
On the Runtime Enforcement of Evolving
Privacy Policies in Online Social Networks?

Gordon J. Pace1, Raúl Pardo2, and Gerardo Schneider2??

1 Dept. of Computer Science, University of Malta, Malta.
2 Dept. of Computer Science and Engineering,
Chalmers | University of Gothenburg, Sweden.

{gordon.pace@um.edu.mt, pardo@chalmers.se, gersch@chalmers.se}

Abstract. Online Social Networks have increased the need to under-
stand well and extend the expressiveness of privacy policies. In particu-
lar, the need to be able to define and enforce dynamic (and recurrent)
policies that are activated or deactivated by context (events) or time-
outs. We propose an automaton-based approach to define and enforce
such policies using runtime verification techniques. In this paper we dis-
cuss how our proposed solution addresses this problem without focussing
on concrete technical details.

1 Introduction

Online Social Networks (OSNs) are not only a way to keep in touch and socialise
but a way of life. Nearly 70% of the Internet users are active on OSNs as shown by
a recent survey [5], and this number keeps increasing. New technologies usually
comes with a lot of opportunities, but also with new sometimes unexpected
threats and challenges. One of such problems in OSNs is that of privacy. Very
often users’ requirements are far from the privacy guarantees offered by OSNs
which do not meet their expectations [6].

OSN privacy policies can typically enforce many desirable policies; for in-
stance, in Facebook users can state polices like: ‘Only my friends can see a post
on my timeline’ or ‘Whenever I am tagged, the picture should not be shown on
my timeline unless I approve it’. Many other policies, however, are not possible
to enforce, although they might be important from a user’s privacy perspective.
For instance, users cannot specify privacy policies such as ‘I do not want to be
tagged in pictures by anyone other than myself ’, nor ‘Nobody apart from myself
can know my child’s location’. These limitations to what current privacy control
settings can describe and enforce might be limiting user adoption and use of
effective privacy policies.

? Published in 7th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation - ISoLA’16 (2); Track: Runtime Verification
and Enforcement, the (industrial) application perspective, volume 9953 of LNCS,
pages 407-412. Springer, Oct 2016. DOI: 10.1007/978-3-319-47169-3 33

?? Corresponding author.



2 G.J. Pace and R. Pardo and G. Schneider

Besides, the current state of the art in privacy settings do not take into
account the dynamic aspect of privacy policies. That is, privacy policies should
consider the fact that the networks evolve, as well as the privacy preferences
of the users. An OSN may evolve in different ways, by introducing new users,
by sending posts and invitations to participate in events, by accepting such
invitations, liking pictures and posts, etc.

The privacy policy may also evolve due to explicit changes done by the users
(e.g., a user may change the audience of an intended post to make it more
restrictive), or because the privacy policy is dynamic per se. Examples of the
latter, are for instance: ‘My boss cannot know my location between 20:00-23:59
every day’, ‘Only my friends can know my location from Fridays at 20.00 till
Mondays at 08:00’, and ‘Co-workers cannot see my posts while I am not at work,
and only family can see my location while I am at home.’ These are recurrent
policies triggered by some time events (“every day between 20:00 and 23:59”,
and “every week from Friday at 20.00 till Monday at 08:00”), or location-based
(“not at work [...] at home”). Other policies may be activated or deactivated by
certain events: ‘Only up to 3 posts, disclosing my location, are allowed per day
in my timeline’.

In this paper, we are concerned with evolving privacy policies of the latter
kind: how to define and enforce dynamic (possible recurrent) privacy policies
that are activated or deactivated by context (events or location) or timeouts. In
particular, we aim at proposing one approach on how to define such policies and
discuss how to guarantee at runtime their enforcement. We do not develop in
this paper a concrete technical solution but rather outline an automata-based
approach, and discuss how it could be implemented.

2 An Approach to Represent Evolving Privacy Policies

An evolving policy effectively corresponds to temporal modalities sitting above
predicates in a static policy logic. Given that much work has been done in the
area of representing and enforcing static policies, with different approaches being
proposed to address different contexts, we have chosen to keep the approach
policy logic agnostic and have a description of which policies are triggered as
time progresses.

The formalism we propose to describe the evolving behaviour of policies is to
use deterministic automata with transitions labelled by events which the policy’s
environment — in our case the online social network — can perform. By tagging
each state with a static policy which expresses what is and what is not allowed,
we automatically obtain an operational view of which policies are switched on
and off during the system’s lifetime. By synchronising the policy automaton’s
state with the events from the social network, other users and the general policy
environment, we can add and remove policies appropriately.

For example, consider the policy ‘Co-workers cannot see my posts while I
am not at work, and only family can see my location while I am at home’ (P1).
If we use the static policy operator Fg(x) to denote that anyone in group g



On the Enforcement of Evolving Privacy Policies in OSN 3

is forbidden from performing action x (x can refer to posting, viewing a post,
liking a post, etc.) we can express the policy while not being at work to be
Fco-workers(read-post), and the policy when not at home to be Ffamily(see-location)
(we use ḡ to denote the complement of a group of users g). By synchronising
with the actions of our social network application registering our arriving at
and leaving a location (enter(l) and leave(l) respectively), we can express the
evolving policy in the following manner:

Fco-workers(read-post)

start

Fco-workers(read-post)
Ffamily(see-location)

leave(work)

enter(work)

enter(home)

leave(home)

This approach allows the adoption of any static policy language and allow
its dynamic extension. In addition, we can easily extend definitions of concepts
such as policy refinement and policy conflicts already defined on static policies
to the policy automaton level — for instance, an evolving policy represented as a
policy automaton P is a refinement of another evolving policy P ′ if, for any trace
t, the policy in the state of P reachable after following trace t is a refinement of
the policy in the state of P ′ reachable from following trace t.

In practice, when specifying these policy automata, we allow for symbolic
states to be used by using variables which can be checked and updated on the
transitions. For instance, consider the policy ‘Only up to 3 posts, disclosing my
location, are allowed per day in my timeline’ (P2), which can be encoded as the
following automaton:

start Fall(post(my-location))

post(my-location) post(my-location) post(my-location)

midnight

midnight

midnight

If the maximum number of posts were to be increased, specifying this as
an explicit automaton can quickly become unwieldy, and using a symbolic state
variable can simplify specifying the automaton in a more concise way. In the rep-
resentation below, each transition is labelled as: event/condition/state-update —
triggering when the specified event happens and the condition holds, performing
the state update before proceeding. The property allowing for 10 location posts
can be expressed in this notation in the following manner:



4 G.J. Pace and R. Pardo and G. Schneider

start Fall(post(my-location))

post(my-location)/posts < 10/posts + +

midnight//posts = 0

midnight//posts = 0

post(my-location)/posts == 10/

Note that this can be reduced to an infinite state explicit automaton with
the state consisting of a tuple (q, n) where q ∈ {1, 2} represents the two states,
while n ∈ N represents the value of the variable posts.

3 Runtime Enforcement of Evolving Privacy Policies

One of our objectives is to have an effective enforcement mechanism for evolving
privacy policies based on policy automata in a real OSN. In this section, we give
an overview of how such enforcement can be achieved.

Using policy automata to model the evolution of the privacy policies would
make it possible to define a modular enforcement of evolving policies. As men-
tioned in the previous section, policy automata are independent of the static
policy language of the OSN, and consequently, they are also independent of the
underlying enforcement of each particular static policy. Therefore, the two main
required ingredients for an enforcement of evolving privacy policies are:

i) An OSN with a built-in enforcement for static privacy policies,
ii) A tool which monitors the evolution of the OSN and controls the state of

the policies at each moment in time.

All the popular OSNs such as Facebook, Twitter, Google+, Instagram, etc.
have a built-in mechanism for enforcing static policies. However, monitoring the
events occurring in the OSN requires full access to the internals of the system,
which is normally not publicly available for those OSNs. Thus, in order to have a
working implementation we should target an open-source OSN, like for instance
the distributed OSN Diaspora* [3]. Pardo and Schneider [8, 7] have recently
extended Diaspora* with a prototype implementation of some privacy policies
defined in the PPF framework [4]. PPF is a formal (generic) privacy policy
framework for OSNs, which needs to be instantiated for each OSN in order to
take into account the specificities of the OSN. PPF was shown not only to
be able to capture all privacy policies of Twitter and Facebook, but also more
complex ones involving implicit disclosure of information.

The remaining element of the enforcement is a tool which is able to model
policy automata (cf. ii)). In previous work Colombo et al. introduced Larva [2],
a tool to automatically generate a monitor from properties expressed in DATEs
(Dynamic Automata with Events and Timers). Though the expressiveness of
DATEs is not sufficient to encode policy automata, we believe they can be ex-
tended in order to reach the intended expressiveness.3

3 All the behaviour and information in DATEs are carried on the transitions: states
are only used as a way to define transitions.



On the Enforcement of Evolving Privacy Policies in OSN 5

In order for the runtime enforcement to work we would need to use a com-
munication protocol between Diaspora* and Larva. Every time that a relevant
event occurs in Diaspora* it should be reported to Larva. Then Larva would
update the state of the privacy policies (if applicable), and whenever a privacy
policy is updated Larva would report this change to Diaspora*, which would
update the corresponding (static) privacy policy (see Fig. 1).

Fig. 1. High-level representation of the Diaspora*-Larva communication

One possibility is to implement the communication protocol using sockets.
Imagine we were to implement the policy (P2) described in the previous section,
which states that at most 3 times per day posts containing a user’s location are
allowed. Every time that a user publishes a post including a location, a message
would be sent to the Larva monitor. This message must include the information
of which users are included in the post, since their location is (potentially) going
to be disclosed. At this moment, Larva would update the state of the policy
automaton by either increasing the variable controlling the number of posts in-
cluding a location (for each user) and/or updating the state of the automaton.
Finally, if the automaton goes to a state in which no further user location dis-
closures are allowed, then Larva would communicate with Diaspora* updating
the relevant privacy settings for the user, and Diaspora’s built-in mechanism
for enforcing static policies would then take care of the rest. At midnight, the
automaton returns to the initial state, updating the static policy in Diaspora*
accordingly, i.e., permitting location disclosure once again.

4 Conclusions

We have sketched an approach to formally represent evolving privacy policies,
and a practical solution enabling the synthesis of monitors to enforce such poli-
cies. Our objective here is not to provide a technical solution, but rather to give
some initial ideas on how to address it and to pave the way to further research
on the topic.

We are currently looking into the formal definition of policy automata, and
a translation into LARVA monitors [2, 1] instantiated for Diaspora*. In partic-



6 G.J. Pace and R. Pardo and G. Schneider

ular, we would like to apply the approach by using privacy policies using an
instantiation of the PPF privacy framework [8].

Acknowledgements This research has been supported by: the Swedish fund-
ing agency SSF under the grant Data Driven Secure Business Intelligence, the
Swedish Research Council (Vetenskapsr̊adet) under grant Nr. 2015-04154 (Po-
lUser: Rich User-Controlled Privacy Policies), and the European ICT COST
Action IC1402 (Runtime Verification beyond Monitoring (ARVI)).



On the Enforcement of Evolving Privacy Policies in OSN 7

References

1. C. Colombo, G. J. Pace, and G. Schneider. Dynamic event-based runtime monitoring
of real-time and contextual properties. In FMICS’08, volume 5596 of LNCS, pages
135–149. Springer-Verlag, 2009.

2. C. Colombo, G. J. Pace, and G. Schneider. LARVA — Safer Monitoring of Real-
Time Java Programs (Tool Paper). In SEFM’09, pages 33–37. IEEE Computer
Society, 2009.

3. Diaspora*. https://diasporafoundation.org/. Accessed: 2016-07-01.
4. PPF Diaspora*. Test pod: https://ppf-diaspora.raulpardo.org. Code:

https://github.com/ raulpardo/ppf-diaspora. 2016.
5. A. Lenhart, K. Purcell, A. Smith, and K. Zickuhr. Social media & mobile internet

use among teens and young adults. millennials. Pew Internet & American Life
Project, 2010.

6. Y. Liu, K. P. Gummadi, B. Krishnamurthy, and A. Mislove. Analyzing facebook
privacy settings: User expectations vs. reality. In ACM SIGCOMM IMC’11, pages
61–70. ACM, 2011.

7. R. Pardo. Formalising Privacy Policies for Social Networks. Department of Com-
puter Science and Engineering, Chalmers University of Technology, 2015. Licentiate
thesis.

8. R. Pardo and G. Schneider. A formal privacy policy framework for social networks.
In SEFM’14, volume 8702 of LNCS, pages 378–392. Springer, 2014.


