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Abstract—Reinforcement learning (RL) is a machine learning
technique that has been increasingly used in robotic systems. In
reinforcement learning, instead of manually pre-program what
action to take at each step, we convey the goal a software agent
in terms of reward functions. The agent tries different actions
in order to maximize a numerical value, i.e. the reward. A
misspecified reward function can cause problems such as reward
hacking, where the agent finds out ways that maximize the
reward without achieving the intended goal.

As RL agents become more general and autonomous, the
design of reward functions that elicit the desired behaviour in the
agent becomes more important and cumbersome. In this paper,
we present a technique to formally express reward functions in a
structured way; this stimulates a proper reward function design
and as well enables the formal verification of it. We start by
defining the reward function using state machines. In this way,
we can statically check that the reward function satisfies certain
properties, e.g., high-level requirements of the function to learn.
Later we automatically generate a runtime monitor—which runs
in parallel with the learning agent—that provides the rewards
according to the definition of the state machine and based on the
behaviour of the agent.

We use the UPPAAL model checker to design the reward
model and verify the TCTL properties that model high-level
requirements of the reward function and LARVA to monitor and
enforce the reward model to the RL agent at runtime.

I. INTRODUCTION

The behaviour of autonomous robotic systems is tradi-

tionally designed manually and their correctness relies on

extensive testing of their requirements. Other approaches can

generate optimal controllers of the robot from a synthesis

process that starts from the specification of the system [1], [2].

However, the presence of uncertainty makes it hard to model

all the requirements at design-time (the partial knowledge

of the environment and its dynamic nature will make the

specification necessarily incomplete).

Uncertainty may come from the system’s environment,

unavailability of resources, the difficulty of predicting users’

behaviour, etc. [3], [4], [5]. Consequently, it is extremely

difficult to anticipate all the possible and subtle variations of

the environment at design-time. In a goal-oriented approach,

we set the objective that we want the system to achieve

without specifying how. By using model-free reinforcement

learning [6] we let the agent explore the environment by trial

and error, ultimately producing an optimal policy according to

the predefined goal. The policy is learned by interacting with

the environment and collecting a reinforcement signal, i.e. a

numerical reward for each action that the agent performs on

it.

An incorrect specification of the reward function, and

consequently a gap between the designer’s intention and the

specification, can cause unexpected behaviours in the agent.

One of the problems is reward hacking [7], meaning that the

agent, by taking into account the reward function, manages to

get a high reward without achieving the designer’s intentions;

this is because it might optimize towards the rewards function

that is indeed not exactly representing the designer’s inten-

tions. For example, in a cleaning robot setting, if the reward

function gives a positive reward for not seeing any dirt then

the agent might learn to disable its vision rather than cleaning

up. Instead, if the reward is given only when the robot actually

cleans up then the robot might learn to make a mess first and

then cleaning up so that it keeps receiving more and more

reward.

By embedding more domain knowledge in the reward

function one could avoid the reward hacking phenomenon; this

would also help the agent to learn the desired policy faster [8].

However, as reward functions become more complex, in turn,

it becomes harder to spot mistakes and to be confident whether

the reward values that are finally sent to the agent actually

reflect the designer’s intentions.

Our work goes in the direction of a better structuring

of the reward function with the aim of closing the gap

between the designer informal goals and the reward signal.

Our contribution is the design and validation of a software

infrastructure that enables the verification and enforcement of

reward functions to an RL agent. From a high-level perspective

our approach, which we have called MOVEMO, consists of

four steps:

1) Modelling complex reward functions as a network of state

machines.

2) Formally verifying the correctness of the reward model.

3) Enforcing the reward model to the agent at runtime using

a monitoring and enforcing approach called LARVA.

4) Monitoring the behaviour of the agent as it transverses

the state machines to collect the rewards.

Steps 1 and 2 are performed by the designer that iterates the

reward function model until it is compliant with the high-

level properties that she/he expresses. Steps 3 and 4 are

automatically derived and performed from the reward model.



We have validated our approach in an autonomous driving

scenario using the TORCS [9] simulation environment. After

modelling the goal of the system with our approach, the

reinforcement learning agent learns how to steer, accelerate,

and break. We are able to detect bugs in reward functions

before enforcing them to the agent. We have packaged the

software infrastructure in a stand-alone docker image [10].

The rest of the paper is structured as follows. In Section II

we introduce background information needed to understand

our approach, such as reinforcement learning, formal verifi-

cation, and runtime enforcement. In Section III we give an

overview of existing methods to convey rewards to the agent

and the problems that come with it. In Section IV we present

the four phases of our approach: modelling, formal verifica-

tion, enforcement, and monitoring. Finally, in Section V we

present a case study in a racing car simulation environment.

We conclude and depict future research directions in Sec-

tion VI.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning is a machine learning technique

that involves an agent acting in an environment by choosing

predefined actions with the goal of maximizing a numerical

reward.

At each time step t an agent receives an observation

from the environment that it associates with a certain state.

It chooses an action from that state and applies it to the

environment that moves to a new state. A reward associated

with this transition state-action-newstate is determined and

sent back to the agent.

In model-free RL, a learning agent starts with no prior

knowledge about the environment and, as it receives observa-

tions, it tries actions and then collects a reward. It selects its

actions by exploiting the knowledge from its past experiences

but also by exploring the environment by trial and error

learning. The environment evaluates the action taken by the

agent at each step by sending back a reward signal to the agent.

The goal of the agent is to maximize the expected rewards over

time, also known as return.

The agent does not learn the reward function but instead it

learns the Q-values, which are numerical values associated to

each action that it can take in a state. In Q-learning [11], a

model-free reinforcement learning algorithm, at each time step

the agent updates the Q-values associated to the state-action

pair as follows:

Q(st, at) = Q(st, at)+α(rt+γ·maxa(Q(st+1, a))−Q(st, at))

where:

• rt is the reward for the current agent’s state;

• st is the current state of the agent;

• at is the action picked by the agent;

• α is the learning rate; it indicates how much the agent will

consider the newly acquired information into its previous

state-action value;

• γ is the discount factor; If the factor is close to 0 the

agent will only consider the current reward; contrariwise,

if the factor is close to 1 the agent will try to maximize

the long-term sum of the future rewards.

In this paper, we use the Deep Deterministic Policy Gradient

(DDPG) algorithm, which uses the ideas of Q-learning in a

continuous action domain [12]. It is an actor-critic algorithm

and it uses two neural networks, one for the actor and one

for the critic. The actor is a policy: it produces the action a
given a state s. The critic is the value function: it estimates the

action-value function Q(s, a). The critic estimates the value of

the current policy by Q-learning, so using the rewards from

the environment to improve its estimations. The critic also

provides a loss function to the actor that updates its policy in

a direction that improves the Q value.

B. Formal Verification

Depending on the system to be analyzed and the kind of

properties to be proved, different formalisms are used for their

description, giving also rise to different verification techniques.

One common technique consists in using finite state machines

(e.g., automata) to model the system and temporal logic to

describe the specification or properties. Formulating spec-

ifications in temporal properties is an error-prone task that

requires mathematical expertise. In order to facilitate the task

of specifying formulas in a correct and accurate way, we plan

to use user-friendly notations and approaches, like [13], [14].

In this paper, we use the model-checker UPPAAL [15]

to guarantee that the reward function of the reinforcement

learning algorithm complies with certain requirements. In

UPPAAL the system is modelled as a network of timed

automata [16]. These automata are state machines where nodes

can be labelled with invariants and transitions are labelled with

synchronization primitives, guards, and updates. It also allows

the definition of discrete variables, and in particular, a special

kind of continuous variables called clocks to measure the pass

of time. Synchronization is carried out using channels. There

are two synchronization primitives associated with channels.

For a channel c, we can send information to the channel (c!)
or receive from it (c?). Receiving is a blocking primitive,

therefore the automaton waits until another automaton sends

information to the channel. Guards are Boolean expressions

involving any of the variables of the automaton. Likewise,

using updates we can modify the value of variables of the

automaton. Figure 1 shows an example of a network of two

automata, the labels on the transitions are in the form of

synch/guard/update.

In this network of automata, there is a channel event , and

two integer variables x and reward . Intuitively, the top au-

tomaton models a reward function, and the bottom automaton

the environment in which the reinforcement learning agent is

working. Initially, the automaton at the top is waiting for an

event to occur, since it is in state s0 and both transitions are

labelled with event?. When the bottom automaton—initially

in state s′0—changes state, it sends a message to the channel

event (event !) and updates the value of variable x of the



s0 s1

s′0 s′1

event? / x ≤ 20 / reward := 1

event? / x > 20 / reward := −1

event ! / / x := environment .x

Fig. 1: Example of a network of UPPAAL automata

automaton with the value of variable x in the environment

(x = environment .x). The automaton modelling the reward

function now reads the value of x and depending on whether

it is greater than 20, it gives the agent a positive or a negative

reward.

In UPPAAL, properties to verify are written in Timed

Computational Tree Logic (TCTL) [17]. This logic consists

of the usual propositional logical connectives: ¬, ∧, ∨, ⇒,

and some operators to quantify over the execution paths of

the system and their states. In this paper, we only make use

of the operator AG—Always Globally, or, more formally, for

all execution paths and in all states. The meaning of this

operator is better explained with an example. Consider the

automata above, the following TCTL formula checks that for

all executions paths and all states in the system the value of

reward will always be either -1 and 1,

AG(reward = 1 ∨ reward = −1)

this formula will be satisfied in our model of the reward

function. We can also specify properties of states where some

condition holds. Consider the following property if x goes

above 20 the agent should always get a negative reward. This

property can be expressed as follows:

AG(x > 20 ⇒ reward < 0)

This property only considers the state of the execution paths

where x > 20. Again, it is easy to see that the previous

property is satisfied in the system.

UPPAAL offers the possibility of defining functions that can

be associated with the guard or update fields of the automata.

This is very convenient as the user can specify complex reward

functions in a syntax similar to C and then use the model

checker to verify that the specified properties hold across all

possible input values.

As we show in the following sections, we formalize the

high-level requirements of the reward function in TCTL so that

we can automatically check that our model of the reward func-

tion satisfies them. Nevertheless, there is still a gap between

the model of the reward function and its implementation. We

bridge this gap using runtime enforcement tools.

s0 s1

event / x ≤ 20 / agentReward(1)

event / x > 20 / agentReward(−1)

Fig. 2: Example LARVA automaton

C. Runtime Enforcement

Runtime enforcement is a technique that ensures that the

behaviour of a system—to which we do not have access a

priori, i.e., we can only access the system after it has been

deployed and is running—complies with certain properties.

Runtime monitors are small programs that passively run in

parallel with the system while the enforcers act on the moni-

tored systems. Monitors observe the system and based on their

perceptions, influence the behaviour of the system to guarantee

that some properties are satisfied.

The tool LARVA [18] offers the possibility of defining

runtime monitors using special kind of automata called DATEs

(Dynamic Automata with Timers and Events) [19]. DATEs can

be automatically compiled into an executable Java program.

All elements in a timed automaton can be converted into

a DATE (see Section IV-C for the details), which makes

LARVA an ideal candidate to define (and generate) the mon-

itor for reward function specified using timed automata.

DATEs consist of states and transitions labelled with triples

event/guard/update. The labels on the transitions mean that if

a matching event occurs in the system and the guard—based

on event parameters and the automaton state—holds, then the

update is carried out and the current state of the automaton

updated.

Consider the LARVA automaton1 in Fig. 2. This automaton

is almost identical to the reward function UPPAAL automaton

presented above. There are only two differences: i) event

represents that the transition that will be triggered every time

the monitor observes that the reinforcement learning agent

performed an event; ii) the function agentReward sends the

reward to the reinforcement learning agent, instead of storing

it in a local variable. As in UPPAAL automata, transitions are

triggered if the guards are true.

We translate UPPAAL automata to LARVA (we describe the

details of the translation in Section IV-C) to automatically

generate a Java monitor. This monitor will run in parallel

with the learning agent. LARVA automatically instruments

the monitor and the learning agent so that the monitor can

observe the events that the agent performs and its impact on

the environment. Based on the events and the observation the

monitor will provide the agent with the corresponding reward.

1In what follows we will use both “DATEs” and “LARVA automata” to
refer to the underlying specification language of LARVA.



The reward that the monitor produce is guaranteed to comply

with the high-level requirements of the agent since the monitor

behaves as defined in the UPPAAL automaton which has been

formally verified.

III. REWARD ENGINEERING: STATE OF THE ART

A. Conveying rewards to the agents

Daniel Dewey stated the reward engineering principle [20]

as follows: as reinforcement-learning-based AI systems be-

come more general and autonomous, the design of reward

mechanisms that elicit the desired behaviour becomes both

more important and more difficult.

In reinforcement learning the only way to convey the goal

that the agent has to achieve is the reward signal, which

determines the success of an action’s outcome. The system

designer has to engineer the reward function so that it encodes

the informal objective that he wants the agent to achieve. He

has to translate these goals into a numerical form, rewarding

the agent for acting good and penalizing it for acting bad.

A well-defined reward function has demonstrated to be

successful in several cases such as Atari games [21] and

board games [21]. These examples show that a simple reward

function, such as the score of the game, can teach the agent to

achieve the optimal policy. However, in many tasks the right

reward function is less clear. In more complex domains such

as in automotive, we need more complex functions to produce

the desired behaviour of the agent. For example, let us assume

that we want to make an agent steering a car. Then, imagine

that as reward function we only model the travel time from a

point A to a point B. The agent might take an almost infinite

amount of trials to drive properly, since it will have to try

different combinations of steering, accelerating, and breaking

actions.

When the action domain of the agent is continuous, a

common way to convey the right rewards is to elicit it from

demonstrations of an expert. In methods such as apprenticeship

learning, the reward function is learned from observations [22].

The idea is that we take as given an expert optimal policy and

we determine the underlying reward structure. This problem

is also known as inverse reinforcement learning. The given

policy follows some optimal reward function but there is

no need to articulate it. The agent will derive it by seeing

demonstrations.

Another issue with determining the right reward is that

the agents need an early feedback on the success of their

actions without having to wait for the end of the task. Reward

shaping has been addressing such challenge by providing

guidance to the agent and incorporating prior knowledge in the

reinforcement learning. For example, in potential-based reward

shaping we provide heuristic knowledge by an additional

reward F (s, s′) = γφ(s′) − φ(s) when moving from state

s to s′. Where φ(s) is a potential function associated with the

state s. Prior knowledge can also be encoded directly into the

initial Q-values of the agent, which can be equivalent to shape

the reward by using a potential function [23].

Multiple sources of rewards can also make the reward

function more robust and difficult to hack, as also proposed by

Amodei et al. [24]. The reward signals might be independent,

complementary, or conflicting with each other. When the RL

agent has to deal with multiple reward signals we refer to

Multi-Objective Reinforcement Learning (MORL) [25]. There

are two main categories in MORL depending on the number of

policies to be learned by the agent: single-policy and multiple-

policy approach [26]. In our approach, the RL agent learns a

single policy based on multiple sources of rewards.

B. Unexpected behaviours

The encoding of system goals into a reward function can

lead to unexpected behaviours in the agent, either because

the designer does not include or have the correct information

or because she/he makes mistakes during the design of the

reward function. Amodei et al. [24] point out some of the

major problems in achieving safe and expected behaviours in

machine learning agents, such as avoiding negative side effects

and avoiding reward hacking.

The first problem emerges in large environments when the

designer of the reward function focuses on few aspects of

the environment omitting others. The agent might manage to

achieve the designer’s goal by doing something unrelated or

destructive to parts of the environment that the designer did not

include in the reward function. Basically, the designer should

include constraints to what the agent can and cannot do in the

environment and not only inferring the system goal. However,

in large environments, it might not be possible to identify all

the constraints.

We have talked about how simple reward functions such as

the score of the game can lead the agent to play several ATARI

games. This is not always the case as the agent might simply

learn to maximize the reward function without satisfying the

specifications of the game (reward hacking). For example, in

CoastRunner, a boat race game, a human player understands

that the goal is to finish the race as quickly as possible while

collecting points on the way. The reinforcement learning agent

instead keeps hitting some targets on the way without finishing

the race because it learns that by doing so it can gain a higher

score2. There is a wrong assumption here: the reward function

does not properly reflect the informal goal of the game to finish

the race but rather to simply maximise the score.

Finally, we have a designer that wants the agent to accom-

plish a certain objective. He has to encode the objective as

a reward function and convey it to the agent. We have seen

how this encoding can lead to unexpected behaviour in the

agent, either because the designer does not include or have

the correct information or because he makes mistakes in the

designing of the reward function.

IV. MOVEMO

We propose an approach called MOVEMO to model, verify,

enforce and monitor reward functions. MOVEMO goes in the

2Faulty reward functions https://blog.openai.com/faulty-reward-functions/

https://blog.openai.com/faulty-reward-functions/
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Fig. 3: Proposed approach: MOVEMO

direction of carefully engineering complex reward functions

by using formal methods combined with the use of multiple

reward signals. Our approach is shown in Figure 3 and consists

of four main steps:

1) The designer graphically models different goals that want

the system to achieve as state machines using UPPAAL,

hence creating a reward model.

2) The designer expresses the requirements of its reward

function in terms of TCTL properties. UPPAAL auto-

matically verifies that the properties hold in the reward

model across all possible inputs that the environment

could issue.

3) The reward model is automatically translated into a

LARVA model preserving the original behaviour. This

model interacts with the RL agent at runtime issuing

rewards.

4) The LARVA model also serves the purpose of monitoring

the behaviour of the RL agent.

A. Step 1: From requirements to reward function

Traditional software development cycle starts with the def-

inition of high-level requirements of the system that are then

broken down into smaller objectives that have to be achieved

by the individual components. Goal-oriented approaches can

be helpful in refining high-level functional requirements into

operational goals and non-functional requirements in system

invariants [27], [28], [29].

In this phase, after an initial elicitation of the high-level

goals to be conveyed to the agent, the designer models them

as automata in UPPAAL. Each goal is represented by a separate

automaton whose states encode a configuration of the agent

in the environment. A reward function is associated with each

state.

At all times, the state of the agent resolves in multiple states

in the monitor, one state for each automaton. Each state is

issuing a reward proportional to how distant is the agent to

the goal modelled in the automata. We compute a single scalar

value from all individual rewards that we then feed to the agent

as in the standard reinforcement learning framework.

B. Step 2: Verifying the requirement

The designer expresses the reward function requirements

in terms of TCTL properties. Furthermore, all the environ-

ment variables that interact with the reward model have to

be expressed as simple automata that can produce values

within a certain range. UPPAAL can then formally verify the

compliance of the reward model with the properties expressed

by the designer.

In case any of the properties is not verified, UPPAAL

will show a counterexample. The designer is then able to

understand in which case its reward function does not hold

the specified property. This is a very useful feature that allows

the designer to go back and iterate on the reward model until

she/he is satisfied with the result.

C. Step3: Enforcing the reward function

To enforce the reward function we convert the UPPAAL

model into a LARVA monitor. To do so, we have established

mapping rules between UPPAAL and LARVA automata. More

specifically:

• Channels in UPPAAL automata become event listeners in

LARVA. In UPPAAL the reward model sync with the en-

vironment model. In LARVA the events are automatically

fired from the real or simulated environment values.

• Guards on the transitions of UPPAAL automata are di-

rectly mapped as guards in LARVA automata.

• Updates in UPPAAL are also mapped directly to updates

in LARVA, which can be associated with actions such

as the execution of an arbitrary program. This trans-

formation also requires defining the same variables in

both automata. For example, the variable associated with

the rewards in UPPAAL are converted into equivalent

variables in larva that are then updated and sent to the

RL agent as part of a LARVA update.

• Clocks in UPPAAL become timers in LARVA.

Following the previous steps, the UPPAAL model is auto-

matically translated into a LARVA DATE that issues rewards

to the RL agent at runtime.

The LARVA model encapsulates all the states in which the

agent can be at any time in the environment. This model can

also be used to monitor the agent behaviour. At the moment

the model only collects data on which state the agent visits and

issues a reward for each state. However, having a model that

encapsulates the possible behaviours of the system into states

can serve the purpose of preventing the agent to reach bad

states. We are currently exploiting such aspects of preventive

monitoring.



V. AUTONOMOUS DRIVING WITH TORCS

In order to validate our approach, we have used The Open

Racing Car Simulator (TORCS) [9] to simulate an environ-

ment where a RL agent can apply its action and learn how to

drive. We have used the DDPG algorithm [12] as the decision-

making policy of the agent. We have extended an existing

implementation [30] of the DDPG in order to support external

rewards coming from the LARVA model. We have encapsulated

all the software platform in a docker image so that it is very

easy to build a reward function, lunch a simulation and collect

the results [10].

The RL agent uses the following signals from the simulation

environment:

• TrackPos: Distance between the car and the track axis.

• Track: Vector of 19 range finder sensors around the

vehicle. Each sensor returns the distance between the

track edge and the car within a range of 200 meters.

• Opponents: Vector of 36 sensors around the vehicle. Each

sensor returns the distance of the closest opponent within

200 meters range.

• Damage: Current damage of the vehicle, the higher is the

value the higher is the damage.

• Angle: Angle between the car direction and the track axis

• SpeedX: Speed of the car along its longitudinal axis.

Based on the above observations the RL agent can apply

the following actions:

• Steering: The steering value can be between −1 (full left)

and 1 (full right).

• Accelerating: The value of the virtual gas pedal can be

between 0 (no gas) and 1 (full gas).

• Breaking: The value of the virtual break pedal can be

between 0 (no break) and 1 (full break).

A. Conveying the goals to the agent

Each state provides a reward value that should reflect how

much the agent is compliant with the goal associated with the

automata that the state belongs to. The reward value can be a

simple scalar or it can come from a complex function. Below

we describe the goals we have modelled.

1) Staying in the middle of the lane: This goal corresponds

to try to keep the value of TrackPos equal to zero. We have

modelled 4 states in which the vehicle can be: CenterRoad,

LimitRoad, RightOffRoad, LeftOffRoad according

to the position of the vehicle on the road. In each state the

reward function is proportional to the error with TrackPos.

Each state has additional rewards according to how far the car

is from the centre. Furthermore, we take into consideration

the previous action taken by the agent, penalizing it more if

it keeps steering towards the wrong direction.

2) Keeping a certain speed: We want the agent to keep a

constant speed of 100 Km/h, slowing down when approach-

ing a curve. For this goal we have modelled 3 states in

UPPAAL, according to the state of the vehicle in the road:

GoingStraight and Curve. The reward, when there are

no curves ahead of the vehicle, is proportional to the error

related to the goal of keeping the speed at 100Km/h. In order

to detect if a curve is in front of the car, we have used the

19 range finder sensors around the vehicle (Track) to build a

function that is used in the guard to transit to the state Curve.

Since we want to stimulate the car to slow down when a curve

is detected, the reward function of this state is proportional to

the error of a lower speed than the goal speed of 100 Km/h.

3) Avoid damages: We have modeled this goal in two

states: Damage and Normal. The reward function penalizes

the agent by a constant value every time it receives a damage,

this can happen by hitting other vehicles or going off-track.

4) Avoid getting stuck: When the LARVA monitor detects

that the vehicle keeps going at a very slow speed for a while,

it might be because the vehicle is in a state where is trying

actions but it is physically blocked by the limit of the road.

We have modelled this situation in a Stuck state where the

agent gets penalized if it stops going forward. At the same

time, it is also encouraged to try hard steering manoeuvres

that can get it out of this state.

5) Avoid other vehicles: When racing with other cars we

want to avoid collisions with the other vehicles. We have split

this goal into four UPPAAL automata with the purpose of

detecting the presence of other vehicles in the four sides of the

car: Ahead, Behind, Left, Right. Each automaton is composed

of several states according to how distant are the other cars to

the side of the vehicle, a reward function is assigned to each

of these states penalizing the agent for being close to other

cars.

Furthermore, in the presence of other vehicles, staying in

the middle might not always be the best policy. The RL agent

might want to overtake or simply avoid collisions with other

vehicles by going to the right or to the left of the road. This is

why, when other vehicles are racing, we update the TrackPos
goal according to which side of the road is free to drive. For

example, if a car is detected on the right side, we reward the

agent for driving to the left side, and so on. This is directly

encoded in the UPPAAL model so we do not need to re-run

the verification of the properties.

B. Verifying properties

Combining multiple sources of rewards, each contributing

with complex functions, will create a big reward model

with many states. As we have chosen UPPAAL as modelling

environment, we can verify that the properties hold across all

possible states of the system.

We have only modeled the signals that the reward model

uses to compute the reward such as TrakcPos, SpeedX,

Angle, Damage. After discretizing each signal with a step

value and a range with a lower and upper bound, we are able

to run simulations in UPPAAL and verify that the properties

that we specify hold across all possible states. In our example,

we have modelled 6 automata with a total of 21 states.

We have verified several high-level design goals that helped

us fixing mistakes or bugs in the reward functions that we

have encoded in UPPAAL. Though we could have assigned any

value as a reward, in our model we have assigned only positive
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Fig. 4: Some of the monitored values from one of the simulations in TORCS. The red lines are the goals inferred by the

UPPAAL reward model.

values to states of the system that are good and negative values

when it deviates from the goal of the system. In the following,

we describe two examples of TCTL properties that we have

verified in the reward model for TORCS.

1) If the deviation from the speed goal is more than 10 km/h,

the reward associated with the speed should be negative:

AG((Speed .goingStraight) ∧

(goalSpeedStraight − speedX > 10)

=⇒ speedX reward < 0)

where Speed is the automaton connected to the speed goal and

it is in the state GoingStraight, where there are no curves

ahead of the car. goalSpeedStraight and speedX are two

variables representing respectively the target speed for when

the road ahead is straight and the current speed of the vehicle.

2) If the vehicle is proceeding in the centre of the road, it

has no damage and with a speed less than 10Km/s from the

goal speed, then the overall reward should be positive:

AG(TrackPos .centerRoad ∧ Speed .goingStraight ∧

Damage.no ∧ (speederror < 10) ∧

(goalSpeedStraight − speedX > 10)

=⇒ combined reward > 0)

In this case we take in consideration three goal models

TrackPos, Speed, Damage and we verify that the combi-

nation of all their rewards is positive.

C. Results

We have compared our UPPAAL reward model (URM) with

the reward function proposed in [30] that has already been

shown to be an improvement of the original reward function

proposed by Google in [12]. We will refer to this function

as BRF (benchmark reward function) and it is expressed as

follows:

Rt = Vx ∗ cos(θ) − Vxsin(θ)− Vx ∗ |TrackPos|

Where Vx is the vector representing the car velocity, and

θ is the angle between Vx and the track axis. The above

reward function aims to maximize the longitudinal velocity

(first term), minimize transverse velocity (second term) while

Without opponents With opponents
BRF URM BRF URM

Time (h) 3.4 2.1 13.1 12.0
Episodes (#) 302.8 146.2 1312.7 925.7

Center (%) 60.9 83.6 47.3 61.4
Stuck (%) 5.3 4.6 29.7 37.2

TABLE I: Average results of the Uppaal Reward Model

(URM) compared with a Benchmark Reward Function (BRF).

penalizing the agent if it deviates from the center of the road

(third term).

The results show that the agent learns much faster by

using reward functions produced through our approach. Table I

shows the average results of 100 iterations. In order to

complete one iteration, the agent must learn how to drive on

the track and complete 20 laps. An episode of the algorithm

ends when the vehicle is perpendicular to the track axis.

The first two columns are the results when the car is racing

without opponents while the last two columns are the results

with other vehicle racing together. Table I shows the values

of Time (in hours) and the number of episodes to complete

20 laps. Furthermore, we see the percentage the agent stayed

in the state Center of the road (the higher the better) and

how much it got the state Stuck . We see that with the

UPPAAL reward function it achieves its goal faster and with

less number of episodes than the simple python function. The

agent performs quite well when there are no other cars on

the track, but not that good when racing with other vehicles.

Dealing with opponents is a more complicated problem and

we believe the reward function can be further improved.

Figure 4 shows some of the monitored values i.e.

TrackPos, SpeedX, Damage of one iteration of the agent

using the UPPAAL reward model. The red lines indicate the

goals set in the UPPAAL model for each value: stay close to

the centre of the road, keep a speed of 100 Km/h and avoid

damages. We can see that the agent starts with a random be-

haviour, receiving a lot of damages and continuously changing

speed as it learns the goals by trial and error. The green line

indicates the point when the agent has learned the goals and

continues going at the desired speed while avoiding damages

and staying more or less in the middle of the road.



VI. CONCLUSION AND FUTURE WORK

We have presented a framework in which one can model

reward functions for reinforcement learning agents as state

machines. This framework allows us to verify properties of

the reward function at design-time. We have also formalised

and implemented an automatic mapping between the design-

time model of the reward function and its implementation that

is actually exploited by the agent at runtime. Our results show

that, by building more complex and robust reward functions,

the agent can learn faster to achieve its goal.

This work is a first step toward the engineering of the

reward function. This can help the designer eliciting the

requirements in terms of goals to be achieved by the agent

as well as to identify the possible uncertainties due to, e.g.

the unpredictability of the environment.

The reward model can also be used to monitor the behaviour

of the RL agent at runtime. As future work, we envision

to use such monitor as a safety envelope for the agent. By

doing preventive monitoring we can detect anomalies in the

behaviour of the agent and prevent potentially dangerous

actions to be executed on the environment.
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[9] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, “Torcs, the open racing car simulator,” Software available
at http://torcs. sourceforge. net, 2000.

[10] TORCS-LARVA Docker Image., https://hub.docker.com/r/pmallozzi/rl -
monitor/ [Accessed: 2017-12-18].

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[13] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620–638, July 2015.

[14] M. Autili, P. Inverardi, and P. Pelliccione, “Graphical scenarios for
specifying temporal properties: an automated approach,” Automated
Software Engg., vol. 14, no. 3, pp. 293–340, Sep. 2007. [Online].
Available: http://dx.doi.org/10.1007/s10515-007-0012-6

[15] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL

— a Tool Suite for Automatic Verification of Real–Time Systems,” in
Proc. of Workshop on Verification and Control of Hybrid Systems III,
ser. LNCS, no. 1066. Springer–Verlag, October 1995, pp. 232–243.

[16] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, pp. 183–235, 1994.

[17] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking in dense
real-time,” Inf. Comput., vol. 104, no. 1, pp. 2–34, 1993. [Online].
Available: https://doi.org/10.1006/inco.1993.1024

[18] C. Colombo, G. J. Pace, and G. Schneider, “LARVA — Safer Monitoring
of Real-Time Java Programs (Tool Paper),” in 7th IEEE International
Conference on Software Engineering and Formal Methods (SEFM’09),
2009, pp. 33–37.

[19] ——, “Dynamic event-based runtime monitoring of real-time and con-
textual properties,” in International Workshop on Formal Methods for
Industrial Critical Systems. Springer, 2008, pp. 135–149.

[20] D. Dewey, “Reinforcement Learning and the Reward Engineering Prin-
ciple,” pp. 1–8.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv preprint arXiv: . . . , pp. 1–9, 2013. [Online]. Available:
http://arxiv.org/abs/1312.5602

[22] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[23] E. Wiewiora, “Potential-based shaping and q-value initialization are
equivalent,” Journal of Artificial Intelligence Research, vol. 19, pp. 205–
208, 2003.

[24] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
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