
Modelling and Analysis of Normative Documents

John J. Camilleri, Gerardo Schneider

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg, Sweden

Abstract

We are interested in using formal methods to analyse normative documents
or contracts such as terms of use, privacy policies, and service agreements.
We begin by modelling such documents in terms of obligations, permissions
and prohibitions of agents over actions, restricted by timing constraints and
including potential penalties resulting from the non-fulfilment of clauses. This
is done using the C-O Diagram formalism, which we have extended syntactically
and for which we have defined a new trace semantics. Models in this formalism
can then be translated into networks of timed automata, and we have a complete
working implementation of this translation. The network of automata is used
as a specification of a normative document, making it amenable to verification
against given properties. By applying this approach to a case study from a real-
world contract, we show the kinds of analysis possible through both syntactic
querying on the structure of the model, as well as verification of properties using
Uppaal.

Keywords: normative documents, contract analysis, timed automata, uppaal

1. Introduction

We frequently encounter normative documents (or contracts) when subscrib-
ing to internet services and using software. These come in the forms of terms
of use, privacy policies, and service-level agreements, and we often accept these
kinds of contractual agreements without really reading them. Though they are
written using natural language, understanding the details of such documents
often requires legal experts, and ambiguities in their interpretation are com-
monly disputed. Our goal is to model such texts formally in order to enable
automatic querying and analysis of contracts, aimed at benefitting both authors
of contracts and their users. To realise this, we are developing an end-to-end
framework for the analysis of normative documents, combining natural language
technology with formal methods. An outline of this framework is shown in Fig-
ure 1.

Email addresses: john.j.camilleri@cse.gu.se (John J. Camilleri), gerardo@cse.gu.se
(Gerardo Schneider)

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingMay 5, 2017

Back-end

Natural Language

Normative
Contract

Spreadsheet

Mod Agent Action

O user pay

P admin block

Controlled Natural
Language (CNL)

Timed Automata
(NTA)

Translation

Semantic Query

E◇ t<5 → p1.ok

SAT / UNSAT +
counter-example

Front-end

Syntactic Query

isObl & agent(user)

Matching clauses

C-O Diagram

 P O

Contract Model

Natural Language

Query

∅
⊤

Figure 1: Overview of our contract processing framework, separating the front-end concerns of
model-building from the back-end tasks related to analysis. Dashed arrows represent manual
interaction, while solid ones represent automatic steps.

Formal analysis requires a formal language: a given syntax together with
a well-defined semantics and a state-space exploration technique. Well-known
generic formalisms such as first-order logic or temporal logic would not pro-
vide the right level of abstraction for a domain-specific task such as modelling
normative texts. Instead, we choose to do this with a custom formalism based
on the deontic modalities of obligation, permission and prohibition, and
containing only the operators that are relevant to our domain. Specifically, we
use the Contract-Oriented (C-O) Diagram formalism [1], which provides both
a logical language and a visual representation for modelling normative texts.
This formalisation allows us to perform syntactic analysis of the models using
predicate-based queries. Additionally, we are able to translate models in this
formalism into networks of timed automata (NTA) [2] which are amenable to
model checking techniques, providing further possibilities for analysis.

Building such models from natural language texts is a non-trivial task which
can benefit greatly from the right tool support. In previous work [3] we pre-
sented front-end user applications for working with C-O Diagram models both
as graphical objects and through a controlled natural language (CNL) interface
(shown on the left-hand side of Figure 1). The ability to work with models in
different higher-level representations makes the formalism more attractive for
real-world use when compared to other purely logical formalisms. The present
work is concerned with the back-end of this system, focusing on the details of
the modelling language and the different kinds of analysis that can be performed
on these models.

2

Contributions and outline. The paper is layed out as follows. In Section 2 we
first present an extended definition of the C-O Diagram formalism, introducing
an updated syntax and a novel trace semantics. Section 3 then describes our own
translation function from the extended C-O Diagram formalism into Uppaal
timed automata, which is more modular and fixes a number of issues with
respect to the previous translation given in [4]. Our contribution includes the
first fully-working implementation of this translation, written in Haskell. We
also prove the correctness of this translation function with respect to our trace
semantics. Section 4 covers the analysis processes that we can perform on this
formalism, discussing our methods for syntactic querying and semantic property
checking of contract models. We demonstrate these methods by applying them
to a case study from a real-world contract in Section 5. Finally, we conclude
with a comparison of some related work in Section 6 and a final discussion in
Section 7.

Notation. Table 1 below presents the symbols and function names used through-
out the rest of this article.

N set of names
A set of agents
Σ set of actions
V set of integer variables
C set of clocks
B set of Boolean flags
N type of natural numbers
Z type of integers
T type of time stamps
σ event trace
T set of event traces
σU Uppaal timed trace
TU set of timed traces
T CU set of timed traces

corresponding to the
satisfaction of C

� respects relation between
traces and contracts
(Figure 6)

φ, ψ predicate name placeholders
ε empty conditions
∅ empty guard/constraint list
ε empty bound in interval
Γ environment

getv/c/b getters (17, 18, 19)
setv/b setters (20, 21)
resetc reset clock (22)
lookup lookup clause by name (23)
τ combine interval with con-

straints (24)
lst find lowest satisfying

time stamp (28)
check check a set of constraints (26)
eval evaluate a constraint (27)
trf translate from C-O Diagram

to Uppaal model (Section 3)
abstr translate from timed trace to

event trace
Q syntactic query function (53)

Table 1: Legend of symbols and functions used in this article. Where relevant, we have also
included references to their definitions.

3

2. C-O Diagram Formalism

C-O Diagrams were introduced by Mart́ınez et al. [1] as a means for visual-
ising normative texts involving obligation, permission and prohibition of agents
over actions. The basic element in a C-O Diagram is the box, representing a
simple clause (Figure 2).

agent

guards

interval

modality

action
reparation

name

Figure 2: The various components of a single C-O Diagram box.

A box has four components:
(i) guards specify the conditions for enacting the clause;

(ii) an interval restricts the time during which the clause must be satisfied;
(iii) the box’s propositional content specifies a modality applied over an action;
(iv) a reparation, if specified, refers to another clause that must be enacted if

the main norm is not satisfied (a prohibition is violated or an obligation
is not fulfilled).

Each box also has an agent indicating the performer of the action, and a unique
name for referencing purposes. Figure 3 shows a completed example of such a
box. Boxes can be expanded by using three kinds of refinement: conjunction,
choice, and sequence, which allow complex clauses to be built out of simpler
ones. Visually, complex clauses are represented as trees1 where the child nodes
signify the operands of the refinement, as shown in Figure 4.

2.1. Formal Syntax

Figure 5 gives the formal grammar of our modelling language. It has been
extended from its original definition given in [4]. These extensions are explained
at the end of this section.

A contract specification K is a forest of top-level clause trees, each of which
is tagged as either Main (instantiated when the contract is executed) or Aux
(instantiated only when referenced). A clause C is primarily a modal statement,
expressing the obligation O(·), permission P (·), or prohibition F (·) of an
agent (from the set A) over an action (from the set Σ). Every clause is given
a unique name (from the set of names N) and optionally some conditions
(described further below) which affect its applicability and expiration. A clause
may have a reparation R, specifying another clause to be enacted if the main
part of the clause is not satisfied. We use > for the trivially satisfied reparation,

1Additional edges are sometimes included for visual clarity, making the diagrams tech-
nically graphs. However they do not change the model as such, and we still treat them
structurally as trees.

4

company

isDone(SLA1)

〈ε, 24〉
Obligation
respond

#credit

response

The company must respond to an SLA1

request within 24 hours. If this target is
not met, the customer is entitled to credit.

Figure 3: Example of a C-O Diagram box together with the natural language clause it models.

isDone(req)
#credit

resp

company

isDone(SLA1)

〈ε, 24〉
Obligation
respond ⊥

resp1

company

isDone(SLA2)

〈ε, 4〉
Obligation
respond ⊥

resp2

AND

When a request has been made, the company must respond within 24 hours (in
the case of SLA1) and within 4 hours (in the case of SLA2). In each case, if
this target is not met, the customer is entitled to credit.

Figure 4: Example of refinement, where complex box resp is built from the conjunction of two
simple boxes resp1 and resp2. The corresponding clause in natural language is also given.

and ⊥ for an unsatisfiable one. Instead of a modal statement, a clause can
also be a refinement over sub-clauses using conjunction And, sequence Seq
or choice Or. An action C2 may be a single atomic action from the set Σ, or a
complex one obtained by conjunction, choice or sequence. Finally, a clause may
also be a simple named reference to another clause elsewhere in the contract.

Conditions are subdivided into guards and intervals. A guard is a con-
junction of variable and timing constraints, which govern when a clause should
be enacted. An interval is a tuple of an optional lower and upper bound on
the time, which governs the window of time during which a clause is active and
may be satisfied.2 Given a finite set of integer variables V, a constraint over
variables is a Boolean formula comparing a variable against a constant (v ∼ z)
or against another variable (v − w ∼ z). It can also be a predicate of the form
φ(name). Similarly, given a finite set of clocks C — variables of abstract type T
whose values increment at the same rate over time — a timing constraint is a
Boolean formula comparing the absolute value of an individual clock (c ∼ t) or

2The reason for the separation between guards and intervals is discussed on page 7.

5

K :=
{
〈C, Type〉+

}
where Type ∈ {Main,Aux} (1)

C := 〈name, agent, Conditions,O(C2), R〉 (2)∣∣ 〈name, agent, Conditions, P (C2)〉 (3)∣∣ 〈name, agent, Conditions, F (C2), R〉 (4)∣∣ 〈name,Conditions, C1, R〉 (5)∣∣ Ref (6)

C1 := C (Seq C)+
∣∣ C (And C)+

∣∣ C (Or C)+ (7)

C2 := action
∣∣ C3 (Seq C3)+

∣∣ C3 (And C3)+
∣∣ C3 (Or C3)+ (8)

C3 := 〈name,C2〉 (9)

R := Ref
∣∣ > ∣∣ ⊥ (10)

Ref := #name (11)

Conditions :=
〈
Guard, Interval

〉
(12)

Guard := {Constraint∗} (13)

Constraint := φ(name)
∣∣ v [−w] ∼ z

∣∣ c [−d] ∼ t (14)

where φ ∈ {isDone, isComplete, isSat , isVio, isSkip}
v, w ∈ V, c, d ∈ C, ∼ ∈ {<,=, >}, z :Z, t :T

Interval := 〈ε | t, ε | t〉 where t :T (15)

Figure 5: Extended version of the C-O Diagram syntax [4] for contracts, where name ∈ N ,
agent ∈ A and action ∈ Σ. T represents the type of time stamps. Differences from the
original include the top-level contract type K indicating Main/Aux clauses (1), the addition
of cross-references (6), top/bottom as reparations (10), the distinction between guards and
intervals (12), and the inclusion of predicates as constraints (14). In addition, our version of
C-O Diagrams does not support repetition.

the relative difference of two clocks (c−d ∼ t).3 By convention, we assume that
for every name ∈ N there is a clock in C with identifier tname. The symbol ε is
used as shorthand for the empty conditions 〈∅, 〈ε, ε〉〉.

Well-formedness. Not all contracts which can be built from this grammar are
considered valid. We define a well-formed model to be one in which: (i) there is
at least one main clause, (ii) all names are unique, (iii) all cross-references are
valid, (iv) reparations and references do not lead to cycles, and (v) clock names
and predicates refer to existing boxes.

3Note that, for example, in the guard expression
{
x > 1, y < 5

}
the elements of the set

are syntactic objects denoting constraints; they are not part of a set definition.

6

2.2. Extensions

The syntax presented here adds a number of extensions to the previous def-
inition of C-O Diagrams given in [4]. These extensions were mainly introduced
as a result of implementing the system as a runnable tool (see Section 3.2) and
to help the modeller by making common constructs easily expressible without
requiring extra encoding. The extensions include:

(i) Re-structuring the top-level contract type as a forest of clause trees
Rather than modelling an entire contract as a single tree, it is more con-
venient to model groups of unrelated clauses in a list. This more closely
matches the structure of natural language contracts. This structure also
allows for more modularity and even re-use of clauses, via the cross-
referencing operator:{〈

〈m, ε,#n1 And #n2,#n2〉,Main
〉
,

〈〈n1, . . .〉,Aux 〉,
〈〈n2, . . .〉,Aux 〉

}
The example above shows how clause n2 is defined once but referenced
twice: in the main conjunction of m, as well as in its reparation. In
the original language this kind of structure is only achievable by inlining,
meaning that entire sub-clauses may need to be appear multiple times in
different parts of the same model.

(ii) Distinguishing between top (>) and bottom (⊥) reparations
The previous version of the language only has a single type of null repa-
ration (ε), whereas we want to be able to differentiate between one which
is trivially satisfied and one which cannot be satisfied (making the parent
clause irreparable). Consider the following two sequences of clauses:

〈n1, agent, ε, O(action1),>〉 Seq 〈n2, agent, ε, O(action2),⊥〉
〈n3, agent, ε, O(action1),⊥〉 Seq 〈n4, agent, ε, O(action2),⊥〉

In the former sequence, the first clause (n1) states that agent is obliged to
perform action1. However even if this first clause is violated, the second
obligation n2 will still be enabled as the reparation of n1 is >. This provides
a kind of “soft-violation”, which can be checked by constraints in other
clauses. In the latter sequence, if n3 is violated, then the entire sequence
will be violated and never even reach n4, as it impossible to repair ⊥.
These alternative kinds of reparation allow us to make such a distinction,
which is not possible in the previous version of the language.

(iii) Separating conditions into guards and intervals
In the original language, it is impossible to specify whether a time con-
straint dictates the window during which the variable constraints should
be checked, or the window within which the clause should be satisfied.
This distinction is significant when the reparation of a clause has, in turn,

7

its own timing constraints. Our revised structure for clause conditions
allows timing constraints to be specified in two separate places: in guards
(for enabling clauses) and as intervals (for defining expiration). Consider
the following two clauses:

〈n1, agent,〈x = 1 ∧ t0 < 5, 〈ε, ε〉〉, O(action),⊥〉
〈n2, agent,〈x = 1 , 〈ε, 5〉〉, O(action),⊥〉

The former states that if x = 1 before clock t0 reaches 5, then the obliga-
tion to perform action is enacted (otherwise it is skipped altogether). By
contrast, the latter states that when x = 1 (at any time), then agent will
be obliged to perform action within 5 time units from the enactment of the
clause. This distinction is impossible to express in the previous syntax.

(iv) Expressing guards as predicates rather than as variable comparisons
This was added to improve clarity during the modelling process, as query-
ing the status of another clause is the most common kind of constraint.
This can be seen as a purely syntactic change, allowing us to rewrite a
constraint like Satclause = 1 as isSat(clause).

Furthermore, our version of C-O Diagrams does not include support for the
repetition of clauses. This concept turned out to be quite problematic to de-
fine clearly, was deemed of lower utility, and thus removed altogether from our
formalism.

For the remainder of this article we will use the term C-O Diagrams to refer
to our extended version of the formalism (unless otherwise specified).

2.3. Trace Semantics

Previous work defines the semantics of C-O Diagrams via translation to
timed automata [4]. This translation is a complex operation with many indi-
vidual cases to be handled, making it difficult to tell whether the semantics
faithfully captures the intuition behind the constructs of the language. Thus,
we define a completely new semantics for the formalism which is entirely in-
dependent from the translation function to timed automata. This allows us to
compare the definition of the translation to the semantics, and argue that the
former is correct with respect to the latter. It also allows a completely differ-
ent back-end for C-O Diagrams to be verified for correctness without needing
to compare it with the timed automata representation. The trace semantics
may also be useful for deciding whether two contracts are equivalent, and thus
proving the correctness of contract-rewriting rules.

We define a semantics in terms of traces. The intuition is that given a
contract model, we want to know whether a sequence of actions respects or
violates it. We choose to define a trace semantics so that the correctness of
our translation function (Section 3) may be proven by comparison with the
semantics of Uppaal automata, also defined in terms of traces [5].

8

Our trace semantics treats time as an abstract ordered type; a time stamp
of type T is some value indicating a point in time, which can be directly com-
pared with other time stamps. The examples used in this article represent time
stamps as natural numbers.

We begin with the definition of a trace:

Definition 1. An event trace (or simply trace) is a finite sequence of events
σ = [e0, e1, . . . , en] where an event is a triple e = 〈a, x, t〉 consisting of an agent
a ∈ A, an action x ∈ Σ and a time stamp t :T. The projection functions
agent(e), action(e) and time(e) extract the respective parts from an event.

Traces can be referred to as follows: σ(i) denotes the event at position i in
trace σ, σ(i..) denotes the finite sub-trace starting at event in position i until
the end of the trace, and σ(..j) is the sub-trace from the beginning of the trace
to event σ(j − 1). Finally, σ(i..j) is the sub-trace between indices i and j.
The events in a trace are ordered by non-descending time stamp value (earliest
events first) and indexed from 0 onwards. We say that a trace σ of length n is
well-formed iff ∀i, j · (0 ≤ i < n)∧ (i < j < n) =⇒ time(σ(i)) ≤ time(σ(j)). We
assume all our traces are well-formed.

The trace semantics of our language is defined via the respects relation (�)
between traces and contracts:

Definition 2. We write σ � C to mean that trace σ respects contract C and
σ 2 C for trace σ does not respect (violates) contract C. This relation is
extended to clauses, where it is parametrised by a set of timing constraints and
a starting time stamp (written �ct). It is also extended to actions, where it is
further parametrised by an agent (written �c,at). The set of all traces which
respect a contract, indicated T (C), defines its trace semantics.

We begin here by covering the concepts necessary for understanding our trace
semantics. The rules defining the respects relation are then given in Figure 6
on page 12.

Environment. The evaluation of constraints requires an environment Γ : Env
of Integer variables (V), clocks (C) and Boolean flags (B), whose values may
change over time. An environment can thus be seen as a function from a time
stamp to a set of valuations (16). Clocks can be seen as variables of type T
whose values automatically increase with the progression of time. All variables
and clocks are initialised to 0, and all flags to false. We use ΓV , ΓC and ΓB to

9

project the respective parts of the environment.

Env = T→ 〈V 7→ Z, C 7→ T, B 7→ Boolean〉 (16)

getv : Env → T→ V → Z (17)

getc : Env → T→ C → T (18)

getb : Env → T→ B → Boolean (19)

setv : Env → T→ V → Z→ Env (20)

setb : Env → T→ B → Z→ Env (21)

resetc : Env → T→ C → Env (22)

The environment can be queried via the get functions (17–19). Integer and
Boolean variables can be updated using the set functions (20 and 21), while
clocks can be reset to 0 with resetc (22). The clock t0 is used to indicate
the current time, i.e. it is a clock which is never reset. An update affects
all valuations from the given time stamp onwards. The set of Boolean flag
variables is used to represent the status of boxes and actions in the contract
model, for example whether an action has been completed or a clause has been
violated. Guards expressed as predicates are encoded as comparisons involving
these variables.

As a respects relation is applied and a contract evolves, the environment
needs to be updated so that the state of each clause is kept up-to-date and
clocks are reset as needed. For clarity however, these updates are not explicitly
marked in the rules in Figure 6. The environment itself does not appear in the
rules either, as it is implicitly globally accessible. Updates to the environment
are made in the following cases:

(i) when a clause name is enabled, clock tname is reset;
(ii) when a clause name is satisfied (including via reparation), Satname is set

to true and clock tname is reset;
(iii) when a clause name is violated, V ioname is set to true;
(iv) when the guard for clause name expires, Skipname is set to true;
(v) when an action x is performed by agent a, Donea.x is set to true and clock

ta.x is reset, while Donename is also set to true for the parent clause name.

The lookup function (23) is used for resolving named cross-references be-
tween clauses. This function searches recursively over the structure of the con-
tract model, returning the matching clause or ⊥ if none is found.

lookup : K → N → C (23)

Constraint satisfaction. Intervals are passed down from parent clauses by adding
them to the set of timing constraints. We use the function τ (24) for combin-
ing an interval with an existing set of constraints (where empty bounds ε are
ignored). The related function τ ′ (25) is used for combining the expired upper

10

bound of a given interval with a set of constraints.

τ : {Constraint∗} → Name→ Interval→ {Constraint∗} (24)

τ(c, n, 〈l, u〉) = c ∪ {tn > l, tn < u}

τ ′ : {Constraint∗} → Name→ Interval→ {Constraint∗} (25)

τ ′(c, n, 〈 , u〉) = c ∪ {tn ≥ u}

Checking constraints from both guards and intervals is done with the check
function (26). This function looks up the state of the environment Γ at time t
and returns the conjunction of the results of evaluating each of its Boolean
expressions with the eval function (27).

check : {Constraint∗} → T→ Boolean (26)

check
(
{c1, . . . , cn}, t

)
=

{
true if n = 0∧

1≤j≤n eval(cj , t) otherwise

eval : Constraint→ T→ Boolean (27)

eval
(
x ∼ n, t

)
= get(Γ, t, x) ∼ n

eval
(
x− y ∼ n, t

)
= get(Γ, t, x)− get(Γ, t, y) ∼ n

eval
(
isφ(name), t

)
=


eval(isSat(name), t) ∨ eval(isSkip(name), t)

if φ = Complete

getb(Γ, t, φname)

if φ ∈ {Done,Sat ,Vio,Skip}

In order to determine the moment at which a clause will become enabled,
we define the notion of lowest satisfying time stamp. Given a guard, we want
to know the earliest time stamp later than t for which that guard becomes true
in the environment. This is captured in the lst function (28), which is a partial
function as the guard may in fact never be satisfied.

lst : Guard→ T→ T (28)

lst(g, t) =

{
t′ if ∃t′ :T · t′ = min

∀u≥t

[
check(g, u) = true

]
undefined otherwise

Rules. The rules defining the respects relation are given in Figure 6. These
rules work by recursing over the structure of the contract specification rather
than iterating through the trace. In other words, an action is not consumed
from the trace when it satisfies a particular clause. Each rule searches for the
earliest event that satisfies it. Rules for sequential refinement (34 and 38) are
the only ones that divide a trace into sub-traces, as they enforce order. For a
more detailed explanation of how each rule works, please refer to Appendix A.5.

11

Contract

σ �
{
〈C1, T 1〉, . . . , 〈Cn, Tn〉

}
iff

∧
1≤i≤n,
T i=Main

σ �ε0 C
i (29)

Deontic operators

σ �ct0 〈n, a, 〈g, i〉, O(C2), R〉 (30)

iff
(
∃t :T · t = lst(g, t0)

)
implies

(
σ �τ(c,n,i),at C2 or σ �τ

′(c,n,i)
t R

)
σ �ct0 〈n, a, 〈g, i〉, P (C2) 〉 (31)

σ �ct0 〈n, a, 〈g, i〉, F (C2), R〉 (32)

iff
(
∃t :T · t = lst(g, t0)

)
implies

(
σ �τ(c,n,i),at C2 implies σ �ct R

)
Refinement

σ �ct0 〈n, 〈g, i〉, C1, R〉 (33)

iff
(
∃t :T · t = lst(g, t0)

)
implies

(
σ �τ(c,n,i)t C1 or σ �τ

′(c,n,i)
t R

)
σ �ct0 C

′ Seq C ′′ (34)

iff ∃j :N ·
(
0 ≤ j ≤ length(σ) ∧ σ(..j) �ct0 C

′ ∧ σ(j..) �ct0 C
′′)

σ �ct0 C
′ And C ′′ iff σ �ct0 C

′ and σ �ct0 C
′′ (35)

σ �ct0 C
′ Or C ′′ iff either σ �ct0 C

′ or σ �ct0 C
′′ (36)

Actions

σ �c,at0 x iff ∃j :N ·
(
0 ≤ j < length(σ) ∧ (37)

〈a, x, t〉 = σ(j) ∧ t0 ≤ t ∧ check(c, t)
)

σ �c,at0 C ′3 Seq C ′′3 (38)

iff ∃j :N ·
(
0 < j < length(σ) ∧ σ(..j) �c,at0 C ′3 ∧ σ(j..) �c,at0 C ′′3

)
σ �c,at0 C ′3 And C ′′3 iff σ �c,at0 (C ′3 Seq C ′′3) Or (C ′′3 Seq C ′3) (39)

σ �c,at0 C ′3 Or C ′′3 iff either σ �c,at0 C ′3 or σ �c,at0 C ′′3 (40)

σ �c,at0 〈n,C2〉 iff σ �c,at0 C2 (41)

Reparation

σ �ct0 > (42)

σ 2ct0 ⊥ (43)

σ �ct0 #name iff σ �ct0 lookup(name) (44)

Figure 6: Definition of the respects relation (�) between traces and contracts (type K in
Figure 5), clauses (types C and C1) and actions (types C2 and C3).

12

2.4. Example

Consider the contract model shown earlier in Figure 4. This can be repre-
sented in our formal syntax as follows:

C =
{〈
〈resp, 〈isDone(req), 〈ε, ε〉〉, C ′And C ′′,#credit〉,Main

〉}
where

C ′ = 〈resp1, company, 〈isDone(SLA1), 〈ε, 24〉〉, O(respond),⊥〉
C ′′ = 〈resp2, company, 〈isDone(SLA2), 〈ε, 4〉〉, O(respond),⊥〉

We wish to use the rules defined in Section 2.3 to determine whether a given
trace of events satisfies the contract or not. Take the following trace as an
example:

σ =
[
〈company, respond, 5〉

]
This contains a single event, which is the agent company performing the respond

action at time stamp 5. To determine whether this trace respects the given
contract, we need to find a derivation for σ � C. To do this, we also need
an environment containing information about the status of the external clauses
referenced in our example (SLA1, SLA2 and req):

ΓB(0..2) = {DoneSLA1 7→ false, DoneSLA2 7→ true, Donereq 7→ false}
ΓB(3) = {DoneSLA1 7→ false, DoneSLA2 7→ true, Donereq 7→ true}

Note that at time stamp 3, the value of Donereq changes to true. The environ-
ment will also contain clocks and further flags pertaining to the clauses in our
example (resp, resp1 and resp2). Only those parts of the environment which are
relevant to the example are discussed here.

To begin our derivation, we first apply rule (29) which says that we must
satisfy each of the Main clauses in the contract with the empty constraints and
from time stamp 0. This gives us:

σ �ε0 〈resp, 〈isDone(req), 〈ε, ε〉〉, C ′And C ′′,#credit〉 (45)

By rule (33), we then try to find the lowest satisfying time stamp (lst) which
satisfies the given guard, i.e. lst(isDone(req), 0) which from the environment is
3 — the point at which Donereq becomes true. Thus we have either that the
main clause is satisfied:

σ �τ(ε,req,〈ε,ε〉)3 C ′And C ′′ (46)

or that the clause is repaired like so:

σ �ε3 #credit (47)

Trying to satisfy the main clause first, we apply the And rule (35) to line 46,
giving us the following sub-formulas:

σ �ε3 〈resp1, company, 〈isDone(SLA1), 〈ε, 24〉〉, O(respond),⊥〉 (48)

13

and

σ �ε3 〈resp2, company, 〈isDone(SLA2), 〈ε, 4〉〉, O(respond),⊥〉 (49)

We then apply the rule for obligation clauses (30) to both of these cases. The
guard in the first case (line 48), namely isDone(SLA1), will never be true in the
environment Γ. Thus lst(isDone(SLA1), 3) is undefined, the antecedent of the
implication is false, and the sub-clause is trivially satisfied (we can think of the
clause being skipped). In the second case (line 49), lst(isDone(SLA2), 3) = 3,
meaning that we now need to either satisfy the inner action:

σ �τ(ε,resp2,〈ε,4〉),company
3 respond (50)

or the reparation of the clause:

σ �ε3 ⊥ (51)

The reparation ⊥ can of course never be satisfied (rule 43). We thus apply
rule (37) to line 50, which looks for a matching action in the trace which satisfies
the given constraints:

σ �tresp2<4,company
3 respond (52)

iff ∃i :N ·
(
0 ≤ i < length(σ) ∧
〈company, respond, t〉 = σ(i) ∧ 3 ≤ t ∧ check(tresp2 < 4, t)

)
At the point when the obligation clause is enabled (time stamp 3), the clock
tresp2 is reset to 0, effectively meaning that the satisfying action needs to occur
in the trace with a time stamp in the range 3 ≤ t < 3+4 = 7. The only event in
our trace, σ(0) = 〈company, respond, 5〉, does indeed satisfy these requirements,
as determined by evaluating check(tresp2 < 4, 5). This completes the derivation
for σ � C.

Had the trace not contained a satisfying action (either its time stamp was
outside of the range, or it was missing from the trace altogether), we would
have to backtrack to repairing the top-level clause (line 47). Here, #credit is
an example of a cross-reference which needs to be looked up in the model. The
example considered here does not include this clause; evaluating it would involve
the same procedure followed above.

3. Translation to Timed Automata

3.1. Timed Automata

In order to enable property-based analysis on contract models, Dı́az et
al. [4] define a translation from C-O Diagrams into networks of timed automata
(NTAs). A timed automaton (TA) [2] is a finite automaton extended with clock
variables which increase in value as time elapses, all at the same rate. The
model also includes clock constraints, allowing clocks to be used in guards on

14

off low bright
press?
y := 0

y ≥ 5
press?

y < 5
press?

press?

idle

press!

Figure 7: Timed automata modelling a lamp (left) and a user (right), where y is a clock and
press is a channel. Double circles indicate initial locations. Taken from [6].

transitions and invariants on locations, in order to restrict the behaviour of the
automaton. Clocks can be reset to zero during the execution of a transition. A
network of timed automata (NTA) is a set of TAs which run in parallel, sharing
the same set of clocks. The definition of NTA also includes a set of channels
which allow automata to synchronise.

Figure 7 shows an example modelling the operation of a simple lamp. The
lamp itself has three states, represented as locations off, low, and bright. The
user automaton has just a single location, and can synchronise with the lamp via
the press channel. The first time the user presses a button, the lamp is turned
on to low and clock y is reset to 0. When the user presses the button again, one
of two things may happen. If the user is fast and presses shortly after the first
one, the lamp transitions to the bright location. Otherwise, if the second press
is some time after the first, the lamp turns off. Clock y is used to determine if
the user was fast (y < 5) or slow (y ≥ 5). Note that the value of y increases
(“time passes”) while in the low location, irrespective of any transitions being
taken. The user can press the button randomly at any time or even not press
the button at all.

Uppaal [7] is a tool for the modelling, simulation and verification of real-
time systems. It is appropriate for systems that can be modelled as a collec-
tion of non-deterministic processes with finite control structure and real-valued
clocks, communicating through channels and shared variables — as such making
it an ideal tool for working with NTA models. The modelling language used in
Uppaal extends timed automata with a number of features [6], amongst them
the concepts of urgent and committed locations. Put simply, the system does
not allow time to elapse when it is in an urgent location. They are semantically
equivalent to adding an extra clock x that is reset on all incoming transitions,
and having an invariant x ≤ 0 on that location. Committed locations are an
even more restrictive variant on urgent locations. When any of the locations in
the current state is committed, the system cannot delay and the next transition
must involve an outgoing transition of at least one of the committed locations.
Uppaal also introduces the idea of broadcast channels, which allow one sender
to synchronise with an arbitrary number of receivers. Any receiver that can
synchronise in the current state must do so, but the send can still be executed
if there are no receivers (i.e. broadcast sending is never blocking).

The translation of [4] is described in terms of abstract NTA, followed by

15

C =
〈
name, agent, 〈guards, interval〉, O(C2), R

〉
where guards = glow ∧ gupp ∧ gvars and interval = 〈ilow , iupp〉

t0

¬glow

t1

t2

[gupp]

t3 t4 t5
[glow]

¬gvars ∧ gupp

changed?

gvars ∧ gupp
Cenable !

Ccomplete?

¬gupp

¬gupp

changed !

s0 s1

[ilow] ∧ [iupp]

s2

s3
Cenable?

[ilow] ∧ [iupp]

¬iupp

Ccomplete !

Figure 8: Translation of an obligation clause (top) into two timed automata: the thread
(middle) and main automaton (bottom). The dotted lines s1 · · · s3 and s2 · · · s3 are replaced
with the translations of the complex action C2, and of the reparation R, respectively. Square
brackets indicate inclusive versions of a bound: [t < 5] = t ≤ 5. Negation of a bound works as
expected: ¬(t < 5) = t ≥ 5. White nodes indicate committed locations.

explanations of how these can then be encoded in Uppaal. However despite
the similarity of these two domains, there are certain aspects of the NTA of Dı́az
et al. which cannot be directly implemented in Uppaal, such as the encoding
of urgent edges. Thus, in this work we present a completely revised translation
function trf from C-O Diagrams directly into Uppaal automata. As there is no
difference in abstraction level between NTA and Uppaal models, we skip the
intermediary abstract NTA representation altogether. Our translation avoids
the problems present in the previous version, and allows us to take advantage
of certain Uppaal features which are not strictly part of NTA, such as shared
integer variables and broadcast channels.

3.2. Description

This section highlights the main features of our translation: (i) how guards
affect the enactment of a clause, and (ii) how channel synchronisations are used
to produce a modular system of automata. We do not go through each case in
the translation here; more details can be found in Appendix A.

Figure 8 shows a generic obligation clause together with the Uppaal au-
tomata produced from its translation. Informally, this box is interpreted as
follows: when guards become true, agent is obliged to do action C2 within the

16

C =
〈
name, 〈guards, 〈ilow , iupp〉〉, C′ Seq C′′, R

〉

s0 s1

[i]

s2

[i]

s3 s4

[i]

s5

s6

s7
Cenable? C′

enable ! C′
complete? C′′

enable ! C′′
complete? [i]

¬iupp

¬iupp
¬iupp ¬iupp

Ccomplete !

Figure 9: Main automaton from the translation of a Seq refinement (thread automaton
not shown here). Inner clauses C′ and C′′ are translated separately (not shown here) and
controlled via their respective enable and complete channels. The automaton for reparation R
is inserted between locations s6 · · · s7. [i] is used as shorthand for the expression [ilow]∧ [iupp].

time frame described by interval. If agent does not do action C2 in time, the
reparation clause R will come into effect.

Our translation splits this single clause into two concerns: (i) the processing
of the conditions which would enable the obligation, and (ii) the obligation itself.
The former is handled by an automaton we call the thread, shown in the middle
of Figure 8. The guard from the original clause is separated into lower and upper
bound timing constraints (glow and gupp, respectively) and variable constraints
(gvars). First the lower bounds must be satisfied in order to progress in the
automaton. The variable constraints gvars are then actively checked within
the given time window (until the expiration of the upper bounds), such that
the main obligation is enabled as soon as the constraints are satisfied. This is
achieved by having separate check and wait locations (t1 and t2, respectively).
The check location is committed, meaning that no time can elapse while in this
location. Each time a clause reaches a completed state, a broadcast signal is
sent on the channel changed which causes the waiting automaton to re-check its
constraints.

When the constraints are met, the thread automaton transitions to t3, acti-
vating the main automaton. This automaton, representing the inner obligation,
is shown in Figure 8 (bottom). Once activated, the main automaton may wait
for as long as its intervals allow (enforced by an invariant on location s1). From
here, either the top transition is taken before expiration, corresponding to the
action being done, or the time expires and the lower path is taken, enacting the
clause’s reparation. Finally, the main automaton synchronises with the thread
and enters the initial idle location (where it could possibly be re-triggered),
while the thread automaton reaches a final end location.

As a further example, Figure 9 shows the main automaton produced from
translating a clause containing a Seq refinement. This demonstrates the use of
modularity in the translation, where each sub-clause is activated using chan-

17

nel synchronisation rather than in-lining all the automata together. This has
benefits not only for the modelling process but also when it comes to analysis.

Simulating actions. The function of the automata described above is to model
clauses which essentially wait for actions to occur, and then react accordingly.
In order to simulate the firing of such actions, a simple non-deterministic au-
tomaton is created for each action in the set Σ which can randomly fire at any
point (given that the action has not already fired). For more about this, see
case 37 in Appendix A.5 (page 42).

Implementation. A complete implementation of this translation has been built
using Haskell.4 It includes a definition of a data type for our extended C-O
Diagrams, the ability to check whether a given C-O Diagram is well-formed,
and a working translation function which produces a Uppaal-readable XML
file as output. This tool was used in the application of our method to a case
study, covered in Section 5.

3.3. Correctness of the Translation

The previous section informally describes the translation function trf , which
converts a C-O Diagram into a Uppaal model. In order to trust any analysis
performed on this translated model, we want to be certain that the translation
itself is correct with respect to the trace semantics defined in Section 2.3. We
approach this by relating our trace semantics for C-O Diagrams with that of
Uppaal.

David et al. [5] define a trace of a Uppaal model as a sequence of configu-
rations, where a configuration describes the current locations of all automata in
a system and gives valuations for all its variables and clocks. A timed trace is
a trace which begins from an initial configuration and ends in a maximally ex-
tended one (or deadlocked, i.e. where no further transitions are possible), where
each consecutive configuration can be reached from its previous one in a single
step. These definitions have been reproduced in Appendix A.2.

Let TU (M) denote the set of timed traces for a Uppaal model M . This
set includes all timed traces which are either infinite or maximally extended.
We are however interested in a subset of TU (M), namely finite traces ending
in a configuration which represents the completion of all top-level clauses in
our contract C. We shall indicate this set with T CU (M). Let us assume an
abstraction function abstr : TU → T , which transforms a Uppaal trace σU
into an event trace σ by extracting the time stamps at which each action was
performed. With these elements in place, visualised in Figure 10, we state the
following theorem relating our trace semantics for C-O Diagrams with Uppaal
model traces:

4 Full source code of this implementation can be found at the URL below:
http://remu.grammaticalframework.org/contracts/jlamp-nwpt2015/

18

http://remu.grammaticalframework.org/contracts/jlamp-nwpt2015/

C-O Diagram
C

Uppaal Model
M

Event Trace
σ

Uppaal Trace
σU

respects
σ � C

abstr(σU)

trf (C)

timed trace
σU ∈ TU (M)

Figure 10: Relations between C-O Diagram and Uppaal model and trace representations.

Theorem 1. Given a contract C and its translation into a Uppaal model M =
trf (C), for every trace σ ∈ T it is the case that:

σ � C iff ∃σU ∈ T CU (M) · σ = abstr(σU)

Proof Sketch. The proof is performed by structural induction over the C-O
Diagram syntax (see Figure 5). For each case, we consider the translation into
a Uppaal model by the trf function. Using the formalisation of Uppaal models
and their trace semantics given by David et al. [5], we then characterise the set
of Uppaal traces which represent the satisfaction of the case we are modelling.
We then show how this set of Uppaal traces is related to the event traces which
would respect the original clause, effectively characterising the abstr function.
Further details of this proof are included in Appendix A. �

4. Analysis

The purpose of formalising normative documents as models is to enable au-
tomated analysis, by which we mean running queries of different kinds against
our model. Needless to say, this task can only be meaningful if one pre-supposes
that the contract model is an accurate representation of the original text. Ad-
dressing this concern is beyond the scope of the current work. We separate
the kinds of analysis possible into two main classes, which differ based on the
method used to process queries of that type.

For examples of these types of analysis in use, see the case study in Section 5.

4.1. Syntactic Analysis

Certain kinds of queries can be checked by traversing the structure of a con-
tract model, such as listing the permissions for a particular agent or identifying
obligations without constraints or reparations. We refer to these as syntactic
queries as they can be computed purely from the syntactic structure of the
model.

We begin by introducing predicates over single clauses. For example, the
predicate isObl holds if a given clause is an obligation. Predicates may also take
additional arguments, such as agentOf (a), which is true if agent a is responsible

19

Predicate Holds when
isObl/isFor/isPer clause is an obligation/prohibition/permission
isAnd/isOr/isSeq clause contains conjunction/choice/sequence
hasUpperBound clause has an upper bound in its interval
hasRep clause has a reparation which is not >
agentOf (a) agent a is responsible for clause
hasAction(x) action x appears in the body of clause

Table 2: Predicates used in syntactic analysis.

for a clause. Table 2 lists the basic predicates defined over clauses. These can be
combined using the standard propositional operators to build a general property
language over clauses. Properties defined for single clauses can also be extended
to contract specifications as a whole. In this way we can, for example, collect
all the obligations of a given agent contained in a contract. We refer to these as
queries, since they are the result of querying a contract with clause properties.
The query function Q (53) returns the set of all clauses in the contract that
satisfy the predicate provided as the first argument. The query function has
also been implemented as a command-line tool in Haskell, together with the
translation function from the previous section.

Q : (C → Boolean)→ K → P(C) (53)

Q
(
ψ,
{
〈C1, T 1〉, . . . , 〈Cn, Tn〉

})
=
{
Ci
∣∣ 1 ≤ i ≤ n, ψ holds w.r.t. Ci

}
4.2. Semantic Analysis

Other kinds of queries cannot be answered simply by looking at the struc-
ture of the model — for example, checking whether performing a given action
at a particular time will satisfy a contract. Determining this must take into
consideration not only the constraints of a single clause, but the evolution of
the contract as whole as other actions are performed, new clauses are enabled
and others expire. We refer to such queries as semantic because verifying them
requires taking into account the operational behaviour of a contract model,
rather than just its structure. This is done by converting a contract model into
a network of timed automata in Uppaal (as described in Section 3) and using
model checking techniques.

This approach requires that the query itself is encoded as a property in a
suitable temporal logic which the model checker can process. In the case of
Uppaal, the property specification language is a subset of TCTL [6]. We shall
look here at the aspects of this language which are relevant to the analysis of
our contract models.

The automata systems produced by our translation are never infinite, in the
sense that we have a clear definition of when we consider the contract to have

20

reached a final state.5 Thus, the main temporal operators that are of interest
to us are those for possibility and invariance.6

Possibility. The property ∃♦ψ is satisfied if there exists some trace through
the system of automata for which the expression ψ holds at some point in the
sequence. Such a property can be used to test whether under a given contract,
it is possible for a certain action to be performed or state of affairs to occur.

Invariance. On the other hand, the property ∀�ψ will be satisfied if for every
possible trace, the expression ψ can be shown to hold at all configurations in
the sequence. This is the typical way to describe safety properties.

The expression part of a property consists of a predicate over the current con-
figuration of the system — values of variables, comparison over clocks, and the
current locations of the automata. The automaton representation is at a lower
level of abstraction than the original contract model, and encoding a contract
query as a temporal property may require an understanding of the translation
function and resulting network of automata. To mitigate this, the guard predi-
cates from the C-O Diagram syntax (Figure 5, rule 14) are also implemented as
functions in the translated Uppaal model. Clause names and action identifiers
are also defined as global variables in the system, making them available for use
within properties, e.g. isComplete(clause) or isDone(agent.action). To refer to
the clocks associated with clauses and actions, these identifiers can be used as
indices into a special array of clocks, e.g. Clocks[clause] or Clocks[agent.action].
Clock values can be subtracted from each other and compared with constant
integer values to form a valid expression. Simple Boolean expressions can be
combined with propositional operators to form complex ones.

These are the main components necessary for constructing semantic queries
relevant to our contract models. Expressions involving template locations or
comparisons with any other state variables should not be needed, in the sense
that such low-level information on the state of NTA would not correspond to
anything meaningful in terms of the original contract.

5. Case Study

As a case study for demonstrating our approach to contract analysis, we have
chosen a service level agreement (SLA) from the hosting company LeaseWeb
USA, Inc.7 The original agreement is a 6-page document, divided into 12 sec-
tions with a total of 59 clauses, most of which consisting of multiple sentences.
For demonstration purposes, we here focus on one of the chapters from the

5Any configuration where all the main contract clauses satisfy the isComplete predicate.
6Conceptually these can be expressed in terms of one another, i.e. ∀�ψ ≡ ¬∃♦¬ψ.

However the Uppaal specification language does not allow negation of arbitrary queries, which
is why they exist as separate operators.

7The authors have no connection with LeaseWeb USA, Inc.

21

1.3 Customer may initiate a request for Standard Support via the technical
helpdesk. A Support Request must include the following information: (i) type
of service, (ii) details for contacting the Customer, and (iii) a clear description
of Support required. Company may refuse a Support Request if it is unable
to establish that the Support Request is made by an authorised person.

1.4 The table below sets forth the Response Time for any request for Support
made in accordance with Section 1.3 above. The Response Time Target
depends on the SLA level that the Customer has chosen.

SLA Level Response Time Target

Basic 24 hours
Bronze 4 hours

1.5 In the event Company does not respond within the applicable Response Time
Target, Customer shall be eligible to receive a Service Credit. If Customer
does not pay a Monthly Recurring Charge then Customer shall not be eligible
to any Response Time Credit.

1.6 Customer shall ensure that it will at all times be reachable on Customer’s
emergency numbers, specified in the Customer Details Form. No Credit shall
be due if the Customer is not reachable.

Figure 11: Abridged chapter from the SLA from LeaseWeb USA, Inc. covering hosting services
(see Appendix B), which serves as the original contract in this case study.

full agreement, which we have abridged into 4 clauses (see Figure 11). This
has been done in the interest of conciseness, so that the example is not made
unnecessarily long by overly verbose sentences or unrelated clauses. More de-
tails about the original document, together with the unabridged version of the
chapter considered here, can be found in Appendix B.

5.1. Model

Building a C-O Diagram model from this example requires each sentence
in the original text to be encoded as a formal clause. While one natural lan-
guage sentence often corresponds to a single clause in the model, there can be
many exceptions to this. Cases involving choice or specifying multiple actions
must often be broken down into sub-clauses using refinement. Sequence is of-
ten something that is not explicitly expressed in a contract, and the modeller
must identify the implicit sequence that may exist between clauses. Special care
is also required when modelling guards and timing constraints, because of the
various indirect ways in which they may appear. In short, the modelling task is
a non-trivial one which requires a proper understanding of the original text, as
well as solid knowledge of the formalism being used.

When done completely manually, this can require a significant effort on the
part of the modeller. However, suitable tool support can be of a great help in
this regard. In our own previous work we introduce some such front-end tools
([3], [8]) for facilitating the modelling process. The construction of the contract

22

C =
{〈
〈request, ε,#req type Seq #req info Seq #resp,>〉,Main

〉
,〈

〈req type, customer, ε, P (standard support)〉,Aux
〉
,〈

〈req info, customer, ε, O(C2),>〉,Aux
〉
,〈

〈cust auth, customer, ε, O(prove authorisation),>〉,Main
〉
,〈

〈req refuse, company, 〈¬isDone(cust auth), 〈ε, ε〉〉, P (refuse)〉,Main
〉
,〈

〈chooseSLA, customer, ε, P (〈sla1, basic〉 Or 〈sla2, bronze〉)〉,Main
〉
,〈

〈resp, ε,#resp1 And #resp2,>〉,Aux
〉
,〈

〈resp1, company, 〈isDone(sla1), 〈ε, 24〉〉, O(respond),#credit〉,Aux
〉
,〈

〈resp2, company, 〈isDone(sla2), 〈ε, 4〉〉, O(respond),#credit〉,Aux
〉
,〈

〈credit, company, 〈isDone(reach), 〈ε, ε〉〉, O(give credit),>〉,Aux
〉
,〈

〈reach, customer, ε, O(be reachable),>〉,Main
〉}

C2 = 〈ri1, service type〉 And 〈ri2, contact details〉 And 〈ri3, problem desc.〉

Figure 12: Contract model for the normative text shown in Figure 11.

model for the current case study was thus carried out using these tools. As
a first step, we apply the ConPar extraction tool, giving us an initial list of
clauses in a tabular format, separated into agent, action and modality, and
including some refinements. This representation is then manually post-edited
to fix the parts of the contract which were incorrectly parsed. From here, we
can automatically generate a C-O Diagram from our tabular representation,
visualising the hierarchical structure of the model and allowing us to make
further adjustments, before finally exporting the formal model which we use
below.

Figure 12 shows the case study model we are concerned with, presented
as an expression in our language described earlier. The contract is built from
main and auxiliary clauses, linked together using cross-referencing (#). The
primary clause is request, which we model as a sequence of clauses governing
the initiation of the request (req type), the details required (req info), and the
response obligations from the company (resp).

The response time targets for dealing with customer requests are described
in Clause 1.4 (Figure 11). In our model each SLA level is treated individually,
as in the obligation clauses (resp1 and resp2). Both are dependent on the level
which has been chosen by the customer in chooseSLA, using the isDone predicate
as a guard, making them mutually exclusive. The response time targets are then
encoded as intervals on the corresponding obligations, e.g. 〈ε, 24〉 enforces that
the response to a basic-level SLA request is completed within 24 hours.

23

Clause 1.5 dictates that the customer is entitled to credit when the com-
pany fails to respond within their target time. This is a typical example of a
reparation. We model this as the clause credit, which is given as the reparation
for both resp1 and resp2. The guards in this reparation restrict the situations in
which credit can be given, namely that the customer has fulfilled its obligation
to be reachable (Clause 1.6). This is encoded as a standalone obligation reach,
whose completion is given as a guard in the credit clause.

Size. The model described here contains 2 agents, 11 actions and 11 top-level
clauses. The Uppaal system produced from its translation consists of 33 tem-
plates and corresponding processes, with a total of 160 locations and 172 tran-
sitions. It uses 35 channels, 28 clocks, and 108 Boolean variables. A simple
optimisation pass is then applied which removes transitions without any labels
and merges the respective source and target locations. After removing a total of
30 such transitions, the resulting minimised system contains 130 locations and
142 transitions.

5.2. Syntactic Analysis

To begin with, we can inspect the model syntactically to identify clauses in
our contract with potentially problematic characteristics.

Missing reparations. For example, the following query returns all clauses with
no reparation:

Q(¬hasRep, C) = {request, req info, cust auth, resp, credit, reach}

When building the model, we treat > as the default reparation when none
is specified. It is not surprising that almost all the clauses are returned here,
however this can be a useful first step in identifying clauses in the contract which
can be violated without any repercussions. By taking the names in the query
response and tracing them back to the original text, we find that all clauses
except 1.4 do not in fact specify any reparations. These may be intended to be
handled by a catch-all clause covering the violation of any part of the contract,
or they may be intentionally left under-specified for legal reasons.

Unbounded obligations. As a second example, we may wish to list all obligations
without an upper bound in their interval:

Q(isObl ∧ ¬hasUpperBound , C) = {req info, cust auth, credit, reach}

Consider the obligation clause credit. Even if the company may be obliged to
credit the customer, without any time constraints they can effectively avoid
doing this. It is quite common for normative documents such as this to contain
clauses without specific time restrictions, but this often leads to problems when
it comes to formalising them. As in the previous case, a query such as this can
help the modeller to be more specific about acceptable time frames for clause
satisfaction.

24

Note that even though the clause names returned here are different from
those in the previous example, they still correspond to the same natural language
clauses from the original text. This is because the clauses in the model are
more fine-grained than those in the text, where each clause contains significant
information in multiple sentences.

Possible choices. Finally, we may wish to search for the clauses in the contract
which provide a choice to the customer. This can be done as follows:

Q(isOr ∧ agentOf (customer), C) = {chooseSLA}

This query returns a single clause chooseSLA, indicating the customer’s choice
of service level as described in Clause 1.4.

As demonstrated here, these simple predicates over clauses can be combined
in various ways to produce different kinds of useful queries on our contract
models. This method can be used to quickly highlight or filter out clauses
having certain characteristics. Moreover, the execution of these kinds of queries
is negligibly quick and linear in the size of the model.

5.3. Semantic Analysis

We next show some examples of how we can analyse our case study contract
by verifying temporal properties against the translated version of the model in
Uppaal.

Consider the bits of information required to make a request, as listed in
Clause 1.3 (Figure 11). We would like to verify whether it is possible for a
customer to create a request without providing all the necessary information.
This can be expressed with the following property:

∃♦ isComplete(request) ∧ ¬isDone(customer.contact details) (54)

Note how we are using predicates over the status of both clauses and actions.
Verifying this in Uppaal gives a result of Sat — essentially saying that it is
in fact possible for a request to be completed even when the customer does
not provide its contact details. This is not what we expect, so we consult the
symbolic trace provided by the model checker as a counter-example.

A symbolic trace describes the sequence of transitions taken through a sys-
tem of automata, together with the constraints on its variables and clocks at
each point. By carefully stepping through the trace provided and following the
automata transitions one by one,8 we discover that the req info clause can still
reach a final location when its actions aren’t completed, because of an unguarded
transition corresponding to the > reparation. This points to a problem with the

8The trace produced in this case consists of 12 transitions and 13 states, each of which
describing the current location of 33 processes, 28 clock constraints and 108 variable valuations.
Reproducing this trace here would take up a lot of space and would not be conducive to
explaining the example. The interface provided by the Uppaal tool makes stepping through
traces a lot more manageable than just looking at the raw data.

25

model. If we change the reparation for the clause to ⊥, re-run the translation
and then re-verify the property, we then get the expected result of Unsat. This
property could also be rewritten as an invariant:

∀� isComplete(request) =⇒ isDone(customer.contact details) (55)

In this case we obtain the opposite result, i.e. Sat. There is negligible difference
in the time and space required to verify this version of the property.

Let us consider another example. When it comes to giving service credit to
the customer (Clause 1.5), we may wish to verify that this is only given when
the correct criteria are met. We come up with the following pair of queries
which test this with respect to the basic support level:

∀� isComplete(request) ∧ isDone(resp1) ∧ isDone(reach) (56)

∧ Clocks[resp1]− Clocks[company.respond] > 24

=⇒ isDone(credit)

∀� isComplete(request) ∧ isDone(resp1) (57)

∧ Clocks[resp1]− Clocks[company.respond] < 24

=⇒ ¬isDone(credit)

Note that we used the difference between two clocks to determine the relative
time at which the response occurred. These properties check that credit is always
given when the response time exceeds 24 hours, and that it is never given when
the response time is less than 24 hours. Running both queries returns a Sat
result as expected.

Execution Times. As is typical with model checking, the time and space re-
quired for verifying properties can be a potential problem. Table 3 shows the
space and time requirements for the verification of the properties described here.
One can see that even for this small case study, verification time is in the order
of tens of minutes when an exploration of the entire search space is required
(counter-examples are generally found a lot quicker).

In an attempt to improve on this, we re-verified the same properties a second
time with a slightly reduced version of the system, where the processes for some
unrelated clauses were deactivated (those pertaining to the clauses cust auth and
req refuse). As shown in Table 3, the improvement obtained was dramatic. By
reducing the number of running processes from 33 to 27 (18% decrease), we
observed a decrease of over 99% for verification time and a decrease of over
98% for memory usage. These results indicate that deactivating parts of the
translated contract model which are not relevant to the current property can
have an enormous effect on the verification. We discuss this further in our
conclusions in Section 7.

26

Full system Reduced system
Property states time space states time space
(54) Unsat 87,353,719 25:56 5,273 770,023 00:10 87
(55) Sat 87,353,719 26:15 5,273 770,023 00:11 89
(56) Sat 119,371,443 45:22 7,455 770,023 00:22 89
(57) Sat 119,371,443 45:19 7,455 770,023 00:22 89

Table 3: Resources recquired for verifying the properties in Section 5.3, for the full system
of automata and for the reduced version of it, respectively. States is the number of states
explored during the verification; time is given in the format MM:SS, and space is given in MiB.

6. Related Work

C-O Diagrams were introduced by Mart́ınez et al. in [1], and further refined
in [4]. Our work is heavily based on their formalism, yet we have made significant
contributions to their work. Building a fully working implementation of the
translation from C-O Diagrams into Uppaal automata has led us to modify
their definition in various ways (as described in Section 2.2). In particular,
our translation has a stricter interpretation of guards, ensuring that if a guard
becomes true during the specified time frame, then the corresponding transition
must be taken.

The trace semantics defined in Section 2.3 is completely new for the C-O
Diagram formalism, intentionally creating a separation between the intended
interpretation of a contract model and its actual behaviour when translated
into timed automata. We follow the approach of [9] where a trace semantics is
defined for the contract language CL [10]. The major difference in our work is
that C-O Diagrams includes the concept of time, whereas CL does not. Because
of this, the rules in our trace semantics cannot simply consume elements of a
trace sequentially as in [9], but must search through the entire trace looking for
events which satisfy the given conditions.

Llana et al. [11] re-use the visual model of C-O Diagrams for a different
language for describing contract relationships. Their language, based on process
algebra, includes an operational semantics and the definition of a simulation
relation, in order to be able to determine whether an implementation of a system
follows the rules established by a given contract. These semantics do not deal
with event traces as in our work, and their focus is not on query-based contract
analysis.

Our ultimate goal is to produce a usable end-to-end system for performing
contract analysis. To this end, we also refer the reader to Camilleri et al. [3],
where we focus on front-end aspects of working with C-O Diagrams. This in-
cludes going into the issues around modelling, introducing a tool for building
contracts represented diagrammatically, and the definition of a controlled nat-
ural language (CNL) which can be used as both a source and a target interface
for contracts modelled in this formalism.

AnaCon [12] is a similar framework for the analysis of contracts, based on
the contract logic CL [10], which allows for the detection of contradictory clauses

27

in normative texts using the CLAN tool [13]. By comparison, the underlying
logical formalism we use includes timing aspects which provides a whole new
dimension to the analysis. Besides this, our translation into Uppaal allows for
checking more general properties, not only normative conflicts.

Pace and Schapachnik [14] introduce the Contract Automata formalism for
modelling interacting two-party systems. Their approach is similarly based
on deontic norms, but with a strong focus on synchronous actions where a
permission for one party is satisfied together with a corresponding obligation on
the other party. Their formalism is limited to strictly two parties, and does not
have any support for timing notions as C-O Diagrams do.

In [15] Marjanovic and Milosevic also defend a deontic approach for formal
modelling of contracts, paying special attention to temporal aspects. They dis-
tinguish between three different kinds of time: absolute, relative and repetitive.
The two first kinds are supported by C-O Diagrams, but repetition in general is
not a part of our formalism. They also introduce visualisation concepts such as
role windows and time maps and describe how they could be used as decision
support tools during contract negotiation.

Wyner [16] presents the Abstract Contract Calculator, a Haskell program for
representing the contractual notions of an agent’s obligations, permissions, and
prohibitions over abstract complex actions. The tool is designed as an abstract,
flexible framework in which alternative definitions of the deontic concepts can
be expressed and exercised. However its high level of abstraction and lack
of temporal operators make it limited in its application to processing concrete
contracts. In particularly, the work is focused on logic design issues and avoiding
deontic paradoxes, and there is no treatment of query-based analysis as in our
work.

There is also considerable work in the representation of contracts as knowl-
edge bases or ontologies. The LegalRuleML project [17] embodies one of the
largest efforts in this area by providing a rule interchange format for the legal
domain, allowing the contents of the legal texts to be represented in a machine-
readable format. The format aims to enable modelling and reasoning that let
users evaluate and compare legal arguments constructed using their rule repre-
sentation tools.

A similar project with a broader scope is the CEN MetaLex language [18],
an open XML interchange format for legal and legislative resources. Its goals in-
clude enabling public administrations to link legal information between various
levels of authority and different countries and languages, allowing companies
to connect to and use legal content in their applications, and improving trans-
parency and accessibility of legal content for citizens and businesses.

The Semantics of Business Vocabulary and Business Rules (SBVR) [19] uses
a CNL to provide a fixed vocabulary and syntactic rules for expressing terminol-
ogy, facts, and rules for business documents. As with most CNLs, the goal is to
allow natural descriptions of the conceptual structure and operational controls
of a business, which at the same time can be represented in predicate logic and
converted to machine-executable form. SBVR is geared towards business rules,
and not specifically at the kinds of normative texts in which we are interested.

28

7. Conclusion

This work presents a number of extensions to the C-O Diagrams formalism
for normative texts, together with a revised translation to Uppaal automata,
and a new fully working implementation in Haskell. We have provided a novel
trace semantics for our language, defining what it means for a trace of events to
respect a contract specification, and argue for the correctness of the translation
with respect to the trace semantics. We also take a detailed look at the kinds of
analysis possible on these models, distinguishing between queries which can be
answered by syntactic means, and semantic queries which rely on the Uppaal
model checker. These methods are then applied to a small case study taken
from a real-world normative document.

Scalability. It is well-known that model checking may easily become intractable
for non-trivial models, and the time and memory demands of verification can
be very sensitive to the size of the automata, the number of clocks, and the
use of channel synchronisations. The optimisations described in Section 5.1
are currently performed manually, and as such our translation algorithm does
not optimise the automata it produces. The result is that a translated system
may contain unnecessarily many locations and/or transitions which negatively
affect the verification time by increasing the number of states which need to be
explored. A thorough investigation of possible optimisations and their effect on
performance is regarded as important future work.

Another highly relevant method for reducing verification time is to identify
the parts of the NTA which are irrelevant to the current query, and temporarily
disable them before running the model checker. The reduced version of our
case study in Section 5.3 shows that even a modest reduction in the size of the
system can yield dramatic improvements on the time and memory requirements
of verification. While this may be hard to do for NTA in general, as C-O
Diagrams are domain-specific and represent a higher level of abstraction, it
should be much easier to identify independent clauses in the contract model
and disable them before the translation to NTA. We see this as a promising
method of avoiding the potential scalability problems with using model checking,
and intend to explore how this can be incorporated into our contract analysis
framework. We also point out that scalability is not an issue for the syntactic
analysis, which is linear in the size of the model.

Our trace semantics in Section 2.3 defines the respects relation between traces
and contracts, however we do not provide a concrete algorithm for it which is
independent of the translation to NTA. Thus we have no objective measure of
the computational complexity of computing this relation, though we would not
expect it to be expensive given that we are dealing with concrete traces and
not considering the space of all possible traces, as is the case when verifying
the NTA.

Future work. We show here that analysis of normative documents is possible
with the right formalisation and querying system. The task of formalising a

29

contract from a natural language text is not trivial, and increasing the level of
automation in this process both reduces the workload for the user and creates
a higher level of predictability. This work forms the core of a larger toolkit for
working with contracts, which addresses other facets of this task not described
in the current work.

The natural language aspects of contract modelling form an equally impor-
tant part of our overall framework. We already have some prototype front-end
tools for automatically producing partial models from natural language docu-
ments using entity extraction [8], as well as for building contract models graph-
ically and using controlled natural language [3].

As with the semantic gap faced in the modelling process, a similar gap exists
when it comes to constructing syntactic and semantic queries, as well as in the
interpretation of their results. Thus another strand of current research involves
the identification of query patterns and the definition of a CNL for analysis.
This work will also cover the processing of symbolic traces returned by Uppaal
and verbalising them back into natural language.

As these different strands of development progress towards maturity, our
ultimate goal is to combine all elements of this work together into a user appli-
cation specifically for the end-to-end analysis of normative documents.

Further details about the case study and our tools, including source code, can
be found at http://remu.grammaticalframework.org/contracts/jlamp-nwpt2015/.

Acknowledgements

The authors wish to thank the Swedish Research Council for financial support
under grant number 2012-5746. We are also very grateful to Gabriele Paganelli
and Filippo Del Tedesco for their contributions to earlier versions of this work.

References

[1] E. Mart́ınez, E. Cambronero, G. Dı́az, G. Schneider, A Model for Visual
Specification of e-Contracts, in: 5th IEEE International Conference on
Services Computing (SCC 2010), IEEE Computer Society, 2010, pp. 1–8.

[2] R. Alur, D. L. Dill, A Theory of Timed Automata, Theoretical Computer
Science 126 (2) (1994) 183–235.

[3] J. J. Camilleri, G. Paganelli, G. Schneider, A CNL for Contract-Oriented
Diagrams, in: 4th International Workshop on Controlled Natural Language
(CNL 2014), Vol. 8625 of LNCS, Springer, 2014, pp. 135–146.

[4] G. Dı́az, M. E. Cambronero, E. Mart́ınez, G. Schneider, Specification and
Verification of Normative Texts using C-O Diagrams, IEEE Transactions
on Software Engineering 40 (8) (2014) 795–817.

30

http://remu.grammaticalframework.org/contracts/jlamp-nwpt2015/

[5] A. David, M. O. Möller, W. Yi, Verification of UML Statechart with Real-
time Extensions, Tech. rep., Department of Information Technology, Upp-
sala University, Sweden (2003).

[6] G. Behrmann, A. David, K. G. Larsen, A Tutorial on UPPAAL 4.0, Tech.
rep., Department of Computer Science, Aalborg University (2006).

[7] K. G. Larsen, P. Pettersson, W. Yi, UPPAAL in a Nutshell, Software Tools
for Technology Transfer 1 (1-2) (1997) 134–152.

[8] J. J. Camilleri, N. Grūz̄ıtis, G. Schneider, Extracting Formal Models from
Normative Texts, in: 21st International Conference on Applications of Nat-
ural Language to Information Systems (NLDB 2016), Springer, 2016, pp.
403–408.

[9] S. Fenech, G. J. Pace, G. Schneider, Automatic Conflict Detection on Con-
tracts, in: 6th International Colloquium on Theoretical Aspects of Com-
puting (ICTAC 2009), Vol. 5684 of LNCS, Springer, 2009, pp. 200–214.

[10] C. Prisacariu, G. Schneider, CL: An Action-based Logic for Reasoning
about Contracts, in: 16th Workshop on Logic, Language, Information and
Computation (WOLLIC 2009), Vol. 5514 of LNCS, Springer, 2009, pp.
335–349.

[11] L. Llana, M. E. Cambronero, G. Dı́az, The Simulation Relation for For-
mal E-Contracts, in: 42nd International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2016), Vol. 9587 of
LNCS, Springer, 2016, pp. 490–502.

[12] K. Angelov, J. J. Camilleri, G. Schneider, A Framework for Conflict Analy-
sis of Normative Texts Written in Controlled Natural Language, Language
and Algebraic Programming 82 (5-7) (2013) 216–240.

[13] S. Fenech, G. J. Pace, G. Schneider, CLAN: A Tool for Contract Analysis
and Conflict Discovery, in: 7th International Symposium on Automated
Technology for Verification and Analysis (ATVA 2009), Vol. 5799 of LNCS,
Springer, 2009, pp. 90–96.

[14] G. J. Pace, F. Schapachnik, Contracts for Interacting Two-Party Systems,
in: 6th Workshop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS 2012), Vol. 94 of EPTCS, 2012, pp. 21–30.

[15] O. Marjanovic, Z. Milosevic, Towards Formal Modeling of e-Contracts, in:
5th IEEE International Conference on Enterprise Distributed Object Com-
puting (EDOC 2001), IEEE Computer Society, Washington, DC, USA,
2001, pp. 59–68.

[16] A. Z. Wyner, Violations and Fulfillments in the Formal Representation of
Contracts, Ph.D. thesis, Department of Computer Science, King’s College
London (2008).

31

[17] T. Athan, H. Boley, G. Governatori, M. Palmirani, A. Paschke, A. Wyner,
OASIS LegalRuleML, in: 14th International Conference on Artificial Intel-
ligence and Law (ICAIL 2013), 2013, pp. 3–12.

[18] A. Boer, R. Winkels, F. Vitali, MetaLex XML and the Legal Knowledge
Interchange Format, in: Computable Models of the Law, LNAI, Springer,
2008, pp. 21–41.

[19] Object Management Group (OMG), Semantics of Business Vocabulary and
Business Rules (SBVR), Tech. Rep. formal/2015-05-07 (2015).
URL http://www.omg.org/spec/SBVR/1.3/PDF

32

http://www.omg.org/spec/SBVR/1.3/PDF
http://www.omg.org/spec/SBVR/1.3/PDF
http://www.omg.org/spec/SBVR/1.3/PDF

Appendix A. Translation to NTA: Proof of Correctness

Appendix A.1. Outline

We prove here the correctness of our translation function to Uppaal models
with respect to the trace semantics for C-O Diagrams defined in Section 2.3.
We do this by structural induction over the syntax in Figure 5, in each case
considering the translated Uppaal model obtained from the trf function and
comparing the sets of traces which are allowed by our trace semantics and by
Uppaal’s.

Appendix A.2. UPPAAL Trace Semantics

David et al. [5] give a formalisation for Uppaal models, together with a
definition of their trace semantics. We briefly repeat their definitions here.

Definition 3 (UPPAAL process). A Uppaal process A (single automaton)
is a tuple 〈L, T, Type, l0〉, where

1. L is a set of locations,
2. T is a set of transitions between two locations, each containing optionally

a guard g, synchronisation label s and assignment a,
3. Type is a typing function which marks each location as ordinary, urgent

or committed, and
4. l0 ∈ L is the initial location.

Definition 4 (UPPAAL model). A Uppaal model M (network of automata)

is a tuple 〈 ~A, V ars, Clocks, Chan, Type〉, where

1. ~A is a vector of processes A1, . . . , An;
2. V ars is a set of variables,
3. Clocks is a set of clocks,
4. Chan is a set of synchronisation channels, and
5. Type is a polymorphic typing function for locations, channels, and vari-

ables.

Definition 5 (Configuration). A configuration of a Uppaal model is a triple

(~l, e, v), where

1. ~l = (l1, . . . , ln) where li ∈ Li is a location of process Ai,
2. e is a valuation function mapping every variable to an integer value, and
3. v is a valuation function mapping every clock to a non-negative real num-

ber.

Definition 6 (Simple action step). For a configuration (~l, e, v) a simple ac-

tion step is enabled if there exists a transition l
g,a−−→ l′ such that

1. l ∈ ~l,
2. its guards g evaluate to true given e, v,
3. the invariant on l′ will hold after assignment a, and
4. if any other locations in ~l are committed, then l is also committed.

33

Definition 7 (Synchronised action step). For a configuration (~l, e, v) a syn-
chronised action step is enabled iff for a channel b there exist two transitions

li
gi,b!,ai−−−−→ l′i and lj

gj ,b?,aj−−−−−→ l′j such that

1. li, lj ∈ ~l and i 6= j,
2. the guards gi ∧ gj evaluate to true given e, v,
3. the invariants on l′i and l′j will hold after assignments ai and aj, and

4. if any other locations in ~l are committed, then li and/or lj are also com-
mitted.

Definition 8 (Delay step). For a configuration (~l, e, v) a delay step is enabled
iff

1. none of the locations in ~l is urgent or committed,
2. no synchronised actions steps are enabled on channels marked as urgent,

and
3. the invariants on all locations in ~l will still hold after the delay.

Definition 9 (Timed trace). A sequence of configurations {(~l, e, v)}K of length
K ∈ N ∪ {∞} is a timed trace for a Uppaal model M if

1. all locations in the initial configuration are the initial locations for their
respective processes,

2. all clocks in the initial configuration evaluate to 0,
3. if the sequence is finite, then at the last configuration no further steps are

enabled (system is maximally extended/deadlocked),
4. if the sequence is infinite, then every clock value eventually reaches infinity,

and
5. every pair of consecutive configurations in the sequence are connected by

a simple action step, synchronised action step, or delay step.

Appendix A.3. Notes and Notation

In each case of the proof, we present the automata resulting from the trans-
lation in graphical form, simply because they are more concise and easier to
read than formulas. Similarly, details about variable and channel declarations
are omitted for brevity. The following is a legend to the conventions we use:

1. Initial locations are drawn with a double border.
2. Committed locations are shown in white.
3. A guard is split up into:

(a) lower-bound time constraints glow (i.e. using >)
(b) upper-bound time constraints gupp (i.e. using <)
(c) non-temporal (variable) constraints gvars

4. An interval i is composed of a lower and upper bound 〈ilow , iupp〉.
5. Square brackets indicate inclusive versions of a bound: [t < 5] = t ≤ 5.
6. [i] is used as shorthand for the expression [ilow] ∧ [iupp].
7. The symbol ¬ indicates the negation of constraints: ¬(t < i) = t ≥ i.
8. Constraints on a location indicate invariants.

34

9. The function calls reset(name), vio(name), done(name), sat(name), and
skip(name) are abbreviated to r, v, d, s, sk respectively, where name is the
name of the clause being translated.

10. We use the term end of time to mean a time stamp value which is suffi-
ciently large to be later than all events in the trace and all constraints in
the model.

11. A dotted line indicates a placeholder where another automaton (obtained
through translation of a sub-clause) should be inserted. For example, con-
sider the following two automata:

t0

t1 t2

t3

w

x

y
z s0 s1 s2

a b

c

As the t automaton contains a dotted line t1 · · · t2, the entire s automaton
could be inserted between these two locations, resulting in the following:

t0

t1s0 s1 t2s2

t3

w

a b, x

c, x
y

z

All transition labels are preserved. The label on the dotted line is merged
with all transitions in the sub-automaton which end in its final location.
While Uppaal automata cannot be marked with an end location per se, all
the automata produced by our translation which are inserted as described
here will have exactly one location which is clearly final (no outgoing
transitions).

Appendix A.4. Thread Automaton

All top level clauses (cases 30–36, Figure 6) may contain conditions which
govern their enactment. As the translation of this logic into automata is identical
for all clauses, we use a standard automaton model called the thread (shown
below).

35

t0

¬glow

t1

t2

[gupp]

t3 t4 t5
[glow]

¬gvars ∧ gupp

changed?

gvars ∧ gupp
Cenable !

Ccompl?

¬gupp
sk

¬gupp
sk

changed !

The thread starts the main automaton corresponding to the original clause
via channel synchronisation on Cenable. Its structure ensures that the main
automaton is guaranteed to be activated if and when the guard gvars becomes
true within the time frame specified by glow and gupp. When any of these is
missing, it is replaced with a trivial constraint true. Each time a clause reaches
a completed state, there is a synchronisation action on the broadcast channel
changed, which causes all waiting threads to re-check their guards. If the time
window expires without the guards becoming true, the main automaton is never
enacted but instead skipped. There are various cases to consider here:
(a) glow is initially false: Wait in t0 until glow is true, at which point the

invariant on t0 will cause a transition to t1.
(b) gvars is true upon reaching t1: Transition to t3 immediately, activating

main automaton.
(c) gvars is initially false but becomes true before gupp expires: Wait in t2

until gvars changes, then transition to t1 and then to t3, activating main
automaton.

(d) gvars never becomes true before gupp expires: Wait in t2 until gupp expires,
then transition to t4, skipping main automaton.

(e) gupp is already expired upon reaching t1: Transition to t4 immediately,
skipping main automaton.

Appendix A.5. Case Analysis

Note that the case numbers here correspond to the rules in the trace seman-
tics in Section 2.3 (Figure 6).

Case 29: Contract

σ �
{
〈C1, T 1〉, . . . , 〈Cn, Tn〉

}
iff

∧
1≤i≤n,
T i=Main

σ �ε0 C
i

Event traces. Traces respecting this formula must respect each of the individual
Main clauses independently.

Translation. Each Main clause in a contract is translated into an automaton
which is instantiated as a process in the UPPAAL model.

36

Uppaal traces. Traces satisfying this model must contain configuration steps
that take each individual process representing clause name from its initial state
to one in which no further steps are possible, and in which isComplete(name)
is true.

Argument. In both formalisms it is required that the trace must satisfy all Main
clauses individually.

Case 30: Obligation

σ �ct0 〈n, a, 〈g, i〉, O(C2), R〉

iff
(
∃t :T · t = lst(g, t0)

)
implies

(
σ �τ(c,n,i),at C2 or σ �τ

′(c,n,i)
t R

)
Event traces. We consider the following cases:
(a) Guards g are never true (@t): the obligation is not enacted and thus trivially

respected.
(b) Guards g become true (∃t): the obligation is enacted and can be respected

in one of two ways:
i. The actions in C2 are performed by agent a at times which satisfy

combined constraints τ(c, n, i).
ii. The entire reparation clause R is completed after interval i has expired

but while the other constraints still hold, τ ′(c, n, i).

Translation. All automata from the translation of R, one thread automaton (see
Appendix A.4) and one main automaton as follows, where s1 · · · s3 is filled with
the translation of C2 and s2 · · · s3 is filled with the thread from the translation
of R.

s0 s1

[i]

s2

s3
Cenable?

r

[i]
d, s

¬iupp
v

s

Ccompl!

Uppaal traces. In order to reach a state where the obligation is complete, a
transition marked with s (satisfied) or sk (skipped) must be taken. This may
happen in the following ways:
(a) The thread automaton ends up in t4 by skipping the main automaton.
(b) The thread automaton enables the main automaton, one of the following

occurs:
i. The automaton progresses through s1 · · · s3 while interval i holds, re-

specting the translation of C2.
ii. Interval i expires and s3 is reached via s2, respecting the translation of

R.
Finally both automata synchronise on Ccompl reaching maximally extended
states.

37

Argument. The case distinctions above map directly to each other, such that
both sets of traces require that if the clause is enacted, then either C2 is respected
within the interval i, or R is respected after i has expired.

Case 31: Permission

σ �ct0 〈n, a, 〈g, i〉, P (C2) 〉

Event traces. Any trace will respect a permission.

Translation. One thread automaton (see Appendix A.4) and one main automa-
ton as follows, where s1 · · · s2 is filled with the translation of C2.

s0 s1

[i]

s2
Cenable?

r

¬iupp
s

[i]
d, s

Ccompl!

Uppaal traces. In order to reach a state where the permission is complete, a
transition marked with s (satisfied) or sk (skipped) must be taken. This may
happen in the following ways:
(a) The thread automaton ends up in t4 by skipping the main automaton.
(b) The thread automaton enables the main automaton, one of the following

occurs:
i. The automaton progresses through s1 · · · s2 while interval i holds, re-

specting the translation of C2.
ii. Interval i expires and the transition s1 → s2 is taken. If no interval

exists, the automaton will take this transition at the end of time.
Finally both automata synchronise on Ccompl reaching maximally extended
states.

Argument. As any event trace is accepted, so is any Uppaal trace which satis-
fies our basic conditions for completion.

Case 32: Prohibition

σ �ct0 〈n, a, 〈g, i〉, F (C2), R〉

iff
(
∃t :T · t = lst(g, t0)

)
implies

(
σ �τ(c,n,i),at C2 implies σ �ct R

)

38

Event traces. We consider the following cases:
(a) Guards g are never true (@t): the prohibition is not enacted and thus triv-

ially respected.
(b) Guards g become true (∃t): the prohibition is enacted and can be respected

in one of two ways:
i. The actions in C2 are performed by agent a at times which satisfy

combined constraints τ(c, n, i), followed by reparation clause R being
completed while the inherited constraints c hold.

ii. The actions in C2 are not performed while the combined constraints
hold.

Translation. All automata from the translation of R, one thread automaton (see
Appendix A.4) and one main automaton as follows, where s1 · · · s2 is filled with
the translation of C2 and s2 · · · s3 is filled with the thread from the translation
of R.

s0 s1

[i]

s2 s3
Cenable?

r

¬iupp
s

[i]
v s

Ccompl!

Uppaal traces. In order to reach a state where the prohibition is complete, a
transition marked with s (satisfied) or sk (skipped) must be taken. This may
happen in the following ways:
(a) The thread automaton ends up in t4 by skipping the main automaton.
(b) The thread automaton enables the main automaton, one of the following

occurs:
i. The automaton progresses through s1 · · · s2 while interval i holds, re-

specting the translation of C2, followed by s2 · · · s3, respecting the
translation of R,

ii. Interval i expires and transition s1→ s3 is taken.
Finally both automata synchronise on Ccompl reaching maximally extended
states.

Argument. The case distinctions above map directly to each other, such that
both sets of traces require that if the clause is enacted, then when C2 is respected
within the interval i, then R must necessarily be respected too.

Case 33: Refinement

σ �ct0 〈n, 〈g, i〉, C1, R〉

iff
(
∃t :T · t = lst(g, t0)

)
implies

(
σ �τ(c,n,i)t C1 or σ �τ

′(c,n,i)
t R

)
39

Event traces. We consider the following cases:
(a) Guards g are never true (@t): the clause is not enacted and thus trivially

respected.
(b) Guards g become true (∃t): the clause can be respected in one of two ways:

i. The inner clause C1 is respected while combined constraints τ(c, n, i)
hold (as covered in cases 35–36 below).

ii. The inner clause C1 is not respected and the reparation clause R is
completed after interval i has expired but while the other constraints
still hold, τ ′(c, n, i).

Translation. All automata from the translation of R, one thread automaton
(see Appendix A.4) and one main automaton as described in cases 35–36 below,
containing the thread from the translation of R.

Uppaal traces. In order to reach a state where the clause is complete, a transi-
tion marked with s (satisfied) or sk (skipped) must be taken. This may happen
in the following ways:
(a) The thread automaton ends up in t4 by skipping the main automaton.
(b) The thread automaton enables the main automaton, and one of the follow-

ing occurs:
i. The main automaton completes by taking a transition labelled s while

interval i holds.
ii. The main automaton takes a transition labelled v to a violation state,

following by a reparation transition labelled s into a final state.
Finally both automata synchronise on Ccompl reaching maximally extended
states.

Argument. The case distinctions above map directly to each other, such that
both sets of traces require that if the clause is enacted, then either C2 is respected
within the interval i, or R is respected after i has expired.

Case 34: Sequence

σ �ct0 C
′ Seq C ′′

iff ∃j :N ·
(
0 ≤ j ≤ length(σ) ∧ σ(..j) �ct0 C

′ ∧ σ(j..) �ct0 C
′′)

Event traces. Traces can be divided in two, such that first sub-trace respects
C ′ and the second sub-trace respects C ′′ while constraints c hold.

Translation. All automata from the translations of C ′ and C ′′, and one main
automaton as follows, where s6 · · · s7 is filled with the thread from the transla-
tion of R (from parent clause) and i = c.

40

s0 s1

[i]

s2

[i]

s3 s4

[i]

s5

s6

s7

Cenable?
r

C ′enable! C ′compl? C ′′enable! C ′′compl? iupp
d, s, r

¬iupp
d, v

s, r¬iupp
v

¬iupp
v

¬iupp
v

Ccompl!

Uppaal traces. The sub-automata for C ′ and C ′′ are enacted in sequence, such
that C ′ must be completed before C ′′ is enacted. A trace of configurations must
either satisfy both of these in order, within the interval i, or the translation of
R after i has expired. The synchronisation with Ccompl means that both thread
and main automaton should reach a maximally extended state together.

Argument. Both sets of traces require that either both the clauses in the re-
finement are respected, in order, within the interval i, or that the reparation is
respected.

Case 35: Conjunction

σ �ct0 C
′ And C ′′ iff σ �ct0 C

′ and σ �ct0 C
′′

Event traces. Traces must respect both C ′ and C ′′ individually while the con-
straints c hold.

Translation. All automata from the translations of C ′ and C ′′, and one main
automaton as follows, where s6 · · · s7 is filled with the thread from the transla-
tion of R (from parent clause) and i = c.

s0 s1

[i]

s2 s3

[i]

s4 s5

s6

s7

Cenable?
r

C ′enable! C ′′enable! C ′compl? C ′′compl? iupp
d, s, r

¬iupp
d, v

s, r¬iupp
v

¬iupp
v

Ccompl!

41

Uppaal traces. The sub-automata for C ′ and C ′′ are both enacted (the order is
not significant since the intermediate location s2 is committed) ensuring that a
trace of configurations must either satisfy both of these within the interval i, or
the translation of R after i has expired. The synchronisation with Ccompl means
that both thread and main automaton should reach a maximally extended state
together.

Argument. Both sets of traces require that either both the clauses in the refine-
ment are respected, in any order, within the interval i, or that the reparation is
respected.

Case 36: Choice

σ �ct0 C
′ Or C ′′ iff either σ �ct0 C

′ or σ �ct0 C
′′

Event traces. Traces must respect either C ′ or C ′′ while the constraints c hold.

Translation. All automata from the translations of C ′ and C ′′, and one main
automaton as follows, where s5 · · · s6 is filled with the thread from the transla-
tion of R (from parent clause) and i = c.

s0 s1

[i]

s2

[i]

s3

[i]

s4

s5

s6

Cenable?
r

C ′enable! C ′compl?

C ′′enable! C ′′compl?

iupp
d, s, r

¬iupp
d, v

s, r¬iupp
v

Ccompl!

Uppaal traces. Only one of the sub-automata for C ′ and C ′′ can be enacted,
introducing non-determinism at location s1. A trace of configurations must
either satisfy one of these within the interval i, or the translation of R after
i has expired. The synchronisation with Ccompl means that both thread and
main automaton should reach a maximally extended state together.

Argument. Both sets of traces require that either only one of the clauses in the
refinement is respected within interval i, or that the reparation is respected.

Case 37: Simple action

σ �c,at0 x iff ∃j :N ·
(
0 ≤ j < length(σ) ∧ 〈a, x, t〉 = σ(j) ∧ t0 ≤ t ∧ check(c, t)

)
Event traces. Traces must contain an event involving agent a and action x with
a time stamp that is later than or equal to t0 and which complies with the
constraints c.

42

Translation. An action is simply a transition which can only be taken when
the corresponding action a.x has been performed (below left). Each action also
gets a corresponding doer automaton which sets the status of that action to
done (below right). This can happen at any time, providing the action has not
already been performed.

s0 s1
isDone(a.x)

s0
¬isDone(a.x)
done(a.x), reset(a.x)

Time constraints do not appear at this level, however this simple automaton is
always embedded within a larger one which would enforce such constraints (this
is true of all the following action cases).

Uppaal traces. Traces must contain the transition where the status of action
a.x is set to done.

Argument. Both sets of traces require that the action is performed within a
certain frame.

Case 38: Action Sequence

σ �c,at0 C ′3 Seq C ′′3

iff ∃j :N ·
(
0 < j < length(σ) ∧ σ(..j) �c,at0 C ′3 ∧ σ(j..) �c,at0 C ′′3

)
Event traces. Traces can be divided in two, such that first sub-trace respects
C ′3 and the second sub-trace respects C ′′3 , given the agent a and constraints c.

Translation. The following automaton fragment, where each dotted line is re-
placed with the translations as marked.

s0 s1 s2trf (C ′3) trf (C ′′3)

Uppaal traces. A satisfying sequence of configurations must satisfy the trans-
lations C ′3 and C ′′3 , strictly in that order.

Argument. Both sets of traces ensure that both sub clauses are respected, in
order.

Case 39: Action Conjunction

σ �c,at0 C ′3 And C ′′3 iff σ �c,at0 (C ′3 Seq C ′′3) Or (C ′′3 Seq C ′3)

Argument. In both the trace semantics and the translation to Uppaal, the
And refinement is defined in terms of Seq and Or , and thus needs no special
treatment here.

43

Case 40: Action Choice

σ �c,at0 C ′3 Or C ′′3 iff either σ �c,at0 C ′3 or σ �c,at0 C ′′3

Event traces. Traces must respect either C ′3 or C ′′3 , given the agent a and con-
straints c.

Translation. The following automaton fragment, where each dotted line re-
placed with the translations as marked.

s0 s1

trf (C ′3)

trf (C ′′3)

Uppaal traces. A satisfying sequence of configurations must satisfy either the
translation of C ′3 or that of C ′′3 , introducing non-determinism at location s0.

Argument. Both sets of traces require that only one of the sub clauses is re-
spected.

Case 41: Action Naming

σ �c,at0 〈n,C2〉 iff σ �c,at0 C2

Argument. This case is simply handled recursively by considering the inner C2

element.

Case 42: Top

σ �ct0 >

Event traces. Any event trace respects top.

Translation. The following automaton fragment.

s0 s1
true

Uppaal traces. This automaton is trivially satisfied by any trace.

Argument. Both sets of traces are maximally inclusive.

Case 43: Bottom

σ 2ct0 ⊥

Event traces. No event trace respects bottom.

44

Translation. The following automaton fragment.

s0 s1
false

Uppaal traces. This automaton is satisfied by no trace.

Argument. Both sets of traces are empty.

Case 44: Reference

σ �ct0 #name iff σ �ct0 lookup(name)

Argument. A reference is translated by looking up the clause in the contract
with name name and making a copy of it, resulting in a clause with a structure
matching one of the cases already seen earlier.

45

Appendix B. Case Study

“Support and Service Level Schedule” for the LeaseWeb USA, Inc. The case
study below has been reproduced from https://www.leaseweb.com/sites/default

/files/US_ENG_B2B_v2014.1%20Support%20and%20Service%20Level%20Schedule_1.p

df

1.1 LeaseWeb shall provide an English-language customer support service.
LeaseWeb will maintain support engineers actively on duty 24 hours per
day, every day of the year.

1.2 LeaseWeb shall in no event be obliged to provide any support services to
Customer’s End Users.

1.3 Customer may initiate a request for Standard Support, Advanced Support
or Remote Hands, or report a Service Disruption (a “Support Request”)
via the technical helpdesk via the Customer Portal, phone or e-mail. A
Support Request must include the following information: (i) type of ser-
vice, (ii) company name, (iii) name and number for immediate contact
with the Customer, (iv) a clear, detailed and unambiguous description
of Standard Support, Advanced Support or Remote Hands Services re-
quested, and (v) a detailed description of the Service Disruption (if appli-
cable). LeaseWeb may refuse a Support Request if it is not able to estab-
lish that the Support Request is made by the person authorised thereto
in the Customer Portal.

1.4 The table below sets forth the Response Time (the “Response Time Tar-
get”) for (a) any Service Disruptions that have been reported by Customer
to LeaseWeb in accordance with Section 1.3 above, and (b) any request for
Standard Support Service, Advanced Support Service or Remote Hands
Service to be performed made in accordance with Section 1.3 above. The
Response Time Target, depends (i) for Colocation Services, on the Re-
mote Hands Package chosen by Customer, and (ii) for any other Services,
on the SLA level that the Customer has chosen.

SLA level Remote hands Response time target
Basic Basic 24 hours
Bronze Bronze 4 hours
Silver Silver 2 hours
Gold Gold 1 hour
Platinum Platinum 30 minutes

1.5 In the event LeaseWeb does not respond within the applicable Response
Time Target, Customer shall be eligible to receive a Service Credit (the
“Response Time Credit”) for every one (1) hour in excess of the maximum
Response Time Target equal to 2% of the Monthly Recurring SLA Charge
or the Monthly Recurring Remote Hands Charge (as applicable) for the

46

https://www.leaseweb.com/sites/default/files/US_ENG_B2B_v2014.1%20Support%20and%20Service%20Level%20Schedule_1.pdf
https://www.leaseweb.com/sites/default/files/US_ENG_B2B_v2014.1%20Support%20and%20Service%20Level%20Schedule_1.pdf
https://www.leaseweb.com/sites/default/files/US_ENG_B2B_v2014.1%20Support%20and%20Service%20Level%20Schedule_1.pdf

respective month for the Service or Equipment affected by the Service
Disruption or for which Advanced Support Services/Remote Hands were
requested (as applicable). If Customer does not pay a Monthly Recurring
SLA Charge or Monthly Recurring Remote Hands Charge (as applicable),
then Customer shall not be eligible to any Response Time Credit.

1.6 Customer shall ensure that it will at all times be reachable on Customer’s
emergency numbers, specified in the Customer Details Form. No Re-
sponse Time Credit shall be due in case the Customer is not reachable on
Customer’s emergency number.

1.7 The maximum amount of Response Time Credits that a Customer may be
eligible to in a particular month, shall be limited to 50% of the Monthly Re-
curring SLA Charge or the Monthly Recurring Remote Hands Charge (as
applicable) for the respective month for the Customer’s Service or Equip-
ment affected by the Service Disruption or for which Advanced Support
Services/Remote Hands were requested (as applicable)

47

	Introduction
	C-O Diagram Formalism
	Formal Syntax
	Extensions
	Trace Semantics
	Example

	Translation to Timed Automata
	Timed Automata
	Description
	Correctness of the Translation

	Analysis
	Syntactic Analysis
	Semantic Analysis

	Case Study
	Model
	Syntactic Analysis
	Semantic Analysis

	Related Work
	Conclusion
	Translation to NTA: Proof of Correctness
	Outline
	UPPAAL Trace Semantics
	Notes and Notation
	Thread Automaton
	Case Analysis

	Case Study

