%;i, = (W”, R, V", ") of KN thatis max-
imal and respects the following:
a. s—s" €Rl,, iffs—s" ¢ KII Ase KLi NJs—»s' € KDL

/!
AR

b. s € W"iff s is part of a transition inR
c. V' =V|wr, andg” = olw.
For the two formal definitions above consider the followixgmple.

Example 3.2 Take the simple actioh with the trivial treeT’(b) which has only one edge

MELIN t1. We have discussed above that this tree is strongly sintllatehe structure w.r.t.

nodes; of the normative structure in Fig. 4. The maximal simuIal:i!lngpcturngzﬁf’gZ’S1 is the
substructure obtained frody*" by deleting the states, andss (and the associated transitions
too) as well as the transitiosy 5 5. The non-simulating remainder structure is obtained
from KV by deleting the worldss, s4, andss. For the more complex action from Fig. 2 the
non-simulating remainder is the substructure that hastbelyvorldss; andss and the transition

between them. O

Intuitively, the maximal simulating structure capturdsaald only those transitions
from the initial normative structure that enter in the siatidn relation w.r.t. a tree.
The non-simulating remainder structure captures all thi@sesitions that do not enter
the simulation relation but that somehow relate to (or sate)lthe complement of
the tree (or only that part of the complement tree that is &ribrmative structure
that we talk about). Anticipating the semantics, the maxisiraulating structure is
used for marking states withmarks, whereas the non-simulating remainder is used to
determine which state should necessarily not be markedewnafords, the maximal
simulating structure has all and only those transitionsiftbe normative structure that

“Note thatt’ S s’ actually follows from the first two requirements§ s A v C +/). We mention it in the
definition for the convenience of the reader, because it pomant to keep in mind that the states that the
definition recursively visits are all simulating some nodéhie tree.
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KN ik iff i € V(p).

KN ik L

KN i |=C1 — Co iff wheneverK™V i |=C; thenKV i = C,.
KN il=0c(a) iff T(a) S; KV, and

Vit € T(a),Vs—=s' € KN sttSsAy C+,
Va € A if a € ytheno, € o(s’), and
Vsihs’ € KTTE(T%)’i,
Va € Ap if a € v/ theno, & o(s’), and
KN sl=C Vse KN withtS®s At e leafs(T(a@)).
KN il=Fe(a) iff T(a) S; KV then
Vo € T(a) afinal path s.te S; KV,

Vi 5t eo,Vs - s e KN withtSs A~y C+/,
Va € Ap if a € v/ thene, € o(s’) and
KN sl=C Vse KN withtSs At e leafs(o).
KN il=P(a)  iff T(a) S; KV, and

Vi 5t € T(a),Vs 2 s € KN sttSsAy C+,
Va € A if a € ythene, & o(s).

Table 2: Semantics for the deontic modalities over synabusractions.

enter the simulation relation. The non-simulating remairttas those transitions that
did not enter in the simulation relation but which are dilgconnected to the maximal
simulating structure.

We have now all the necessary definitions to introduce th@séos of our deontic
modalities over synchronous actions.

Definition 3.6 (semantics).We give in Table 2 a recursive definition of gedisfaction
relation |= of a formulaC w.r.t. a pointed normative structurgk™' | i); it is written
KN i = C andis read as € is satisfiedin the normative structuré™ at statei”.
We write KV i = C wheneverk™ i = C is not the case. We say that ‘is globally
satisfiedin KV”, and write KV |= C iff Vs ¢ KV, KV, s = C. A formula is
satisfiableff 3KV, 3s ¢ KN s.t. KV, s = C. A formula isvalid (denoted= C) iff
VEN KN = C.

The propositional connectives have the classical sensanfitore interesting and
particular to our logic is the interpretation of the deomtiodalities.
For O¢ the semantics has basically two parts:

e The first part of the semantics is the interpretation of thegakon.

— The first line says how to walk on the structure depending ertitbe of
the actiona. The test for simulation must succeed, which means that all
the tree of the action is found in the structure also. The kitian relation
is used because in the structure there may be transitioptethlvith ac-
tions that are greater than the actionsirwhich intuitively, if we do these
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actions then the obligation ef is still respected. The simulation relation
also takes care that all the choices of an action appearrastioas in the
structure. We cannot specify an obligation of an actiondloas not appear
as the label of some transition in the normative structinis;would mean
that the action is forbidden (as we see further).

The simulation relation makes sure that in the normativectiire however
one would choose some transition that has label respettinagdtion, from
the state reached the simulation of the rest of the actiorcoatinue (this
is from the second condition in the Definition 3.3 of simwali. We do
not require only that it exists some such choice of transifiee., only the
first condition of Definition 3.3), but that with any such godboice one
can continue to simulate the rest of the action.

— The second and third lines mark all the transitions (thedfireg states) of
the structure which simulate edges from the tree with markgrcorre-
sponding to the labels of the simulated edge. This is need#dfbr the
proof of the synchrony propertc(a) A Oc () — Oc(ax ) and also in
provingO¢(a) — —F¢ () which relates obligations and prohibitions.

In this part of the semantics we work in the maximal simulgttructure.
This partis where is checked that the transitions are dgtabligatory (or
precisely, part of their labels, because we are interestgdio the labels
of the tree, which may be smaller than those in the maximallsiting
structure). Intuitively, we require that all simulatinguisitions be labeled
by o markers because otherwise it would mean that there are ways t
the next step of the action which the normative structure ssanot being
obligatory, but they could even be forbidden.

— Lines four and five ensure that no other reachable relevansitions of
the structure (i.e., from the non-simulating remaindarcttire) are marked
with obligation markers. This is essential in the proof of the key Lemma
A.1 (see appendi)of the synchrony result given in Theorem 3.21.
Because of this last requirement we can have several unsvempdications
(as are called later in Proposition 3.25) an example beiagite obligation
of a choice of actions does not imply that one of the choicebigatory
alone (here this part of the semantics plays a crucial role).

Intuitively we have only one single obligation of a big comphction and

all the transitions in the normative structure that sinilgie tree of this
big action are marked according to the lines two and threm foefore.
Lines four and five say that anything else outside this bigoacthould not
be marked witho markers. From the unwanted implications of Proposi-
tion 3.25 one can see that there is little compositionalitewit comes to
obligations. A compositional result fétL is that of Theorem 3.21 which
puts together two contract clauses, each specifying thgaitdn of some

5All lemmas and corollaries starting with 'A’ are auxiliargsults presented (together with their proofs)
in the appendix.
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action, into one single obligation of a bigger action thames from the
synchronous composition of the two smaller actions (ilee,ttvo actions
must be done at the same time).

e The second part is just the last line and states that if thigatiyn is violated
(i.e., the complemernt of the action is performed) then the reparatibshould
hold at every possible violating state. This part of the d&édin is similar to
the definition of the box modality of PDL only that here it ispdipd to the
complement of the action. We look at the leafs of the ff¢@) and because the
@ contains all possible violating actions it is enough to usag simulation and
thus look in the normative structure for exactly the samelkhs the ones in the
tree of the complement action).

For theF modality:

e We use partial simulationS; in order to have our intuition that if an action is
not present as a label of a transition of the model then theract by default
considered forbidden.

¢ Inthe second line we considell final paths in order to respect the intuition that
prohibition of a choice must prohibit all, i.eF(a + b) = F(a) A F(b). Note
that we are interested only final paths simulated by the structure because for
the other paths some of the transitions are missing in thetsire and thus there
is some action on the sequence which is forbidden.

e In the third line we consider all the edges on each final patirdter to respect
the intuition that forbidding a sequence means forbiddihtha actions on that
sequence. For a chosen edge we lookdibrthe transitions of the normative
structure from the chosen node which have a lgeaterthan the label of the
edge; this is in order to respect the intuition that forbiddan action implies
forbidding any action that is greater, i.&(a) — F'(axb). For the same reason
we need to mark witle markers corresponding to the label of the transition and
not to the label of the edge of the tree, as we do for obligation

e The last line states that if the prohibition is violated thiea reparatio must
hold in all the states where the violation is observed. Aatioh of a prohibi-
tion is observed at the states simulating the leaf nodesedfitial paths that we
consider. This is because in these states it means that wetegethe whole
complex actiony that was prohibited (precisely, one of its branches).

The semantics of specifies thae markers should not be present in order to cap-

ture the principle thatvhat is not forbidden is permittedrhe semantics af), P, or
F hint at the trace-based semantics of Process Logic [33] asdrme extent to the
modalities of [15].

Note that we need two kinds of markersande. Thee marker is for determining

which actions are prohibited. The missing of #hmarker is for permissions. Whereas
theo marker (which requires that the forbid marker is not presisrfor obligations.
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Example 3.3 Consider the normative structure from Fig. 4. In stajehe obligationO(p)®
holds. In fact we could have any reparation because themather transition represented in this
normative structure, and therefore, the last conditiohagemantics o is trivially satisfied
(i.e.,O7(p) andOc¢ (p) also hold for any contract clausg. But the fact that evety, (p) holds
tells us that in this state there is a categorical obligatibnis showed that a particular state is
characterized by all the formulas that hold at that state.

In the same structure at statg, O (p) does not hold (i.es: [~ Ot (p)) because there are
other outgoing transitions from that are marked with. For the same reasen = O+ (dxn).
But alsos: [~ O+ (pxb) because the, is not marking state,. In states; we actually have an
obligation of a choiceis: |= Ot (p + d xn). There are other more informative formulas that
hold in s, formulas that talk about the possible reparations in csetating this obligation:

51 Oggng)(p +dxn).

In the same state; we have also a prohibitionf™+ (b) because states is marked bye,,.

Actually the same reparation as before can be attachedstpribiibition alsos: = Fign e (D).

3.1. Decidability for deontic modalities

We prove that the deontic modalities over synchronous astiave théree model
property. It was argued [34, 35] that the tree model property is an rhaséc property
of many modal logics than decidability is. Decidability pfe for modal logics are
often based on a tree model property; and this is the metlaavinuse in this section.
There are several ways of proving decidability startingrfra tree model property. In
this section we use theelectionmethod. Moreover, there are modal logics that have
the tree model property but are not decidable. In Section 4lvesv that the general
CL logic has the tree model property, but we do not manage to Shbdecidability.

The road-map for this section is to show first that the deantidalities as defined
above have the tree model property (in Corollary 3.10). Theruse the method of
selectiorto show that this tree can be pruned in such a way that we angitafa finite
tree (cf. Lemma 3.15) that is related to the initial struetand formula in the way that
if the formula holds in the initial structure at some nodentlitewill also hold in the
root of this finite tree (i.e., Theorem 3.9). From this we det tesult of decidability
of satisfiability for the deontic modalities @iZ; i.e., we can check if a formula is
satisfiable, and this amounts to checking all such finitestretated to the formula in
question.

Intuitively, the tree model property says that instead ofkimy with arbitrary
Kripke-like models, which have a graph structure, it is egtoto work with models
that have a tree-like structure. Trees are much simpler aibdb&haved structures
than graphs are. Moreover, there are well established igeds for modal logics and
trees.

Definition 3.7. Apointed tree structur K, ¢) = (W', R, VT, o") isapointed
normative structuré KV, s) satisfying the restrictions of Definition 2.9 and:

a) the nodes are characterized by strings over natural nuse” C N*, with
S = ¢,

6Recall that we omit the reparation when this one is just
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b) for each labekr € 247 the partial functionR?, _ (a) : WT — W7 respects

248
the restriction: R, (a)(x) = zn wherez, zn € W' andn € N;
c) foranya # 3 € 247 thenRL, (@) (z) # RL,, (8)(z) for anyz € WT.

Condition a) above labels each state with a (unique) strireg natural numbers.
Condition b) guarantees that the structure contains naesyeind c) that two transi-
tions starting in the same state and with different labed@as) go to different states.
The definition is for standard tree structures (with labelgheir edges) but the nota-
tion used is adapted to the proofs below (the notation isrtdt@m similar proofs of
decidability, e.g. in [17, 36]).

The following lemma shows that it is always possible to abtapointed tree struc-
ture from a given pointed normative structure (it is an adtéph of the standard un-
folding construction).

Lemma 3.8 (tree model). Given a pointed normative structuté?V | i) we can con-
struct an associated tree structuf@ KV, ).

Proof: The technique that we use is known in modal logics as the mésding of a
Kripke structure [37, 17]. For a pointed normative struettc ', i) = (W, Rya,, V, 0)
we can view the set of worldg’ = {0, 1,2,. .. } to be the natural numbel§ and we
define the seW’[i] C N* to be the set of finite paths starting framMoreover, we
enrich the paths to contain also the labels by which the pathfarmed. For this we in-
terplace between the nodes labels fraf¥ . More precisely; is considered the empty
string ¢, the paths of depth one arers such thats € W andi —* s is a transition
in K. We define a functiom : W[i] — W which assigns to each path the state
in which the path ends; e.g(cas'3s”) = s”. Note that two pathgsas andz3s are
regarded as different. Consider the Bgli] = {p(z) | = € WT[i]} of states reachable
(by any path) from the node The functiorp : WT'[i] — W[i] is a surjection therefore
it exists the corresponding functigim! which returns sets of traces from” [4].

For the pointed normative structuf&*" | i) we construct the pointed tree structure
(TEN &) = WTTi], RL., , VT, o). The functionR?,, assigns a partial function
R, (a) : WTi] — WT]i] to eacha (we write the partial functions as sets of pairs
of argument/value) which is defined as:

Ri., (@) = {(z,zas) | (p(x),s) € Ryap ()}
The valuation function? is defined in terms o¥:
VI(¢) = p~ 1 (V(9)).

Above, we used the standard pointwise extension of the ifumgt—! over a set of
elements as argument. The marking functidnis defined in terms of:

o' () = op(2)).

Itis easy to see thal'K*V | ¢) is a tree structure with root nodeWe can check that
(TK™N ,¢) is a normative structure. The restrictions imposed by Dgimi3.7 on the

function RQTAB are met. Precisely, for any of the partial functi<)'ﬁ§AB («) it cannot
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be the case thakl,, (o)(x) = yas wherez # y (i.e., the first restriction is met).
Take now two different actions # (3 then it cannot be the case thaf., , (a)(z)

RI, (B)(z) becaus&rl, (a)(r) = zas # x8s’ = RL, (B)(z) evenifs = s’ 5

24B 24B 24B

The following result relates satisfiability of a contractiees and normative struc-
tures. It is the essence of the tree model property. Inglitiif a formula holds at a
state in a normative structure then the formula holds at dlo¢ of the tree obtained
from the unfolding of the normative structure starting viltat particular state.

Theorem 3.9. For a pointed structuré KV, i) we have:

TEN ¢ =cC iff KN px)=C (1)
TKN eC iff KNikeC 2)

Proof: The proof of (2) follows from (1) by replacingwith ¢ (and thus(¢) = ¢). The
proof of (1) is done by induction on the structure of the fola@L It has lengthy but
easy cases as it needs to prove each of the conditions infihéides of the semantics
of the deontic modalities.

Basis: The case for whed = L is trivial. The second base case is wheg= ¢.
ThenTKN 2 = ¢ iff 2 € VT (¢) which means thap(z) € p(VT(¢)). By the
definition of VT from Lemma 3.8 it means thatz) € p(p~*(V(¢))) whichisp(z) €
V(¢). This is equivalent tdsV, p(z) = ¢ and the proof is finished.

Case forC = P(«). We prove thal' K,z |= P(a) iff KV, p(x) = P(a).

First we prove thatl'(a) S, TKN iff T(a) S, K", which is equivalent to
proving r S z iff S p(x), wherer is the root of T'(«). Because we use this re-
sult in several places we refer to it as tienulation result The Definition 3.3 says
that from Sz we have that'r —5 t € T(a) thendz — zvs € TKV st
ax € v andt S xys (where, throughout this proof, we considere N). More pre-
cisely,z — zys € TK* means thatz, zvs) € RL,, (v), which, by the definition
of RL,, from Lemma 3.8, implies thafp(x),s) € Ryay(y). Thus we have that
Vr =% ¢ € T(a) then3p(z) - s € KN st.ax C ~. By applying a recursive
reasoning with S 2ys we also get thatS s in K. The recursive reasoning is pos-
sible because the trees associated to deontic actions #éeg ifie., have finite height.
This means that eventually we reach a leaf node in the trge (;sand any leaf node is
trivially simulated by any state (as from a leaf there is ngestb look at). To finish the
simulation result we prove the second condition from thenitégin of the simulation
relation. We useeductio ad absurdurand assumép(z) —» s € K with a, C v
for which¢ S s is not the case. From Lemma 3.8 we know that—— zys € TK*,
and fromT'(a) S, TK" we also know thatz — zys € TKN with a, C v we
havet S xvs which, by a similar recursive argument, means th&k, hence the con-
tradiction. The proof for the right to left direction is anglies, using Lemma 3.8.

We continue to prove the second condition from the definitibthe semantics of
P;ie.

Vr -5t e T(a), Vo - 2v's e TKN strSz Ay C o/
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thenva € Ag if a € v thene, & o7 (z7's)

@ ’

Vr -t € T(a), Vp(z) == s € KN strSp(z) Ay C o
thenVa € Ag if a € ythene, & o(s).

Consider the implication=". For an arbitraryp(z) - s € KV we know from

Lemma 3.8 thaBz 27's € TKN and from the hypothesis we know that € Ap
if a € vthene, & o7 (27's). By the definition ofp”, from Lemma 3.8, we know that
o (z7's) = o(p(z7's)) = o(s), and thus, we have our conclusiga € Ag if a €
thene, & o(s).

Consider now “=". For an arbitraryz —— 2v's € TK" we know that we have

dp(x) L5 s e KN withVa € A if a € v thene,, ¢ o(s). Consider now, byeductio
ad absurdumthatda € Ap with a € v ande,, € o?(z7's). By the definition ofo”
we have thas, € o(s) which is a contradiction with the hypothesis. Thus the case i
finished.

Inductive step:

Case forC = Oc(a).” We prove thal’ KV, z = Oc(a) iff KV, p(z) = Oc(«)
under the inductive hypothesis: ¢ TKV thenT K,z |=C < KV, p(x) = C.

We have proven thaf (o) S, TKV iff T(a) S, KV in thesimulation result
We now prove the second requirement from the definition os#raantics of obliga-
tions, i.e., we prove the double implication:

Vr st e T(«a), Vx T zy's e TKN strSz Ay Co
thenVa € Ag if a € v theno, € o7 (z7's)

@ ’

Vr -t € T(a), Vp(z) == s € KN strSp(z) Ay C o
thenVa € Ag if a € v theno, € o(s).

The proof is similar to what we did for permissions. We coamdnly the ‘=

implication. For an arbitrary(x) R € KV we know that we have iR xy's €
TKN and from the hypothesis we know that € Ap if a € ~ theno, € o (x7's).
By the definition ofp” we have thata € Ag if a € v theno, € o(s).

To prove the third condition from the definition of the semesof O¢ («) we prove
the following double implication:

Ve —szys € TKELS thenva € Ap if a € ytheno, & o7 (2s)
-
Vp(z) s € K1) thenVa € Ap if a € ~ theno, & o(s).

We do the proof of =" using thereductio ad absurdunprinciple (the proof of

<" is analogous). Suppose thgp(z) — s € K2 and3a € Ap with a €

"For notation simplicity we use the same symBpbut theC in the subscript 0O, the reparation, is not
the same as the one on the left of the equal sign, which comestfre initial enunciation of the theorem.
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s.t.o, € o(s). This implies that there also exists the transition zvs € TK" for
which, from the definition ob” from Lemma 3.8, it also holds that, € o” (vys) =
o(s). This requires two subcases:

(e),@

a. r s xys € TKLY" which, from the precondition of the implication, means
thato, ¢ o (zys), resulting in a contradiction;

b. 2 -1 zys ¢ TKL". From the assumptioBp(z) — s € Kiio) @) py
way of Definition 3.5, it means that(z) € KA "™ and3p(z) =5 ' €

K1) #®  This implies that: € TKAE” and3z -5 ways’ € TS,

which, together with the assumption of this case and by wayedinition 3.5,
means thatr — zvs € TKL%". By the Definition 3.4 of the maximal
simulating structure it implies thatr 2t e T(a)strSz A (o C7v)A
tS z7ys. By the reasoning we did at the beginning for &) S, TKV we
conclude thatr S p(z) A (ax € 7) A tS s which means thap(z) —» s €

TKI@):»@) Thyus we have a contradiction.

We need to prove the last condition from the definition of thmantics oD¢ («);
i.e., we prove the double implication:

TEN, 2 =C VYoe TKN withtS*z At € leafs(T(@))
=
KN sk=C Vse KN withtS®s At € leafs(T(@)).

Here we use the induction hypothesis. We prove only the fahwaplication by
reductio ad absurdurand assume thats € KV s.t. s is reached by followingex-
actly (because of the strong simulation conditiéri) one final path in the tree of the
complemented actiofi(@). For this state we assunieV | s b~ C We have, thus, the

2
sequence of transitions iR: BN 1,1 BN 2,...,n—1 0 (recall that we
consider the states df*V to be labeled with natural numbers) where= s. For each

1 2
of these transitions there is a transitiorfi Y : 3= —5 eall, Jeall —5 ealla22,

ey Jeal..n—1 =, ea .aZn. From this and the left part of the implica-
tlon we have thal' KV, o} aQn & C. By the inductive hypothesis it means that
KN p(ealt...aln) = C which isKN,n = C (or KV, s = C). Hence, the contra-
diction and the end of the proof.

For the natural obligations from Definition 3.19 in the nea¢tson we need to treat
the naturalness condition too; this means proving thevietig double implication:

FystT(axy) = TR @)
&
I stT(axy) = TELS®),

We actually prove thal K508 = TKL?®) which implies thaty = +/
solves the double implication. Note first thﬁﬂ(ﬂ%‘c) #(*) is the tree unfolding of
the K57 maximal simulating structure ok’ w.r.t. the statep(z), whereas,
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TKL@ is the maximal simulating structure coming from the treeoldihg of KV
w.r.t. the state(z). We use a recursive reasoning working on levels of the twestre
beginning at the first level of edges, those starting in tloésrof the two trees.

Pick some arbitrary edge —5 evs € TKL*™ for which we want to find a
corresponding edge '[ETKZIEZO;)’I. This means that it exisig(x) 5 s atransition in
KL(@)r(@) 8 Becauser is the root of TKL%)® we can find the edge —+ zvs €
TKLS® which is the edge we were looking for.

For the forward direction pick some arbitrary edge s zvs € TKALS) . This
means that we have an edger) - s € K2 *”) which means that we have the
desired edge —s evs € TKL ™) asp(z) = p/(e).

The case fo€ = F¢(«) follows similar reasoning as fapc only that care must be
taken when dealing with the partial simulation relatiSn

The case for the propositional implicatiases simple structural induction. O

Note that we have proven Theorem 3.9 both for genéil(i.e., with general
obligations) and folC L restricted to natural obligations, as in the next sectian, i
where we can reason only about natural obligations as tharg#&s constrains us to.

Corollary 3.10 (tree model property).
If C has a modeK™ then it has a tree modé@l KV

Proof: This follows immediately from equation (2) of the Theorerd ®hich says that
if a formulac is true in a staté of a modelkK*V then there exists a tree modek™V,
as in Lemma 3.8, in which the formula is true at state O

Next we prove that the deontic modalities alone havefithiéee model property
There are several techniques for proving decidability ofladdogics by establishing
a finite model property; where a known one is caliddation. Filtration is especially
used for dynamic logics, like the PDL, from which we borrow thynamic box modal-
ity in CL in the next section. However, it is rather hard to use thefilin technique
in our case. In PDL the clever Fischer-Ladner closure wadetso to determine the
subformulas of a dynamic modality with a complex actiondesfe.g.[a - (b + ¢)]p).

In our case we do not know what are subformulas of an obligati@ complex action
like Oc(a - (b+ ¢)). We use, instead, theelectiontechnique for proving the finite
model property [36, sec.2.3]. Selection is known espeacialt modal logics where
a tree model property has been established, like is our cBke.basic idea is that
given a possibly infinite model, the selection techniqueasland removes (possibly
infinite) parts of this model eventually ending up with a #nihodel. This selection
and removing is done carefully so that the satisfiabilityhef tormula of interest is not
broken.

8Note that there should be twefunctions, one coming from the unfolding & (which is the one
in the double implication) and anothgf function (which is not visible) coming from the unfolding thfe

KL(@)2@) actually herep! () = p(a).
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Before proving the finite model property (Theorem 3.16) weegiome necessary
definitions and prove auxiliary results.

Definition 3.11 (action length). Thelength of an actiony is defined (inductively) as
a functionl : A? — N from deontic actions to natural numbers.

o I(1) =1(0) =0,

(
e l(a)

(axp) =l + B) = max(l(a), 1(B)),
(- B) = l() + 1(P).

The length function counts the number of actions in a sequefi@ctions given
by the- constructor. It returns the maximum from all the choicesriraation, i.e., the
length of the maximal sequence.

The following proposition states that complementing a (ptax) action does not
increase its length.

1, for any basic actiom of Ag,
o

o/

Proposition 3.12. For any actiona we have [(a) < [(«).

Proof: A careful inspection of the Definition 2.7 of action complerheasily shows
thata does not addcombinators at bigger length than those in the canonical fafi.
The complement operation is applied recursively and at ezarsive step it generates
paths of length for paths of length or greater in the originalk; or it generates paths
of length1+ length generated in the next recursive step. This happersth found
in a. Thereforew cannot have paths of greater length than the paths in

It remains to show that the length of an action is greater thafength of its canon-
ical form. Because to obtain the canonical form of an actiés €nough to apply the
axioms of Table 1 except (8), cf. Theorem 2.5, we check thragdich axiom the left ac-
tion has length greater or equal to the right action (as theasare directed from left
to right). This check is easy and we skip details. For axiols(), (10), (11) the left
hand side (lhs) has the same length as the right hand sigd&tause of the associativ-
ity and commutativity properties of theax operation on natural numbers. Also equal
lengths of the actions on both sides of the axioms (4) andqddhes from idempotence
of max. For (5) use associativity of over natural numbers. Also equality for axioms
(9) and (15), (16) comes from the distributivity @fovermax and ofmaz overmaz,
respectively. For (3), (12), and (6) use the facts that theler0 is the neutral element
for respectivelynaz and+-. For axiom (17) we observe that the length of theand
Bxis 1 and also ofwxBy; from thesemaxz(1+1(«), 1+1(8)) = 1 +max(l(a),l(B)).
The only two axioms for which the length of the lhs is striagiseater that the length
of the rhs are (7) and (13), as it is clear that the right hadesshave length which is
less than whatever length the actions on the left hand side ha o

We now relate the length of an action with the height of itetre

Corollary 3.13. For any actiona we have h(T'(a)) < h(T(«)) = l(«).
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Proof: This is a corollary of both Theorem 2.10 and Proposition 3.12 o

Definition 3.14 (depth of formula). We define thdepthof a formula inductively as a
functiond from formulas to natural numbers:

e d(¢) =d(L)=0;

L] d(C1 — CQ) = ma:z:(d(Cl), d(CQ)),

e d(P(a)) =l(w);

o d(Oc(a)) = d(Fe(a)) = l(a) +d(C).

Example 3.4 Consider the actioi = p- b+ (dxn) - p - p with its corresponding tree pictured
in Fig. 2. The length of is 3, equal to the length of its longer right branch. The tree i Bihas
clearly hight als®. For a formula likeOr | (4)(0) the depth is3 + 1, being equal to the length
of § plus the depth of", (d) which isi(d) = 1 plus the depth ofl which is0. |

Lemma 3.15. Take a formula’ with depthk. If TK*, ¢ = C thenC holds in the root
of the tree structuréT KV <) restricted to paths of maximum depili.e., where all
nodes of depth greater than are removed).

Proof: We use induction on the structure of the formdla

Base caseThe proof for formulasL and¢ which have deptli) is simple as we
need to inspect only the root nodé¢herefore we need only nodes of deptim the tree
structure.

For the formulaP(«) which has deptli(«) we need to inspect only those nodes
of (TK™N  ¢) that respect the simulation relation. Therefore, the maxrindepth of a
node is the maximum length in the final pathsItix), and thus the maximum depth
of the nodes iNT K™V, ) is h(T(«)) which, by Corollary 3.13, i#(«).

Inductive step When( is of the formC; — C, the depth of the formula is the
maximum of the depths of the two subformulas. The semanéigs that we need
to check first ifC; holds, which by the inductive hypothesis it means that wedreee
subtree of depth at mod(C;). If C; holds we need to check algh which, by the
inductive hypothesis, requires also a subtree of depth at 6, ). Overall, we need
to check a subtree df"' K™V, ¢) with depth at mostnaz(d(Cy), d(Cz)).

The proof for the formula®¢ («) and F¢-(«) is similar and we treat here only the
proof for obligations. The semantics 6f;(«) says that we need to check first the
obligation alone which requires nodes of depth at md%t(«)) = I(«) because of the
simulation relation. Secondly, we need to check that thanagmnC holds at the states
corresponding to the leaf nodes of the compleraery Corollary 3.13 we know that
these states are at depth at nigaf. The induction hypothesis says that to chédkis
required a tree of height at most the degtti). Therefore, to check¢(«) it requires
to check a subtree df’ KV, <) where the nodes have a depth at miést + d(C). O

Based on the above auxiliary results we can prove now the finitdel property.
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Theorem 3.16 (finite model property). If a formula has a model then it has a finite
model.

Proof: We can work equivalently in pointed structures and then wadrte prove
that if a formula is satisfied in a pointed structure then gasisfied in a finite pointed
structure. Take a formuld of depthk which is satisfiable in the pointed structure
K i. By Corollary 3.10 we know that is satisfied in the tree-like pointed structure
TKN . Note that the tree might have both infinite depth and infibinching.

By Lemma 3.15 we put a bound on the depth of the tree which &eelto the
formula. Because we work with deterministic structures bachuse the set of labels
242 s finite we have a guaranteed finite branching. Thereforetbael is finite. O

As a corollary of the above theorem we have a (relative) aaxlidy result.
Corollary 3.17 (decidability).

a. The logic with general obligations as in the semantic D&din 3.6 is decidable.

b. The logic with natural obligations is decidable iff thetmalness constraint is
decidable.

As a side remark, we have proven the tree model property inofEne 3.9 for gen-
eral obligations as well as for natural obligations. Therefin both cases it is enough
to check finite trees for satisfiability, but the differenséiat when checking for natural
obligations we need to test that the naturalness constsasatisfied. The decidability
of whether an actiony satisfies the naturalness constraint (cf. Propositiorzdl)has
been an open problem for a while. Recent results in [38] (stsild in the technical re-
port [39]) show an algorithm to find a suitabjéf one exists (i.e., a decision procedure
is given).

3.2. Properties of the deontic modalities

The semantics of the deontic modalities is rather involieid; based on an alge-
braic formalism for the actions which are interpreted ageddrees. The information
in the trees (compared to sets of traces [33]) is used by theplar notion of sim-
ulation relation to know how to walk on the normative struetin the search of the
markings to determine the truth value of the deontic moglalihe rest of the compli-
cations in the semantics are necessary for capturing demargive properties of the
deontic modalities which we discuss in this section.

The following validities are the counterparts of the onesiiin SDL only that here
they are in an ought-to-do setting where the deontic maeskire applied over actions.
The following examples give intuition for the logical valigs of Proposition 3.18
(taken from [40] ):

e Obligation of an action implies that the action is permitted
= Oc(a) = P(a)
E.g.: “Client is obliged to pay” then “Client has the rightgay”.
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e Permission of performing an action implies that the actsonat forbidden:
= Pla) = —Fe(o)
E.g.: “Provider has the right to alter personal data” therotler is not forbid-
den to alter personal data”.

o If two action expressions represent the same action theolligation of one
action should imply the obligation of the other action:
if « =g then E O¢(a) < Oc(p)
E.g.: “pay or delay” is the same as “delay or pay” then “Clisndbliged to pay
or delay” should be the same as “Client is obliged to delayay’p

e The obligation of the violating action cannot appear in at@et (= ~O¢(0));
obligation of terminating the contract can be modeled. Thkgation to do
nothing can be trivially inserted in any contragt O¢(1)).

Proposition 3.18 (validities). The following statements hold:

= —0c(0) ®3) = Oc(a) = P(a) (6)
serial = Oc¢(1) 4) if « = fthen = Oc¢(a) < Oc(B) (7)
= Pla) = ~Fe(a) (5) = Ocla) = ~Fe(a)  (8)

Proof: For the proof of (3), i.e.= =O¢(0), we need to show that there is no model
which makesD¢(0) true. This is because of the definition-60¢(0) asO¢(0) — L
which is true only ifO¢(0) is false. Byreductio ad absurdursuppose that it exists

a model which make®¢(0) true. This means (by the definition of the semantics of
O) that the tree interpreting must be simulated by the model. But this is not possible
because of the special lab¢lappearing in the tree @f which does not appear in the
labels of the normative structures.

To prove (4), i.e., thaD¢(1) is valid in theserial normative structures, take any
normative structure that respects the seriality conditiom standard modal logics;
i.e., that from each state there exists an outgoing tramsitThe tree interpreting
is trivially simulated by any normative structure because anly edge of the tree is
labeled with the empty set and thus any transition of thectire simulates the edge.
The second condition in the semantic€bis satisfied as there is no basic labéh the
label of the edge. It is clear that any edge on the first levéhefstructure enters into
the maximal simulating structure and therefore the nonikitimg remainderl(fé,l,f’i
is empty, and the third condition is trivially satisfied. Beisel = 0 then there is no
states to satisfy the requirements of the last condition and thisstitivially satisfied
too.

Note thatO¢(1) is valid only in the serial normative structures, i.e., imavfrom
each state at least one outgoing transition. We consideséhility is natural to have
because in order to be able to say that something is obligétat something must
exists in the structure (i.e., the action must label sonresttian, even in the case of the
empty actionl and the empty labe] } that models it).

For the proof of (6), i.e.= O¢(«) — P(«), take an arbitrary pointed normative
structureK?, i which makeO¢(«) true. This means that(a) S; K. This is the

33



first part from the semantics éf(«). Moreover, from the semantics 6% («) we have

thatVt — ¢ € T(a), Vs - s’ € KV st.tSs A~ C +' thenVa € v we have
o, € 0(s"). Because of the restriction on the marking function wevget v we have
o, ¢ o(s'). This makes the second requirement in the semanti¢¥ @j.

For the proof of (5), i.e.= P(«) — —Fe(a), we usereductio ad absurdurand
assume that it exists a pointed structéifé’, i which satisfiesP(a) and alsoF¢ («).
From the semantics oP, knowing thatS C S, we conclude thaf'(a) S; K*V.
Now take any final patlr in the tree ofc; from the semantics of it holds that
o S; KN. Moreover, for any edge — ¢’ € o it holds, by the semantics d?, that

Vs -+ s € KV with t S s thenVa € v, o, & o(s'). But the semantics of¢ ()
requires that/a € ' thene, € o(s") which is not possible ag C +/ (i.e., it exists at
least one, ¢ o(s') with a € 7).

To prove (7) notice that the semantics @fis based on the interpretation of the
actions as trees. Therefore, because the actions are #rpiage interpretations denote
the same tree (up to isomorphism). Thus, the semantia®46#) is the same as that
for O¢(B) because they are working with the same fge) = T'(3).

The proof of (8) can be obtained from (6) and (5). o

In our ought-to-do setting, the formui@¢ (1) is the counterpart of th&(T) from
standard deontic logic. As the proof above shows, this féarisunot valid in any nor-
mative structure, but only in the serial ones. This formseatially says that in any
contract any agent is obliged to do action “skip”. This facharmless because if there
is any other “real” obligation (in the same world) then theperty from Theorem 3.21
below would combine the two obligations and by virtue of thetfthatl is identity
element foi, theO¢ (1) will be essentially swallowed by the real obligation. In sen
quence(¢(1) is not visible when other obligations are present. Alang(1) requires
that any normative structure is serial, i.e., that from aoyldithere is an outgoing tran-
sition. Otherwise, obligation to “skip” does not impose #nigg; does not impose any
markings in the structure and does not impose any partitatheting of any transition.
It has an analogous behavior with T) of SDL.

In Theorem 3.21 (see below) we give a property for obligatiover synchronous
actions. The theorem states that if "there exists an oliigad do actiomn and there
is also an obligation to do actig#i (in the same current world) then we should be able
to infer that “there is an obligation to do both actianandg at the same time”. This
property does not hold for general obligations (with therdgfin that we gave before),
but only for some restricted obligations, which we cedtural obligations

The purpose of natural obligations is not necessarily anieelh one but also a
practical one. The naturalness constraint refers mainightmices of actions; when
deciding which of the actions to choose the model shouldnfatence the decision.

Definition 3.19 (natural obligations). An obligationO¢(«) is callednaturaliff in ad-
dition to the semantics of Definition 3.6 the followingturalness constraitg re-
spected:

Jys.t. T(axny)=TKE)e (9)

max
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Figure 5: Examples for natural obligations.

The following result is intended to be the algebraic eq@mabf naturalness, and
hence, algebraic methods can be employed to solve it. Theopition provides a
practical way to check that the naturalness constraintisfigal.

Proposition 3.20. The naturalness constraint reduces to showing that theigsea
deontic actiony s.t.axy = o, wherea” is the action in canonical form correspond-

ing to the treel K.5.%)*.

Proof: This is a consequence of the definition above and of the cdermes result of
[7] which says that for any tree as in Theorem 2.10 there igi@sponding actiond

Example 3.5 Let us consider the model of Fig. 5-(i) in whigh(a + b) holds at states.
Change this model by addingcato the left label and a@ to the right label, as in Fig. 5-(ii).
O(a + b) still holds at stateso, but is not a natural obligation; intuitively, when decidiwhich
of a or b to choose one needs to take into account the two distinareetiandd. If we were to
add the same labelto both branches then the naturalness constraint is setisieone does not
care about the extra actienwhen choosing. m|

Theorem 3.21 (synchrony property).  For natural obligations we have:
= Oc(a) A Oc(B) — Oc(arx ) (10)

Proof: We need to prove thak™V,i = Oc¢(a x ) under the assumptioR™ i =
Oc(a) A Oc(f). Using Lemma A.4 we have that(a x 8) S; K which is the first
requirement in the semantics 6fc. For the proof of Lemma A.4 the naturalness
constraint is essential. The proofs of Lemma A.7 and Lemn8aafe also based on the
naturalness constraint. These two lemmas give the secahitharhird requirementin
the semantics aD¢(a x 3). The last requirementis proven as Lemma A.9. a

We now show how the above result can be generalized to themctign of obli-
gations containing different reparations.

Proposition 3.22.  For natural obligations we have:

': Oc, (a) A Oc, (ﬂ) = Oc,ve, (O‘XB) (11)
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Proof: The proof of this result is the same as that for Theorem 3.2l wa need to
use Lemma A.9. The statement of this last lemma needs to begeHaaccordingly
and the new proof needs only little change as we discuss Wérat we need to prove
now is that if KV, i = O¢, (o) A Oc,(B) thenK s = C; vV Cy Vs € N with

tS® sAt € leafs(T(ax 3)). The proof of this result is essentially the same as the proof
of Lemma A.9 with the following observations. In the forthragraph we proved that
from the conditiorival x 3 : ol x 3. ¢ ~ we can conclude that eithgrn’ : ol Z ~
orVﬂi : ﬁi Z ~. This is used in the last paragraph by taking one of the hygsigh
for which this holds, because it does not make a differendetwinypothesis we take
as both have the same reparatibrThis is not the case for the present corollary. Here
it is important which ofval, : of & v orVva. : 3. ¢ ~ holds; but we do not know.
Therefore we use the disjunction of the reparati®ns C., and regardless of which of
the two holds we use the appropriate hypothesis to make shendtion true. o

The following corollary points outonflictsthat are avoided in the logic because
of the semantics. These are usual requirements when regsaimbut legal contracts.
A contract with two clauses “Obliged to pay” and “Forbiddenpay” can never be
respected. The same with a contract stating “Obliged to ggi'vemd “Obliged to go
east” (as “go west” and “go east” cannot be done at the sang tien, are conflicting).

Corollary 3.23 (conflicts). The following statements hold:

F —(Oc(a) A Fe(a)) (12)
= —(P(a) A Fe(a) (13)
if o 4 3 then |= —(Oc(a) A Oc(B)) (14)

Proof: The proof of (12) follows by propositional reasoning fron) ¢hd the proof
of (13) follows from (5). The proof of (14) follows from (3) dnTheorem 3.21 as we
show next. Because #¢ 5 thenax 8 = 0, by axiom (18), and therefo@c (a x 3)

is O¢(0). From Theorem 3.21 we get thiat =(O¢ () A Oc¢(B)) < —Oc¢(ax 5) and
from the above we have tha&t —(O¢(a) A Oc(B)) < —O¢(0). By modus ponens
using (3) we get= ~(Oc(a) A Oc(B)). 0

We give now some examples for the validities presented ipd&ition 3.24 below.

e Prohibition of an action implies that afyggeraction is prohibited:
Fe(a) = Fe(axp)

E.g.: “Client is forbidden to supply false information” theve also know that
“Client is forbidden to supply false information and at there time supply
correct information”.

We comment more on this property. One may think of an exani@e'One is
forbidden to smoke” but still “One is permitted to smoke aatithie same time)
sit outside in the open air”. This example seems to contt#iukcabove property.
The confusion comes from the wording of the above example.ofencorrect
wording would be: “One is forbidden to smoke and (at the same)tsit in a
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public place” where this action is no longer smaller thanabgon “smoke and
(at the same time) sit outside in the open air” and thus thaipition and the
permission go along together.

e The prohibition of a choice of two actions or 3 is the same as having both
prohibition of & and prohibition ofs:
Fe(a+ B) <> Fe(a) A Fe(B)
E.g.: “Clientis forbidden to pay in dollars or to pay in eutroaplies that “Client
is forbidden to pay in dollars” and that “Client is forbiddinpay in euros”.

e Permission of a choice of actions is the same as permissialh thfe actions in
the choice; i.e., validity (17).

Proposition 3.24. The following statements hold:

': Fc(a) — Fc(axﬂ) (15)
[ Fe(a+ B) < Fe(a) A Fe(B) (16)
= Pla+f) < P(a) A P(B) 17)

Proof: We give first quick proof arguments. The proof of the first d&yi is based on
the fact that paths if"(«x 3) contain (i.e., have bigger labels than) pathg'¢d). The
proof of the second validity is based on the fact the the pafti§ « + ) which satisfy
the condition in the semantics are the same as the pathigfandT'(3) together.

For the proof of (15) consider an arbitrary pointed struetiif” , i) which satisfies
Fe(a). In order to show thak™ , i |= F¢(ax3) we need to take an arbitrary final path
o € T(axf) which satisfiesr S; KV and show that for any edge— ¢’ on this path

we havers 1 ' € KN withtSsA~ C 7/ thenVa € Ag if a € v/ thene, € o(s').
Note that if a patly € T'(ax/3) exists then it exists also a path € T'(«) which has all
the labels on the edges smaller than the corresponding nwesTiherefore, together
with the assumptiom S; KV it means that’ also satisfies”’ S; K. Because of
this, we can apply the semantics for the expressgigfiv) to deduce that for all edges

t -5 t' € o’ all transitionss —— s’ € K/ satisfyingy C ~/ also satisfyva € Ap
if a € 4/ thene, € o(s’). For these edges we can find corresponding edgediiat
have labelsy” which includesy. Becausey C ~” it means that all the transitions

s - s’ € KN that respect’ C ~' are among (possibly fewer than) the transitions
before, fore’. But all these transitions we know that respéete Ap if a € 4 then
e, € o(s"). The proofis finished.

It should be simple to see that the opposite implication dmgslways hold; i.e.,
W Fe(axB) — Fe(a). This is because we cannot guarantee that by taking all the
pathso’ € T'(a x ) which satisfyo’ S; KV we will consider all the paths € T'(a),
because there may be paths with labels smaller that thdBédirx 5) which are still
good paths fofl’(«) (see Proposition 3.25 for a counterexample).

The proof of= Fe(a + ) <+ Fe(a) A Fe(B) is simpler. Itis easy to see that the
treeT'(«+ ) contains all the final pathsof the two tree§"(«) andT'(3) which satisfy
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o S; KV. Therefore, the double implication is immediate: if we ddes F¢ (o + 3)
true than the traces Ifi(« + 3) respect all the conditions of the semantics and thus all
the traces i’ («) respect the conditions in the semantics, makingy) true (and the
same forF¢ (3)).

The proof of (17) is similar to the proof of (16). o

In the design decisions f@tL we give special attention to what we caltwanted
implications This kind of “properties” are rather scarce and negleatetie literature.
We give here unwanted implications that are related onlyheo deontic modalities
(Proposition 3.25).

e The prohibition of doing two actions at the same time doesmpty that any of
the two actions is prohibited (i.e., the converse of (15)sduat always hold).

Ve Fe(ax ) — Fe(a)
E.g.: “One is forbidden to drink and drive at the same timegsloot imply that
“One is forbidden to drink” and neither that “One is forbiade drive”.

e Obligation of an actiolv does notimply obligation of any concurrent action that

containsy. Similarly, obligation of a concurrent action does not isnpbligation
of any of its composing actions.

[# Oc(a) — Oc(axﬁ);

[# Oc(axﬁ) — Oc(a).
E.g.: “Obligation to drive” should not imply “Obligation tdrive and drink at
the same time”. For the second unwanted implication considbligation to
smoke and sit outside” which should not imply “Obligatiorstooke”.

e Similarly with permissions:
7 Pla) = P(axp)
~ Plaxp) — P(a)
E.g.: “Permitted to smoke and sit outside in open air” dogsmply “Permitted
to smoke” because if one sits inside a restaurant then oned&lfien to smoke.

The first implication is related to the free choice permisgaradox on page 45
in the setting of concurrent actions, where from permisgiocsmoke one would
imply the permission to smoke and kill at the same time.

e Obligation of a choice of actions constrains that only thgoas in the choice
can be done but the choice itself is left open, the one on wihielpbligation
is enforced has the freedom of choosing. Therefore, nonleeohttions in the
choice is obligatory by itself because the freedom of chapsgiould be lost.

[# Oc(Oz +3) — Oc(a).
}# Oc(a) — O¢(a+ ﬁ),

E.g.: “Clientis obliged to pay or to delay payment” should imaply that “Client
is obliged to delay payment”. For the second unwanted irapbo “Obliged to
mail the letter” should not imply “Obliged to mail the letter burn the letter”.
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Figure 6: Counterexamples for Prop.3.25.

e As consequence of the above we have:
% Oc(a+ B) = Oc(axB);
= Oc(ax ) = Oc(a + B).

Proposition 3.25 (unwanted implications). The following statements hold:

= Oc(a) = Oc(axp) (18)
= Oc(ax ) — Oc(a) (19) e Fe(axf) = Fe(a)  (24)
K Oc(a+ B) = Oc(ax ) (20) B PlaxB) = P(a) (25)
K Oc(axp) = Oc(a+ 5) (22) K P(a) = Plax ) (26)
= Oc(a) = Oc(a + B) (22) ~ P(a) — Pla+B) (27)
= Oc(a+ B) = Oc(a) (23)

Proof: The proof is simple by giving for each not valid statement anterexample,
all of which are collected in Fig.6. The model of Fig. 6(i) nealO¢(a) true in state

i butO¢(a x b) does not hold (for (18)) and neither do@g(a + b) (for (22)). In the
model of Fig. 6(ii))O¢(a xb) holds in state but O¢(a) does not hold (for (19)) and
alsoO¢(a + b) does not hold (for (21)). In the model of Fig. 6(i)¢ (a + b) holds in
statei but O¢(a xb) does not hold (for (20)) and alsd¢(a) does not hold (for (23)).
The model of Fig. 6(iv) make#¢(a x b) true in statei but the same state does not
makeF¢(a) true (for (24)). For (25) take the structure in Fig. 6(ii) whiis a model
for P(ax ) but not a model foi?(«). For (26) Fig. 6(i) is an obvious example, and
as well for (27) because the model satisfigs) but notP(a + b). O

4. The Full Contract Logic

The contract logi© £ adds to the deontic modalities from Section 3 the dynamic
logic modality applied over synchronous actions.

Definition 4.1. The syntax of £ is given in Table 3. The dynamic logic modalify
is parameterized by the dynamic actionsThe expressiofy|C is read as: “after the
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C = ¢|Oc(a)]|Pla)|Fe(a)|C—C|[0]C| L (CL expressions)
a = a|0|l]laxa|la-ala+a (deontic actions)
0 == al|l0|1]|dx5|6-0]64+06]6*]|p? (dynamic actions)
p = ol0[1[pVelorp]-e (tests)

Table 3: Syntax of the contract languagg.

action 9 is performedC must hold”. The other propositional operators are, as be-
fore, defined in terms of two (functionally complete $et), 1 }, whereas the dynamic

existential modality(#)C is defined as the dual of boxs)C £ —[5]—C.

In CL we can writeconditionalobligations, permissions and prohibitions of two
different kinds. As an example let us consider conditiofdigations. The first kind is
represented by[6]O(«), which may be read as “after performifdgone is obliged to
do«”. The second kind is modeled using the implication operatér— O(«), which
is read as “IfC holds then one is obliged to perforai.

Propositional dynamic logic (PDL) makes an interplay betwé¢he actions and
the formulas; i.e., it has formulas as actions (testsand it has actions defining the
formulas (the box modalitys]). The intuition of thetest actionis thaty? can be
performed only if the formulg holds in the current world. A sequence actiph- «
can be viewed as guardedaction becauser can be performed only if the tegt?
succeeds. Note that we use, what is calfgahr testsas we do not allow for a modal
formula to be a test, but only Boolean tests; i.e., we canslon@odal questions using
the dynamic or the deontic modalities.

There are two differences between the actionshich appear inside the PDL
modality [-] and the actions which are allowed inside the deontic modalities. We
argued before against not having the Kleérier the « actions. Regarding the tests, if
we allowdeontic test actiondike F'(«)? inside the deontic modalities it would break
the ought-to-do approach because they introduce the fasrinside the action for-
malism; i.e., we could write formulas lik@¢(F(«)?). This constitutes a combination
of ought-to-do and ought-to-be (for this direction check]j4 Moreover, adding tests
inside the deontic modalities does not integrate with ouy wfagiving semantics; we
do not know how to mark obligatory (or prohibited) tests, asdwo with the actions.
Moreover, in case of violation, the reparati6nis enforced in the same world as the
O and theF’, i.e., there is no state change. Therefore, we could reasigngth the
propositional logic part of £. The exampl®¢ (F(«)?) is read as “It is obligatory (in
the current world) that the test(«)? holds (in the current world), otherwise (if the test
does not hold) the reparatighshould be enforced afterwards”. Compared to deontic
actions, tests do not change the world: if a tests succeedsik remain in the same
world and execute the next action, if the test fails then theleraction sequence fails.
We can achieve the same by only using ¢i&language as it is. The example above
is specified iICL asF(«) V (-F(a) A C) which is read as above (we reword it here
to match the formula better): “(In the current world) it iglbadden to dov or it is not
forbidden to dax and the formula holds”.
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KN i = [0]C iff Vs € KN with (4,5) € Ry (0) thenKV | s = C.

Roay (0) = {(s,8') | Ik, 3o = 00 ... 0 afinal path inA9 (§),
Jsg ... s, € KN with sp = s ands;, = ¢/, and
V0 <i<k, V(s;) € L([o;]), and

V0 < i < k with o; i) Oi+1 €0 then(si,SH_l) S RQAB (Oé;)}

Table 4: Semantics fa? L.

Definition 4.2 (semantics). The semantics for the dynamic modalityCaf is given in
Table 4. The rest of the syntactic construct€ gf(i.e., the deontic and propositional
operators) have the semantics from Table 2.

The expressiofd]C is evaluated in a stateof the normative structur&“", depend-
ing on the automata representation of the dynamic actidssentially, the semantics
needs to evaluate the expressibto true in all states reachable from the initial state
i by following the automatom¥(§) of the dynamic action. All the statess reached
from are given by the relation described by the dynamic actien(i, s) € Ryay (9).
The relationR,4; (0) is not as simple to describe as was the case with the deontic ac
tions where we needed to look only at single steps. In the @bdgnamic actions we
need to look several steps in the structure. We take the appintroduced in [42] and
use the automata¥ (§), as in Definition 2.14, interpreting the dynamic actiéns

The relationR,4 (0) is defined as the set of all pairs of stafess’) having the
property that there is an accepting patin AY(§) that is matched by a sequence of
states ink*V. A sequence of states matches the paifhall the edgesr; — Oit+1 €0
are matched by the corresponding transitionss; 1) € Rya5 (ax) (i.€., the indexes
have to match as well as the labelg and the valuation for the states has to conform
with the sets of atoms of the corresponding nodes on the path{(s;) € L([:]))-
From this matching sequence of states take the first and talestizte as the pair we
are looking for. The conformance tésts;) € L£([o;]) is required to ensure than any
test action fromy is satisfied at the particular state; i.e., if the valuatidthe state
corresponds to one of the atoms (atoms are encodings ofticadggthat are encoded
by the automatoific; | of the noder;.

Example 4.1 Consider the normative structure of Fig. 4 changed s.t. rdmesition (s1, s4)

is labeled only by{p}. Also consider the automata#® (§) from Fig. 3 corresponding to the
dynamic actiord = (p- b)" + (dxn) - ¢? - p - p. This time we assume that the complex test
7 is a conjunction that contains; therefore this test fails in all states where the propositi
constanty’ is not present. We want to check if the form{#&p holds in states;. The automaton
Ag((;) has the fO"OWing final paths{(r, t1,t2, tg), (7’, tﬁ), (T, ta, ts), (7’, ta,ts, (t4, ts)*)}. We
calculateR, 4 (6) = {(s1,s1)}. Ata closer look, the patlr, 1, t2, t3) does not contribute to
the R, (0) becaus&’(s2) ¢ L([t1]) (i.e., the automatoifit; | accepts only atoms that make
© true, butV(s2) makesg’ false, hencep false). Also path(r, ¢s) does not contribute, but the
paths(r, ta,ts, (ta,¢5)") are matched by sequences of stateS., s1 andsi, s4, s1, (s4,51)™.
Therefores1 = [§]¢ because = ¢. Consider now a slight modificatiofi = (p - b)* + (d x

n) - p-p (i.e., the testp? does not appear). In this case the langudgg 1) is the universal
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language (i.e., all the atoms) and hence, the path, ¢2, t3) now contributes taR,. (6) by
adding the pail(s1, s4). Because of this; [~ [6']¢ since one of the pairs ift,.4, (§) does
not respect the condition of the semantics; ise.,/= ¢. Consider a subsequent modification
8" = (p-b)* + (dxn) - p (i.e., the lasp action is removed). The automatek¥ (5) from Fig. 3
has the node; removed, and thus the final path 1, t2) contributed toR,.4 ; (§) with the pair
(s1,s3). In this cases; |= [6”]¢ because in botk; andss the formulag holds. Consider a last
modification of§” to " = (p-¢'?-b)* + (dxn) - p. In this case all the path{s, ta, t5, (ta,15)*)
cannot contribute t&, .4 ; (§) any more because the valuativiiss) does not make’ true and
hence is not part of([t4]) which contains only those atoms that maketrue; nevertheless
s1 = [6""]¢ since in the only remaining state we havess = ¢. ]

4.1. Properties of th€ L logic

The validities and non-validities results for the deonticdalities of Section 3.2
hold forCL also. Adding the dynamic modality does not affect theseid&ss we have
extra properties that deal with the combination of deontid dynamic modalities.

Denote byany = T axedr, O the choice betweeall the x-actions. For alky, €

A%, denote by((«))C the formula(a,xany)C and by[[a.]]C the formulg o, xany]¢.
Note that((-)) and[[-]] are duals in this definition. Exterjfl]] to all actionsx € A, as
is done in the standard PDL (the definition {dr)) is analogous):

[la + BlIC = [[ofIC A{[BlIC
[[a- BlIC = [[]][B]IC
[[a"]IC = C A la]][[e"]IC

Remark that the syntactic constrygt] enhances thg| only locally, i.e., only for
one step moves. It enhances in the sense that it containalyahose single transitions
labeled by{a.} but also those labeled by set labels that incl{idg}, i.e., are bigger,
up to the biggest label 5.

An important requirement when modeling electronic contag that the obliga-
tion of a sequence of actior3:(« - ') must be equal to the obligation of the first
actionO¢ («) and after the first obligation is respected the second diiganust hold
Oc¢ (o). To respect the obligatio@¢ () means to do any action bigger tharwhich
is captured with the syntactic constructigi. Note that ifO¢(«) is violated then the
reparatiorC must be enforced (must hold) and the second obligation ¢adied, i.e.,
is not necessarily enforced.

Proposition 4.3. The following statements hold:

= [[oxd]C = [[axx B]C (28)
= Oc(a - B) < Oc(a) A[[a]]Oc(B) (29)
= Fe(a-B) < Fr(a) Al[a]]Fe(B) (30)

whereay, 8 € A%;.
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Proof: The proof of (28) is easy as we are concerned only widlttions. Trivially, for
an actionw, the tree of the actiony x any has all edges with labels including (the
tree has height). Similarly, all the edges of the tree of, x 5« x any containay x B«
and, becausey C ax x (3, they contain alsax.. Because of these, all the transitions
in the structure that are relevant for evaluatjfig x 5]|C are part of the transitions
relevant for[[a.]]C and, hence( holds in all their ending states. Proof finished as
whenevef[a,]]C holds in a state]]a, x 5]]C holds too.

To prove (29) we need a series of results which are easy tkdhededious; we
just state these results. To prove the left to right impidait is easy to see thai: (« -
B) = Oc(«) as we discuss further. Triviallff)(«) C T'(« - 8) from which it is easy
to deduce that i (o - 3) S; K» thenT' (o) S; KV (i.e., the first line in the semantics

of Oc(w)). From the same results above it is clear that all the triamsis —— s’ €
K that are relevant for the semantics@§ (a) are among the transitions that are
relevant in the semantics 6J:(« - 8) and hence they respect the second condition in

the semantics of obligation. A second result easy to vesifylatKTTeﬁ“)’i c Klahr
which implies trivially the third condition in the semargiof O¢(«). Related to this
resultis thaf (@) C T'(« - ) which means thakafs(T(@)) C leafs(T(a - B)) which
makes the last requirement in the semantic®gf«) trivially true.

To finish the left to right implication we prov@c (- 8) — [[«]]Oc(5). Recall that
the construction of (« - 8) first constructd’(«) andT'(3) and then just attaches the
wholeT'(B) to all the leafs of'(«) (i.e., replaces each leaf with the rootlfs)). The
actiona is a deontic action and, hence, its interpretation is a treethe semantics
of [[-]] follows all the transitions ik that are bigger than the edges of this tree.
Therefore, these are all the transitions that participateéT (o - 8) S; K*V; actually
in the second condition of the simulation relation. Thisgieobservation gives all the
rest of the proof; it implies that all the states where we hawvaluateO.(3) are part
of T(a-B) S; KV, actuallyT'(8) S, KN wheres is related to the leafs af(«). The
second and third conditions in the semantic®p{3) in the states follow similarly.
The last condition holds becau®és3) C T'(a - 3).

The proof of the right to left implication follows a similaedious argument but the
main intuition is as follows. To get the semantics@§(« - 5) we need to achieve
two main goals: (1) to walk on th&* structure according t@'(« - ) and to find all
the appropriate markers, (2° must hold at the appropriate violating states. Walking
on KN goes well and finds all the necessary markers until reachiadeaf nodes of
the first part of the tree, i.e., @f(«), because it comes from the semantic®pf{«).
Nevertheless, we can continue because all these statbeaae as the states reached
through[[«]]. Therefore, because of the semantic£p{ 3) from all these states we
can continue until we reach the leaf nodes of the bigfrée- ). For the second part
it is easy to see that all the statesiof' reached because of the tr€én - 3) are the
same as the states reached because of th&'{i@etogether with those reach through
making firsta: and then followingl’(3).

The proof of (30) is similar only that it reasons about pasiaulations. To remark
is that the first prohibition has a trivial reparation. Fromractical point of view the
prohibition is irrelevant because it does not impose anricti®ns. Technically, the
reparatiorC holds (is enforced) only in the states corresponding toghéslof the tree
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T(« - B), therefore, there is no information about what holds atélaésl ofT'(«). O

The validity (30) hints at the fact that prohibitions as defiinC £ could be mod-
eled using the dynamic operatpf (or maybe using the syntactic constriief)), but
this is a simply a conjecture at the moment of writing thisgrap

The PDL version with automata inside the dynamic modalioyf{42] is proven
decidable with a method that builds finite models based omianteof Fischer-Ladner
closure and using Hintikka-like sets. This proof can belgaslapted to our automata
over guarded synchronous strings and to our dynamic mgaalér synchronous ac-
tions. Therefore, if we consider only the propositionaltfzend the dynamic modality
of CL we have a decidable extension of PDL which can talk aboutsymous actions.
Unfortunately, we could not give a proof of decidability fitve deontic modalities us-
ing a Fischer-Ladner closure method. Therefore, we carorabine the proof based
on finite tree models for the deontic modalities with a proa$éd on Fischer-Ladner
closure for the dynamic modality to obtain the decidabitityhe full CL.

On the other hand, the PDL logic does not have the finite tregefroroperty be-
cause of the Kleent This applies to our dynamic modality over synchronousonsti
too. However, we show in Theorem 4.4 that the dynamic modalier synchronous
actions has the tree model property. This together with férad3.9 give the tree
model property for fullCL. From the tree model one just needs to find the right se-
lection method to obtain a bounded tree model property, p@unded branching) as
was done for the modai-calculus [43, 44]. Using this, one can prove decidability b
a standard translation into the SnS logic which is decidpB¢ Although standard,
these techniques are specific and quite involved. In corseguwe left the work of
investigating and adapting these techniques to the seitig as an open problem for
future work.

Theorem 4.4 (tree model forC£). For a pointed structuré KV, i) we have:

TKEN z = [8)c it KN, p(z) E[6)C (31)

Proof: The proof follows the semantics 6f and uses an argument similar to what we
did in the proof of Theorem 3.9 for the last part of the caseofdigations. This means
we use structural induction and assul&™, 2’ = C iff KV, p(2') |= C.

For the left to right implication we useductio ad absurdurand assume thats €
KN s.t.(p(x),s) € Ryay () for which KN s b~ C. Having(p(z), s) € Ryay (6) it
means thaBo = oy ... oy, afinal path inA9(§) and3sg ... s, € KN s.t.sg = p(z),

sp =8 V0 < i <k, V(s;) € L([o;]), and for anyo; 2 i1 € o we have
(8i,8i41) € Ryap(al). By Lemma 3.8 it means that fap(x), s1) € Ryas(al)
we find (2, 2zals1) € R1., (of); and the same for all, ending with the transition
(wal. .. sp—1,2al... ol sp) € RL, (af™"). Because the valuation functions
andVT agree on all propositional constaatit means thav'” (za? ... s;) € L([0}]).
In this way we have found for the final paththe sequence of stateszals, ...,

za? . ..ok s, in the tree model that satisfy the conditions forza? ... a% 1s;) €
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RT,, () and, by the left part of the implication, we haV&™, zal ... ol 's; |= C.

X

We use the inductive hypothesis to obtdir", p(zal ...a%"1s;) = C which is the
same asKN, sk | C; buts, = s and hence we get the contradiction.

The right to left implication follows analogous arguments. |

In the following we argue that the most important paradoXegeontic logic are
avoided inC L, either because they are not expressible in the languagecaube they
are excluded by the semantics.

Ross’s Paradox [46]in natural language it is expressed as:“It is obligatory that
one mails the letter;’b. “It is obligatory that one mails the letter or one burns
the letter”. In SDL these are expressed asO(p), b. O(p V ¢). The problem is
that in SDL one can make the inferer@¢p) — O(p V q).

Remark 4.5. Ross’s paradox does not holddit.

Argumentation: Basically, Ross’s paradox says that it is counter intuitvénave
O(a) — O(a + b) (e.g.,"Obligation to drink implies obligation to drink or to kill}.
In CL this inference is not possible as witnessed by Propositi25(22).

The Good Samaritan Paradox [47]in natural languageitis expressedas'It ought
to be the case that Jones helps Smith who has been robbetit ought to be
the case that Smith has been robbgdid the natural inferenae “Jones helps
Smith who has been robbed if and only if Jones helps Smith iaitti 8as been
robbed”. In SDL the first two are expressed as: O(p A ¢q), b. O(q). The
problem is that in SDL one can derive thatp A ¢) — O(g) which is counter
intuitive in the natural language.

Remark 4.6. The Good Samaritan paradox can not be expresseédin

Argumentation: The Good Samaritan paradox useght-to-beand is more delicate
to transform it into oumught-to-doapproach. The transformation looks like: —
O(a) which means thatf Smith has been robbed (i.eg) then John is obliged to help
Smith (i.e.,O(«))”. We can not express ii£ obligations over conjunction of two
actions that are not performed concurrently as this paredexpressed in SDL. Also,
with our representation of the paradox we cannot deduydee., thatSmith has been
robbed

The Free Choice Permission Paradox [46]n natural language it is expressed as:
a. “You may either sleep on the sofa or sleep on the béd™You may sleep
on the sofa and you may sleep on the hedh SDL this is: a. P(p V q),
b. P(p) A P(q). The natural intuition tells tha®(pV ¢) — P(p) A P(q). In SDL
this leads taP(p) — P(pV q) whichisP(p) — P(p) A P(q), SOP(p) — P(q).
As an example'lf one is permitted something, then one is permitted amghi

Remark 4.7. The Free Choice Permission paradox does not exi€tdn
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Argumentation: The Free Choice Permission paradox basically says thattiemimg
one permission we may infer that we have any permission. iSh&t(a) — P(a + b)

or P(a) — P(a) A P(b). Neither of the two implications hold in our approach. The
second one is obvious. The first one is ruled out by Corolla®p-327) which is a
consequence of Proposition 3.24-(17).

Sartre’s Dilemma [48] in natural language is expressed astt is obligatory to meet
Jones now (as promised to Jonds)]|t is obligatory to not meet Jones now (as
promised to Smith). In SDL this isa. O(p), b. O(—p). The problem is that
in the natural language the two obligations are intuitive aften happen, where
the logical formulas are inconsistent when put togethecgimunction) in SDL.

Remark 4.8. Sartre’s Dilemma is not expressible in our approach.

Argumentation: In CL£ we cannot write negation of actions, liket meet Jonesgnd
thus cannot have obligations on top. Thus, syntacticallyoispossible to write this
paradox inCL. However, Sartre’s dilemma can be reformulated in corgréstmi-
nology as:Obliged to meet John and Forbidden to meet Jofihis is written inCL
asO(a) A F(a) which is a well formed formula. But this results in a contiiin
because of Corollary 3.23-(12). In conclusion, neithes tieformulation that can be
represented id L does not constitute a paradox because the formula does ldot ho

Chisholm’s Paradox [49] in natural language is expressed asJohn ought to go to
the party;b. If John goes to the party then he ought to tell them he is coming
c. If John does not go to the party then he ought not to tell thens lteming;
d. John does not go to the party. In SDL these are expressedl. a3(p), b.
O(p = q), ¢. =p — O(—q), d. =p. The problem is that in SDL one can infer
O(q) N O(—q) which is due to statemebt

Remark 4.9. The Chisholm’s paradox is avoideddiC.

Argumentation: The propositions of the Chisholm’s paradox are expressédias:
a. O(a), b. [a]O(b), c. [aO(b). Note first that formulag. andc. give the CTD
formulaO¢(a) of CL whereC = O(b). The problem in SDL was that one may infer
bothO(b) andO(b) holding in the same world. This is not our case beca&@e holds
only after doing actiom, whereO(b) holds only after doing the contradictory action

a@. Therefore, we can not have in the same world @th) andO(b).

5. Conclusion

In this paper we have presented the action-based contigictd@. As our ob-
jective has been to present the theoretical backgrouddahcluding its Kripke-like
semantics and further results concerning the decidaluififfragments of) the logic,
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we could not expand on applications. Case studies on howet6£igor writing spec-
ifications of contracts are presented elsewhere (e.g. §e&(4).

Concerning verification, an encoding of a variant of the dqgiesented here into
NuSMV has been presented in [40], while the papers [50, 5ddqot the theory and a
tool for conflict analysis. With the development of a Kriplagntics, we are now in
conditions to develop a specific model checkerdar.

Besides the development of a model checker, future workided the development
of a proof system, further investigation on full decidalilof the logic, the study of
the use o £ as a semantic framework for other languages for servic&migéormal
semantics, and an extension with real-time. The latteritiquéar is appealing as most
real contracts contain timing constraints.

Acknowledgements:We thank Martin Steffen and Olaf Owe for useful comments on
earlier versions of this work.
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A. Additional Proofs

The following lemmas are helper results used in the proofrefofem 3.21.
The following lemma guarantees that the conjunction ofgailons implies equal-
ity between the structures of the conjuncts, or strict isicln of one into the other.
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Lemma A.1. If KV i = Oc(a)AO¢(B) thenK 5" = KH'E) " otherwisek ') ¢

KL otherwiseK A\ > KL

Proof: Take an arbitrary pointed structufé” i and supposé&™ ,i = O¢(a) A
Oc¢(B). The proof of this lemma usesductio ad absurdurand is based on the fact
that lines two and three in the semantics of obligation addarkers to the states, and
line four removes markers thus resulting in a contradiction.

If KV, i = Oc(a) A Oc(B) thenK™N i = Oc(a) and KV i = Oc¢(B). From
the first we have by the semantics thate) S; KV which means that there exists
the maximal simulating structurE 52" From the semantics @ (B) we obtain
sirj\]/ilarly K52 Both maximal simulating structures are substructurehiefsame
KV,

Suppose that there exists a transition’> k' € K52 stk - k' ¢ K52

and there is a transition . s’ € K527 st.s 5 s ¢ KL, Without loss

of generality we will work with the transitiok — %’ which from the semantics of

Oc¢(a) we have thatva € Ag if a € v theno, € p(k’). On the other hand the

transitionk — k' is not part of K52 and becausk € K452 " and we know that

it exists at least one transition i, (for example the transition —— ) then it

means that — &' € K./, By the semantics ab¢(5) we know thatva € Ap
if a € v theno, ¢ o(k'). This results in a contradiction and therefore the initial
supposition is wrong. ]

Corollary A.2.

a. If KL = gIB) then
(@) TKLD" = 7L and
(b) Kre' = Krén".
b. If KL ¢ KL then
(@) TKL" c TKES) and
(b) Vi -1 k' e K0 eitherk - k' € Kl or k L k' € KR

c. WKL 5 KL then
the same as before but interchangevith 5.

Lemma A.3. Foranya, 3,7,7" € AP if T(axy') = T(Bxy") = T thendy" € AP
St.T =T(axBxy").

Proof: From the completeness result of the algebra of actions wehgétbecause
T(axy') = T(Bx~") we havenxy’ = fx~" = 0. We need to prove thaty”” € AP
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staxpxy" =6 = ax~" = fx~" which by the completeness results means that
T =T(axBx~").

The interpretation functior is applied to the canonical almost normal form, and
therefore we consider the actions<+’ anda x 8 x " to be incanf. Because the
canonical form is defined inductively it is w.l.0.g. that vamk only at the first levels
of the actions (i.e., only at theactionsa?, of the canonical form). For a simple nota-
tion we denote the-actions on the first level of by a1, as, .. ., ay; note that there
arek actions in total. For the actioi we denote the-actions on the first level by
B1, Be, ..., 8. For the actior¥ we denote the-actions byr;.

To prove the lemma we use the proof principgeuctio ad absurdurand suppose
thata x 8 x~"" # 6 is the case. According to the above this supposition is edgiiv
to saying that the-actions on the first level af are not constructed from the actions
on the first level oty x 5. This may be from several reasons.

First consider that a-action ofa x 3, say«; x 1 is not contained in any of the
x-actionsr; on the first level ob. Considerrj¥1 to be thoser; which containa;; and

similarly considerrg1 thoser; which containg;. From the supposition we know that

$1 does not appear in any of thg ; and similarlya; does notappear in any, . From
the hypothesig = x~" we know that in allr it appears one of the; x-actions. This
means that in each of the it appears one of thg; where;j # 1. Consider w.l.0.g.
one of these actions} = «a; x 32 x y for some~y which may also be empty. From
the same hypothests= /3 x~" and knowing thatv; x 82 x v is ax-action on the first
level of # then it means that;~ is an action on the first level of’. This means that
between the actions of the first level off there exists each of the actiong x v x 3;
with j # 2 (because we already have the index 2). In other words, thenaet x v
must be combined with any of the actiofisincluding ;.

We thus obtained the contradiction (i.e., there exists @iorae which contains
a1 % 1). Therefore, each of the; x §; of § = ax x~"" are contained im;. In other
words we have proven that all theactions on the first level of the actianx g are
found among the-actions on the first level af. Moreover, the discussion above also
proves that't € ¢, 7 = «;/3;; which says that there is neaction on the first level
of 8 which does not contain an action from the first levehof 5.

The only way to still have the (bad) supposition is to say thiatnot the case that
for all pairsa; 5, there exits a samg such thaty; x 8, xy = 7 is ax-action on the first
level of §. To explain it differently, this supposition wants to catdict the second
operator in the conclusion of the lemrfax 5) x~"’ which by the definition it must be
that for eachy an action on the first level of” it must be combined with each action
a; X ﬂj of ax ﬂ

We take an arbitrary pair; x 8;, sayo; x 51 and w.l.0.g. suppose it has some extra
action~ which may be also empty. Thug x 51 x 1 is an action on the first level of
0. From the hypothesi8§ x 7" = 6 and knowing thaf3; is combined with the action
aq X7 itimplies that all othes; with j # 1 must be combined with the same action.
Therefore, the following are also actions a; X 82 X Y, ..., a1 X B X% On the
other hand, from the hypothesis<+’ = 6 and knowing thaty; x 3; x 1« is at action
it means that all otheti; actions must be combined with x . Therefore, we also
have ag- actions:as X 31 X Yy, . . ., @ X 51 X Y.
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We continue to apply recursively the same reasoning on thedeeluced actions
like ay x 81 x v and we obtain in the end that all the actiensx 8, appear among the
actionsr on the first level ofy combined with the same action. Thus, the second
false supposition is contradicted.

The last way of contradicting the lemma is trivial and it sapgs that it is not the
case that all the actions off come from combination by with the actionsy; x j3;.
More clearly this tries to say that there exit othemactions that do not follow the
pattern deduced by the first two reasonings we had befores CHminot be as if there
were another action besidesx §; x 4, sayr’ we have proven by contradicting the
first supposition that this must be of the formx 3, x~+/, and by the second supposition
we again get that there exist all thex 5, <~/ as actions on the first level of.

The proof of the lemma is finished, as the bad suppositionnaya contradicted.
O

Lemma A.4. For any KV a normative structure and, 3 two distinct actions we have
that if KV, i = Oc(a) A Oc(B) thenT (ax ) S; KV,

Proof: We use Lemma A.3 and mainly the naturalness constraint agattzins from
Definition 3.19.
From the statement of the lemmi&" | i = O¢(a) AOc(3) by applying the Lemma

A.1 we get thatK,fLS{?’i = Kﬁ%@’i (we treat the two cases with strict inclusion at the
end). This implies (see Corollary A.2) that the correspogdiees which unfold these
maximal substructures are the same; i, so)"" = TK,b\0)" = TKN .
Moreover, from the hypothesis of the lemma we get thaf,i = Oc(«) and
KN i |= Oc(B). Considering theaturalnessonstraint it implies that:
I st.T(axy') = TK ()

Iy st.T(Bx~") = TKLD
From these and knowing that the maximal simulating strestare the same we
getthatT(axv’) = T(Bxv") = TKna.. By applying the Lemma A.3 we get that
TKmaz = T(axBxy").
Following the Definition 3.3 of the simulation relatios; , in order to prove the
conclusionl'(ax 8) S; KV we need to prove that:

@) Vr 5 ¢ € T(axf),3i sk € KN sty C o andt! SE,
2) Vi 5 k' € KN with v C 4 thent’ S &

Using the results of the previous lemmas the proofs of (1)(@htdecome simple.
AsT(ax fx~") = TKY. which is the tree unfolding of the substructuié’, =

max

KR = gIE) of KV thenitis simple to see that for any edge’s ¢/ € T'(axj)
there is a transition —— k' € TK2.

maxr

Therefore; — k' € KV andthus —— k' € K. The fact that’ S ¥’ is true is

max

which clearlyy C +’ depending ory”’.
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obvious by applying a similar recursive reasoning and detiog one level in the tree.
Note that the recursive reasoning stops when the treetibds no more children (i.e.,
no more edges —— t” exist inT(a x 8)); and this is always the case as the tree is
finite.

For proving (2) we use a similar recursive reasoning as kbeferom the condition
~v C 4 it implies thaty’ = v x~+”. Becausey’ is a label of a transition iT"(« x
Bx~"") theny = ax g x~) x~" which because it contains it enters under the
application of the hypothesig(a) S; KV (and similarly because it containswe
can applyT'(3) S; KV). Applying the hypothesis leads to the fact there therelage t
edges — t/, € T(a) andr — t}; € T(B) with ¢/, Sk’ andt; S k’. On the other
handt’ comes from the combination of the twf) andt); and thus a simple recursive
reasoning give$' S k’. The recursive reasoning stops again when the mobas no
more children.

Note that if we consider inclusion among the maximal simnastructures (in-
stead of the equality as we did) then the discussion above doechange. The
TK,D(&%) s the same as the interpretatida x 8 x~""). O

In what follows we present two corollaries of Lemmas A.1 and:Ahe first shows
what is the maximal simulating structure with respecta:x3); and the second states
that the obligation ofvx 8 respects the naturalness constraint. Corollary A.5 is ised
the proofs of both Lemma A.7 and Lemma A.8.

Corollary A.5. For any KV a normative structure and, 3 two distinct actions we

have that ifKV i = Oc(a) A Oc(3) then either
FT@)i _ T _ o T(axB)i

7%(11 = 7%(11 = 7%%193 _or
K ()i C Kmslﬂ)ﬂf - K (axp),i

max X - max Or

K" C K = K™,
Corollary A.6. If KN i |= Oc(a) A Oc(B) thenO(a x () is a natural obligation.

LemmaA.7. If KV i = Oc(a) A Oc(B) then

Vit eT(axf) andVs s’ e KN s.t.tSs AyC~/ is the case that
Vae Ap if a€~y theno, € o(s').

Proof: It is simple to see, by looking at Definition 3.4, that all ts#ions s 7—> s
mentioned in the lemma make up exactly the maximal singmtmcturnglﬁ.Xm’i.
By Corollary A.5 this is the same as the maximal simulatimgcitres for7'(«) and
T(B).

To finish the proof we take one arbitrary edgaéﬁx t'eT(ax ) and one arbitrary

transitions — s’ € KL @i g1t Ss andy = ay x S« x+' where~’ may also be

1. These satisfy the conditions in the lemma. The eﬂééxgx t’ comes from the

combination of two edges— ¢’ € T(a) andt e T(B). On the other hand

we have for the transitios — s’ that botha,, € v and 3, C ~ hold. This means
that we can apply the hypothesis of the lemma (i.e., applgéfiaition forO¢ to both
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Oc () andO¢(B)) to get thato, € o(s'),Va € ax ando, € o(s'),Va € B« (because
the definition says that for all transitions this happeng)isTmplies the result of the
lemma,i.e.p, € o(s'),Va € axx Sx. |

LemmaA.8. If KV i = Oc(a) A Oc(B) then
Vs s € K}Qﬁ%‘w)*i thenVa € Ag if a € 4/ theno, & o(s).

Proof: Following from Corollary A.5 is thalK,.Te(,%‘Xﬁ)’i = K,Te(ﬁ{)l = K,.Te(ﬁ)’i (the
cases for inclusion are treated at the end). From the hypisthe",i = O¢(a) we
have that's 2 s' € K% thenVa € Ag if a € ~' theno, ¢ o(s") which makes
our proof goal also true by replacidg,j.;(,%‘)’l with its equall(feﬁi‘xﬁ)”.

In the case whedk 52" ¢ KL = KLE@P then we work as before but

consider the structure fgt instead. |

LemmaA.9. If KV i = Oc(a) A Oc(B) then
KN sl=C VYse NwithtS®s At € leafs(T(axf)).

Proof: The conclusion of the lemma should be read as: the for@ialds in all
those states € K* which can be reached by “following” the tree interpretatifn
the action complement x g to the leafs. By “to follow” we mean that the normative
structure simulatestrictly the treeT’ (o x 3). The simulation must be strict so that we
follow exactlythe tree.

Recall the Definition 2.7 of the action complement. The cannt of a com-
pound actiorw works on each level of the complemented actionFor the proof of
this lemma it is enough to look at the behavior for only the fiesel, and for the rest
we apply a similar recursive reasoning. Moreover, noteuleaneed to look only at the
leafs of the trees (i.e., at the states from the end of the fiathis of the tree interpreta-
tion of the complemented action). Thus, the first level indbmplement contains the
choice+7€§ ~ (defining the full branches; we look at the other full brarsiviien we
reason recursively at lower levels of the tree).

Thus, we need to prove thet — ¢/ € T'(+,ezy) With v € A% ax-action s.t.
VaixfB] ax-action on the first level of the tree of the complementedacti< we have
thatol, x 32 ¢ ~ then it is the case that#s — s’ € KV thenk?, s’ |= C. Take an

arbitrary transitiort — ¢’ for which the above hold and for whicks — s’ ¢ KV
and we show thak™, s’ |= C. _
From the conditiowal x 3%, ol x 3. Z ~ we can conclude that eithgn’, ol Z ~

or Vﬂi, ﬁi ¢ ~. This is done by using the proof principleductio ad absurdurand
we suppose that neither of the!, ol Z v norVgl, 32 ¢ ~ hold. This means that
3§ st.ai C v AB. Cwhichimplies thati x 37 C +. By looking again at the
definition of thex operation we see that x 3/ must be an action among thé x /.

Therefore, the conclusion that we have just drawn beforrginito contradiction with
the initial conditionval x 32, ai x 32 Z .
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By using one of the hypothesis of the lemma, $&Y,i = Oc(«) we conclude
from the definition of the semantics 6% that the transition that we work with—- ¢’
respects the fact that!, o/, v and thus in the end state of the transition’s s’ €
K" we haveK?V, s’ |= C. This is the conclusion of the lemma. i
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