
On the Specification and Enforcement of
Privacy-Preserving Contractual Agreements?

Gerardo Schneider

Department of Computer Science and Engineering,
Chalmers | University of Gothenburg, Sweden

gerardo@cse.gu.se

Abstract. We are here concerned with the enforcement at runtime of
contractual agreements (e.g., Terms of Service) that respect users’ pri-
vacy policies. We do not provide a technical solution to the problem
but rather give an overview of a framework for such an enforcement,
and briefly discuss related work and ideas on how to address part of the
framework.

1 Introduction

Each time we download an app in our smart phone or access certain webpages
we need to deal with contractual agreements (e.g. Terms of Service —ToS) and
privacy policies. These are usually written in legalese, a somehow obscure lan-
guage, motivating people to click the I agree button without reading the text,
eventually having unexpected consequences. The situation is even more com-
plex given that in many cases the applications may interact with each other in
complex ways, most of the time without our knowledge nor consent.

As an example, let us consider the following scenario. Facebook and Spotify
have their own ToS which users must agree on before getting the right to install
and use their services. It could happen that when listening to a song in Spotify, a
message in your wall is posted showing what the user is listening to. This might
no be wanted by most users, compromising their privacy. It could be desirable to
have the possibility to statically check whether the ToS conforms with the user’s
privacy policies. In case a potential breach of privacy is found statically, if the
user still want to install and use the application, it could be desirable to have
a monitor that warns the user when Facebook is going to post about what you
are listening to (even better, the monitor could prevent Spotify and Facebook
to make the post public if this is not allowed by the user’s privacy policy).

Two crucial observations: i) Privacy is an important concern as personal
information may be collected without our (explicit, or informed) consent from
online social networks, search engines, mobile devices, etc., and used and shared

? Published in 7th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation - ISoLA’16 (2); Track: Runtime Verification
and Enforcement, the (industrial) application perspective, volume 9953 of LNCS,
pages 413-419. Springer, Oct 2016. DOI: 10.1007/978-3-319-47169-3 34



2 G. Schneider

Fig. 1. Conceptual view of our framework

by private and governmental agencies for different purposes (e.g., see the series of
articles in the Wall Street Journal1); ii) Normal citizens do not have the knowl-
edge (nor the time) to go through the details of contractual agreements (e.g.,
ToS), accepting them with the naive expectation that they are to be trusted.

Our ultimate goal is to make the hard task of analyzing contractual agree-
ments easier for normal users. Besides, we want to empower users with the
possibility to be in control of what may be seen by whom, and when. For that
we envision a framework allowing users to: i) Define their own privacy policies,
at different levels and for general or specific applications, using a user-friendly
environment; ii) Perform some simple queries on contractual agreements to en-
sure they are satisfied with the terms, before accepting them; iii) Check the
contractual agreements do not violate the user’s privacy policies (offline, static
checking); iv) Get a warning in case the application is going to perform an action
not allowed by the contractual agreement, or that might violate their privacy
policies (online, at runtime).

In order to achieve the above, there is a need for a multi-disciplinary approach
combining expertise from natural language processing (NLP), machine learning
(ML), formal methods (formal semantics, specification and verification), logics,
security, and legal analysis and formalization of law. More concretely, we aim at
a framework (cf. Fig. 1) where policies are written in natural language and trans-
lated into a formal language (cf. NL Privacy Policy Analyzer), and a monitor is
automatically generated to ensure that the policies are not violated at runtime
(cf. Monitor Generator). Contractual agreements written in natural language,
e.g. ToS, are also transformed into a formal language (cf. NL Contract Ana-
lyzer) so they are verified against properties (cf. Contract Verifier) and statically
checked for conformance with the privacy policies (cf. Conformance Checker).

1 “What they know”, Wall Street Journal. Accessed on March 10, 2014 (http://
online.wsj.com/public/page/what-they-know-digital-privacy.html).



Privacy-Preserving Contractual Agreements 3

These formal languages will be used during the execution of the application to
ensure that the privacy policies are respected (cf. Runtime Checking).

We give an overview of the framework in §2, and discuss some of its compo-
nents in more detail in §3 putting them into context w.r.t. the state-of-the-art.

2 Description of the PPCA Framework

We describe below a prototypical scenario of our framework (cf. Fig. 1).

1. The user will define her privacy policies interacting with a user-friendly in-
terface. The policies will be translated by the module NL Privacy Policy
Analyzer into the formal language FPPol.

2. The Monitor Generator will generate a monitor for the privacy policies.
3. When an application is uploaded, the user will be asked to approve the ToS

(ToS). Before agreeing to upload the application, the ToS will be translated
into a formal contract language (FToS) by the NL Contract Analyzer.

4. FToS will be analyzed by using the Contract Verifier module, allowing the
verification of the contract against user-defined properties (Prop), or queries
defined in the query language QL. The results of the the analysis (and
queries) will be shown to the user, who will decide whether to accept it
or not. If not accepted, FToS will be annotated with additional information
by the Contract Annotator module.

5. The Conformance Checker module will statically check whether the contract
might violate the policies specified by the user. If so, the user will get to
know what clauses are to be analyzed in detail. In case of uncertainty the
ambiguous sentences will be highlighted to be further analyzed interactively.
The user will decide whether to agree to upload the application or not.

6. The user may decide to modify her privacy policies, by relaxing or constrain-
ing the policies for this particular application. This is done by the module
Privacy Policy Updater (not shown in the picture). This is fed into the corre-
sponding modules to obtain a runtime monitor for the new privacy policies.

7. If the user agrees to upload the application (or automatically done by the
Conformance Checker), the monitor MPPol will run in parallel with the un-
derlying system, checking that the privacy polices are respected at runtime.

8. The Runtime Violation Analyzer (not shown in the picture) detects when
the contract is violated and uses the history of the transaction to analyze it
at runtime (and eventually acting accordingly by canceling the transaction,
or giving a warning). In case of non-conformance with respect to the privacy
policies, the user is notified and the application temporary blocked.

9. The result provided by the Runtime Violation Analyzer (a Log file) will be
passed to the Static Violation Analyzer so the end-user (or a specialist in
case of litigation) can analyze it off-line to further determine what where the
causes and who was responsible for the contract violation (not depicted).



4 G. Schneider

3 On the Specification and Enforcement of Contractual
Agreements and Privacy Policies

We only focus here on three main parts of the framework: i) The formal specifi-
cation of contractual agreements; ii) The formal specification of privacy policies;
iii) The static and runtime conformance checking.

Formalization and analysis of contractual agreements Since its modern
conception in the 1950’s deontic logic [19] has been the base of almost all the
attempts to formalize normative systems. Most of the work have been dedicated
to the study of properties of normative operators, e.g., obligations, permissions
and prohibitions, and how to handle their violations (e.g. [13]), but few attempts
have been made in order to obtain a usable formal language for the specification
and analysis of contractual agreements. One of such languages is CL [16, 17],
based on deontic, temporal and dynamic logic. CL has been shown to be insuffi-
cient to handle rich contractual documents; besides it does not have many of the
desirable properties of contract specification languages [12]: does not allow to de-
termine liabilities nor causalities, it is not compositional, and it cannot express
real-time constraints. Some of these issues have been partially solved by C-O
Diagrams [10] but the language is still not expressive enough as to capture real
contractual agreements. Another language, FLAVOR [18], allows to distinguish
between different “instances” of a contract, but reasoning about permissions is
not possible. Besides, there are no analysis algorithms/tools associated with the
language. In what concerns the formal analysis of contractual agreements, there
is not much work. For instance for CL a complex translation into an existing
model checker has been provided [11] by abstracting away some of the features
of the language losing expressivity in what can be proven. The translation of
C-O Diagrams into timed automata is promising as it opens the possibility to
use verification tools like UPPAAL [4].

In order to ensure the fulfillment of the contractual clauses, the contract needs
to be monitored at runtime. An interesting work along these lines is based on the
event calculus [8]. However, this and other up-to-date approaches can only par-
tially monitor a contract fulfillment, and more powerful monitoring techniques
are needed. A complete automatic generation of a monitor from a formal con-
tract is in general impossible, because most contracts contain prescriptions and
descriptions at a high level, not specifying the underlying (algorithmic) proce-
dures. This is the case for instance if the contract talks about average or per-
centages within a given period of time. We are not aware of any work providing
(semi-)automatic monitor extraction techniques for such complex contracts.

Formalization and analysis of privacy policies As for contractual agree-
ments, privacy policies would need to be expressed in a formal language, for in-
stance based on real-time, epistemic and deontic logics. Epistemic logic is needed
to specify and reason about who knows what, deontic operators are needed to de-
scribe for instance who is (not) allowed to perform certain actions, and real-time



Privacy-Preserving Contractual Agreements 5

is obviously needed as policies may have deadlines or durations, and to describe
and reason about the evolution of the system and the policies themselves.

One approach to formally define privacy policies is to use some variant of epis-
temic logic [7], where it is possible to express the knowledge of multi-agent sys-
tems. Other approach for privacy, not based on epistemic logic, is Relationship-
based access control (REBAC) [9], where the reasoning is focused on the resources
owned by the agents. This approach is highly suitable for a practical implemen-
tation of a policy checking algorithm. On the other hand, it is mostly suitable for
controlling access to resources, not for detecting certain kinds of implicit knowl-
edge flow. Datta et al. present in [6] the logic PrivacyLFP for defining privacy
policies based on a restricted version of first-order logic (the restriction con-
cerns quantification over infinite values is avoided by considering only relevant
instances of variables). The logic is quite expressive though it is not clear how
it could be used for the kind of polices we are aiming here.

Though not directly concerned with privacy policies, the work by Basin and
colleagues on different aspects of usage control is quite relevant. These include
works on the definition of formal models for mechanisms to enforce usage control
policies on the consumer side [15], and the use of temporal logics to express usage
policies and runtime monitoring to check system compliance e.g. [3, 2].

A starting point for defining a rich formal language for privacy policies could
be the recent work on the definition of the PPF framework [14].

Static and runtime conformance checking Our aim is to develop static
verification techniques and algorithms for determining whether a given contract
might compromise the parties’ privacy policies. The static verification would be
done with respect to a compliance relation between the formal term represent-
ing the contract and the formal privacy policy. The techniques behind this kind
of proofs are quite standard, the challenge being in specializing them into our
particular formal languages. One challenge is to obtain algorithms to extract a
monitor from the formal policy language in order to check that the contracts do
not violate the parties’ privacy policies at runtime. An idea would be to apply
techniques based on the sub-formula construction. However, this approach can-
not capture clauses having algorithmic content. A possible solution to that would
be to enhance the monitor with a library computing such clauses, and combine
it with a rule-based approach to consider in more detail the specific events that
might violate the policy. Besides, there might be a need to provide a full op-
erational semantics of the system under test in order to consider what are the
side effects of every event. We are not aware of any work checking conformance
between contractual agreements and privacy policies.

An interesting promising approach would be to combine static and runtime
verification as done in the StaRVOOrS framework [1, 5].

4 Conclusion

We believe the benefits of the PPCA framework are many, as well as the chal-
lenges to achieve it. A specific challenge for the runtime verification community



6 G. Schneider

is how to automatically obtain and deploy runtime monitors from formal con-
tractual agreements and privacy policies, in order to enforce their satisfaction as
well as the compliance of the former w.r.t. the latter.

Acknowledgements Partially supported by: the Swedish Research Council
(Vetenskapsr̊adet) under grants Nr. 2015-04154 (PolUser: Rich User-Controlled
Privacy Policies) and Nr. 2012-5746 (Remu: Reliable Multilingual Digital Com-
munication), and the European ICT COST Action IC1402 (ARVI: Runtime
Verification beyond Monitoring).

References

1. W. Ahrendt, M. Chimento, G. Pace, and G. Schneider. A specification language for
static and runtime verification of data and control properties. In FM’15, volume
9109 of LNCS, pages 108–125. Springer, 2015.

2. D. Basin, M. Harvan, F. Klaedtke, and E. Zalinescu. Monitoring data usage in
distributed systems. IEEE Trans. on Soft. Eng., 39(10):1403–1426, 2013.

3. D. A. Basin, M. Harvan, F. Klaedtke, and E. Zalinescu. Monpoly: Monitoring
usage-control policies. In RV, volume 7186 of LNCS, pages 360–364, 2011.

4. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal – a Tool
Suite for Automatic Verification of Real-Time Systems. In Hybrid Systems III,
number 1066 in LNCS, pages 232–243, 1995.

5. J. M. Chimento, W. Ahrendt, G. Pace, and G. Schneider. STARVOORS: A Tool
for Combined Static and Runtime Verification of Java. In RV’15, volume 9333 of
LNCS, pages 297–305. Springer, 2015.

6. A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and
A. Sinha. Understanding and protecting privacy: Formal semantics and principled
audit mechanisms. In ICISS, volume 7093 of LNCS, pages 1–27. Springer, 2011.

7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge,
volume 4. MIT press Cambridge, 1995.

8. A. Farrell, M. Sergot, M. Sallé, and C. Bartolini. Using the event calculus for
tracking the normative state of contracts. Int. J. Cooperative Inf. Syst., 14(2-
3):99–129, 2005.

9. P. W. Fong. Relationship-based access control: Protection model and policy lan-
guage. In CODASPY’11, pages 191–202. ACM, 2011.

10. E. Mart́ınez, E. Cambronero, G. Diaz, and G. Schneider. A Model for Visual
Specification of e-Contracts. In IEEE SCC’10, pages 1–8. IEEE Comp. Soc., 2010.

11. G. Pace, C. Prisacariu, and G. Schneider. Model checking contracts –a case study.
In ATVA’07, volume 4762 of LNCS, pages 82–97. Springer, 2007.

12. G. J. Pace and G. Schneider. Challenges in the specification of full contracts. In
iFM’09, volume 5423 of LNCS, pages 292–306, 2009.

13. M. Palmirani, G. Governatori, A. Rotolo, S. Tabet, H. Boley, and A. Paschke.
Legalruleml: Xml-based rules and norms. In RuleML’11, volume 7018 of LNCS,
pages 298–312. Springer, 2011.

14. R. Pardo and G. Schneider. A formal privacy policy framework for social networks.
In SEFM’14, volume 8702 of LNCS, pages 378–392. Springer, 2014.

15. A. Pretschner, M. Hilty, D. A. Basin, C. Schaefer, and T. Walter. Mechanisms for
usage control. In ASIACCS, pages 240–244. ACM, 2008.



Privacy-Preserving Contractual Agreements 7

16. C. Prisacariu and G. Schneider. A formal language for electronic contracts. In
FMOODS’07, volume 4468 of LNCS, pages 174–189. Springer, 2007.

17. C. Prisacariu and G. Schneider. CL: An Action-based Logic for Reasoning about
Contracts. In WOLLIC’09, volume 5514 of LNCS, pages 335–349. Springer, 2009.

18. R. Thion and D. L. Métayer. Flavor: A formal language for a posteriori verification
of legal rules. In POLICY’11, pages 1–8. IEEE Comp. Soc., 2011.

19. G. H. V. Wright. Deontic logic. Mind, 60:1–15, 1951.


