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Abstract

Even though many attempts have been made to define the boundary between
decidable and undecidable hybrid systems, the affair is far from being resolved.
More and more low dimensional systems are being shown to be undecidable
with respect to reachability, and many open problems in between are being
discovered. In this paper, we present various two dimensional hybrid systems
for which the reachability problem is undecidable. We show their undecidability
by simulating Minsky machines. Their proximity to the decidability frontier is
understood by inspecting the most parsimonious constraints necessary to make
reachability over these automata decidable. We also show that for other two
dimensional systems, the reachability question remains unanswered, by proving
that it is as hard as the reachability problem for piecewise affine maps on the
real line, which is a well known open problem.
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1. Introduction

Hybrid automata (HA) constitute a formalism for capturing the behavior of
hybrid systems that have both continuous and discrete dynamics. Hybrid au-
tomata, which can have discrete transitions between states and continuous flows
within states, are a class of immense computational power. Analyzability can be
guaranteed only on a class satisfying certain additional constraints limiting the
number of variables (dimensions) and the nature of the dynamical evolution.
Two kinds of questions are addressed in the literature concerning the analysis
of hybrid systems. This first one is reachability : “Is a certain final state (set of
states) reachable from a certain initial state (set of states)?”. The second line of
research addresses questions like stability and attraction. In this article, we only
focus on studying whether we can always answer any reachability question over
any hybrid automaton that satisfies certain constraints, i.e., on understanding
when reachability becomes decidable.
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Despite the increasing interest in discovering new decidability results for HA
(relevance to safety verification), there is still no clear boundary between what
is decidable and what is not in such systems. HA easily become undecidable
for the reachability query, with only extremely stringent restrictions leading to
decidability.

In this paper, we aim at answering the question “What is the simplest class
of hybrid systems for which reachability is undecidable?”. Conventional answers
to this question have involved proving that a certain decidable class becomes
undecidable, when given some additional computational power. By following
this reasoning, we provide some undecidability results, as well as proofs that for
many subclasses of hybrid systems, the decidability status of the reachability
question is unknown. In what concerns undecidability proofs, we will observe
that the famously undecidable “halting problem” (or state-to-state reachability)
of (two-counter) Minsky machines [1] can be naturally expressed as a reachabil-
ity query over configuration space. A very important application of this result
is that reachability can be proven to be undecidable for any class of automata
that can simulate this two counter Minsky machine. Finite one dimensional
piecewise affine maps (1-dim PAMs), for which the decidability of reachability
is still an open question [2, 3], play a crucial role in the results we will present
in this paper, as they will be our reference model to show the openness of the
reachability query.

We proceed by focussing on a version of Linear Hybrid Automata [4], namely
the two dimensional Hierarchical Piecewise Constant Derivative (2-dim HPCD)
class introduced in [5, 6]. This is an intermediate class, between decidable two
dimensional Piecewise Constant Derivative systems (2-dim PCDs) [7] and its
undecidable three dimensional extension 3-dim PCDs [8]. Asarin and Schneider
[5] proved that 2-dim HPCDs are equivalent to 1-dim PAMs, thus showing that
HPCD-reachability is open. Moreover, when endowed with a little additional
computational power, the 2-dim HPCD class becomes undecidable. Thus, the
2-dim HPCD class (and equivalently the 1-dim PAM class) is clearly on the
boundary between decidable and undecidable HA subclasses. Subsequently,
Mysore and Pnueli [9] pursued the following questions: (1) Is there a class,
simpler than the 2-dim HPCD class, which can be shown to be equivalent to
1-dim PAMs? (2) Are there alternative extensions of the 2-dim HPCD class
which become undecidable? (3) Can an approximate reachability algorithm be
developed for the undecidable classes?

This article is an extended and revised version of the papers [5] and [9]. We
introduce hydrid automata with one, two or three dimensions that span the
boundary between decidability and undecidability for the reachability problem.
The main results of our work are summarized in Fig. 1; the details of the class
definitions (and the acronyms) will be presented in the technical sections of this
paper.

In section 2, we introduce the necessary background. In section 3, we show
that the reachability problem for 2-dim HPCDs, PCDs on manifolds, 2-dim
PCDs with translational resets and some other classes of 2-dimensional systems
is as hard as the reachability problem for 1-dim PAMs. In section 4, we show
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Figure 1: Decidable, open and undecidable subclasses of hybrid systems (unstarred results
are contributions of this paper).

that slight extensions of the 2-dim HPCD class lead to the undecidability of
the reachability question. We present a partially correct but not necessarily
terminating algorithm for testing reachability in 1-dim PAMs, and show how
decidable subclasses can be identified in section 5. In section 6, we present
related work, and we conclude in the last section.

2. Preliminaries

In this section we define several classes of hybrid automata, two dimensional
manifolds, and our reference models: PAMs and Minsky machines.

2.1. Hybrid Automata

There are many equivalent definitions of hybrid systems [10, 4, 11]. Con-
ceptually, a hybrid automaton is a directed graph of discrete states and tran-
sitions, augmented with several real-valued continuous variables, which allows
arbitrary: (1) Invariant expressions dictating when (for which values of vari-
ables) the system can stay in each discrete state; (2) Differential equations in the
flow expressions in each discrete state (continuous evolution of variables with
time); (3) Conditions controlling when a transition can be taken, in the guard
expressions; (4) Equations that change the values of the variables, in the reset
expressions during each discrete state transition (instantaneous discrete evolu-
tion). A computation of a hybrid automaton is a series of continuous evolution
steps of arbitrary time-length each, interspersed with an arbitrary number of
zero time-length discrete transition steps.

Definition 2.1. An n-dimensional hybrid automaton is a tuple H = (X , Q, f, I0,
Inv, δ) where

• X ⊆ Rn is the continuous state space. Elements of X are written as
x = (x1, x2, . . . , xn), we always use variables x1, x2, . . . , xn to denote com-
ponents of the state vector;
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• Q is a finite set of discrete locations;

• f : Q→ (X → Rn) assigns a continuous vector field on X to each discrete
location. While in discrete location ` ∈ Q, the evolution of the continuous
variables is governed by the differential equation1 ẋ = f`(x). We say that
the differential equation defines the dynamics of location `;

• The initial condition I0 : Q→ 2X is a function that for each state defines
the initial values of the variables of X ;

• The invariant or staying conditions Inv : Q → 2X , Inv(`) is the condi-
tion that must be satisfied by the continuous variables in order to stay in
location ` ∈ Q;

• δ is a set of transitions of the form tr = (`, g, γ, `′) with `, `′ ∈ Q. Such a
quadruple means that a transition from ` to `′ can be taken whenever the
guard g ⊂ X is satisfied and then the reset relation γ ⊂ X ×X is applied.

2

A hybrid automaton is said to be deterministic if for every location ` and
any initial condition x0 ∈ I0, there exists at most one solution to the equation
ẋ = f`(x), and if for any location, the guards of all the outgoing discrete tran-
sitions are mutually exclusive. We consider only deterministic systems unless
the contrary be specified.

A state is a pair (`,x) consisting of a location ` ∈ Q and x ∈ X , and
can change: (1) by a discrete instantaneous transition that changes both the
location and the values of the variables according to the transition relation; or
(2) by a time delay that changes only the values of the variables according to
the dynamics of the current location. The system may stay at a location only
if the invariant is true, and must take a transition before it becomes false.

A trajectory of a hybrid automatonH is a function Θ : [0, T ]→ Q×X , Θ(t) =
(`(t), ξ(t)) such that there exists a sequence of times t0 = 0 < t1 < . . . < tn = T
for which the following holds for each 1 ≤ i ≤ n: (1) ` is constant on [ti, ti+1)
(with value `i) and ξ is derivable on (ti, ti+1), it is right continuous and with left
limits everywhere (cadlag); (2) There is a transition (`(ti), g, γ, `(ti+1)) ∈ δ such
that ξ−(ti+1) ∈ g(`i, `i+1) and (ξ−(ti+1), ξ(ti+1)) ∈ γ;2 (3) For any 0 ≤ i ≤ n,
for any t ∈ (ti, ti+1), ξ̇(t) = fl(t)(ξ(t)).

2.2. Rectangular and Linear Hybrid Automata

Consider an n-dim hybrid automaton H with V = {x1, x2, . . . , xn} being the
set of n variables. Subclasses of hybrid automata will be defined by syntactic
conditions on expressions defining their ingredients (section 2.1).

A hybrid automatonH is linear (LHA) [10, 4] if: (1) The initial and invariant
conditions as well as the guards and the reset relations are Boolean combinations

1Sometimes we will also consider differential inclusions.
2ξ−(t) is the left limit of ξ at t.
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ẋ = a2
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Figure 2: (a) A simple PCD; (b) Its corresponding hybrid automaton.

of linear inequalities; (2) The dynamics are defined by differential equations of
the form ẋ = kx, one for each variable x ∈ V, where kx ∈ Q is a rational
constant. We say that kx is the slope (or rate) of the variable x.

We say that a variable x is a memory cell if it has slope 0 in every location
of H. A variable x is a clock if it has slope 1 in every location.

An n-dimensional rectangle R =
∏

1≤i≤n Ii is the product of n intervals
Ii ⊆ R of the real line with rational or infinite extremities.

A rectangular constraint refers to an expression of the form x ∈ R, while a
non-rectangular or comparative constraint is a conjunction of inequalities x ·c <
b. State invariants are said to be non-overlapping if the regions they represent
in Rn have disjoint interiors. A constant reset refers to x′ = c, a translational
reset refers to x′ = x + b and an affine reset to x′ = Ax + b.

A hybrid automaton is a rectangular automaton [4, 12, 13] if: (1) All initial
conditions, invariants and guards are rectangles; (2) For each location `, the
dynamics has the form ẋ ∈ R`, where R` is a rectangle; (3) Reset relations are
conjunctions of constraints xi ∈ Ii ∧ x′i ∈ I ′i for some variables xi, i ∈ ρ, and
x′i = xi, i 6∈ ρ for others. In an initialized rectangular automaton, whenever the
slope of xi changes after a transition, the variable xi is reset (i.e., i ∈ ρ).

Finally, in the updatable timed automata [14] parameterized by a class of
updates C, all the variables are clocks (i.e., their slopes equal 1), the guards
and the invariants are rectangular, and the resets belong to C.

2.3. Piecewise Constant Derivative System (PCD)

We now recall PCDs, a class of hybrid systems for which the dynamics is
defined by constant derivatives, such that the trajectories are continuous. A
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2-dim PCD3 is a hybrid automaton in two continuous variables, where: (1) All
flow-derivatives are constants; (2) The discrete states (with their invariants)
correspond to non-overlapping polygons in the real plane with non-empty inte-
riors; (3) The guards correspond to boundaries between these polygons; (4) No
variable can be reset during transitions, i.e., γ is an identity relation.

Definition 2.2. A piecewise constant derivative system (PCD) [8, 7] is a pair
H = (P,F) with P = {Ps}s∈S a finite family of non-overlapping convex polygonal
sets in R2 with non-empty interiors, and F = {cs}s∈S a family of vectors in R2.
The dynamics are determined by the equation ẋ = cs for x ∈ Ps. 2

We define the support set of a PCD H to be the union of all the underlying
convex polygons of the PCD, i.e., SuppPCD(H) = ∪s∈SPs.

A well known technique for planar differential equations, and in particular for
PCDs, is to replace the analysis of those systems by the analysis of edge-to-edge
discrete successors [8, 15, 7] (also known as Poincaré map [16]). Given an edge e,
each point on e can be represented by a local one dimensional coordinate. A one-
step edge-to-edge successor in such coordinates can be written as Succe′(x) =
ax + b. In general, an n-step successor for a given sequence of edges σ =
e1, e2, . . . , en is again a function of the above form (also see [8]).

A hybrid automaton trajectory in some interval [0, T ] ⊆ R, with initial condi-
tion x = x0, can be defined as a continuous and almost-everywhere (everywhere
except on a discrete set of points) derivable function ξ(·) such that ξ(0) = x0

and for all t ∈ (0, T ) if ξ(t) ∈ int(Ps)
4 then ξ̇(t) is defined and ξ̇(t) = cs.

Effectively, the trajectories of a PCD are restricted to be broken straight
lines, with slopes changing only when a different polygonal region (new discrete
state) is entered. Unlike other hybrid models, no discontinuous discrete jumps
(resets) are allowed in PCDs. This constraint implies that PCD trajectories are
continuous lines, which makes them more suitable for topological and geomet-
rical analysis. The PCD restriction was motivated by one of the fundamental
properties of planar systems: the evolution of a point in a plane with fixed
slopes (flow) at each point, can only trace out a kind of contracting or expand-
ing spiral, if not a simple finite cycle. Maler and Pnueli [7] used this property
to prove that reachability is decidable for 2-dim PCDs.

Notice that PCDs can be viewed as linear hybrid automata without resets
(i.e., with identity reset relations), such that the locations `s correspond to
regions Ps; in each location `s the invariant condition is given by the polygon
itself: Inv = Ps; the dynamics in `s is given by ẋ = c; and the guard associated
to a transition from `s to `k is the common edge of Ps and Pk. In Fig. 2, a
simple PCD and its corresponding hybrid automaton are shown.

3If the dimension is not explicitly mentioned, in what follows “PCD” will stand for a 2-dim
PCD.

4int(Ps) is the interior of Ps.
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Figure 3: Representations of a Torus: (a) A surface in R3; (b) A square with identified edges;
(c) A triangulated surface.

2.4. Two Dimensional Manifolds

All the (topological) definitions, examples and results of this section are done
using the combinatorial method and follow [17].

A topological space is triangulable if obtained from a set of triangles by the
identification of edges (including their vertices) and vertices, where any two
triangles are identified either along a single edge or at a single vertex, or are
completely disjoint. The identification should be done via an affine bijection.

Definition 2.3. A surface (or 2-dim manifold) is a triangulable space for which
in addition: (1) Each edge is identified with exactly one other edge; and (2) The
triangles identified at each vertex can always be arranged in a cycle T1, . . . , Tk, T1
so that adjacent triangles are identified along an edge. 2

Typical examples are the sphere, the torus (see Fig. 3) and the Klein’s bottle.
A surface with boundary is a topological space obtained by identifying edges

and vertices of a set of triangles as for surfaces except that certain edges may
not be identified with another edge. These edges, which violate the definition
of a surface, are called boundary edges, and their vertices, which also violate the
definition of surface, are called boundary vertices. Typical examples of surfaces
with boundary are the cylinder and the Möbius strip. Indeed, the cylinder is
equivalent to a sphere with two disks cut out, while, a bit less intuitively, the
Möbius strip can be seen as a projective plane with a disk removed.

We state now an important theorem in the topological theory of surfaces:

Theorem 2.4 ([17]). • Every compact, connected surface is topologically
equivalent to a sphere, or a connected sum of tori, or a connected sum of
projective planes.

• Every compact, connected surface with boundary is equivalent to either a
sphere, or a connected sum of tori, or a connected sum of projective planes,
in any case with some finite number of disks removed. 2
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We will use this theorem without the connectedness assumption. In this case,
a manifold is just a finite collection of connected manifolds described above.

2.5. Our Reference Models

In this section, we define one dimensional piecewise affine maps (PAMs) [3,
2, 18] and recall the definition of Minsky machine model of computation [19].

2.5.1. Piecewise Affine Map (PAM)

A (rational) interval is a subset of R of one of the following forms:

[a, b]; [a, b); (a, b]; (a, b); (−∞, b]; (−∞, b); [a,∞); (a,∞)

with rationals a ≤ b.

Definition 2.5. We say that f : R → R is a one dimensional piecewise affine
map (1-dim PAM) whenever f is of the form f(x) = aix+ bi for x ∈ Ii, where
Ii ⊂ R is a finite family of disjoint (rational) intervals. The extremities of
intervals Ii are referred to as vertices of the 1-dim PAM and their finite set is
denoted Vf . 2

Note that the above definition (and related concepts) may be extended to any
dimension. As we are mostly concerned with 1-dim PAMs in the rest of paper,
we will write PAM to refer to 1-dim PAM, and explicitly state the dimension
whenever we need to refer to higher dimensional PAMs.

Definition 2.6. We say that a PAM is bounded if none of its intervals is
infinite. 2

A trajectory of a PAM is a sequence (finite or infinite) x1, x2, . . . such that
xn+1 = f(xn) for all n. We say that y is reachable from x whenever there exists
a finite trajectory starting at x and arriving to y.

The reachability problem for PAMs REACHPAM can be defined as:

Problem 2.7. Given a PAM A, is point y reachable from point x?

Even for a function f with just two linear pieces, there is no known decision
algorithm for REACHPAM . The problem becomes undecidable for 2-dim PAMs,
and open for dimension 1 when piecewise affine maps are replaced by polyno-
mials [3, 2, 18]. It is also known that reachability by iteration of elementary
functions on R, such as compositions of sines and cosines, is undecidable [20].

2.5.2. Minsky Machine

We recall the definition of the Minsky machine (or, two-counter machine),
a computational model, equivalent (with a slowdown) to a Turing machine.

Definition 2.8. A Minsky machine (MM) consists of:

• Two unbounded registers, m,n, each containing one natural number;
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• A list of numbered instructions.

In a Minsky machine, only three kinds of instructions are possible:

1. Increment: given a register and an instruction number, increment the reg-
ister value, and jump to the specified instruction number;

2. Decrement: given a register and an instruction number, decrement the
register value5, and jump to the specified instruction number;

3. Test: given a register and two instruction numbers, jump to the first in-
struction number if the register value is zero and jump to the second in-
struction number if the register value is positive.

4. Halt. 2

A configuration of a Minsky Machine is a triple (q,m, n), where q is the
current instruction and m and n stand for the contents of the two counters.
The halting problem over Minsky machines HaltMM is a well known undecid-
able problem: Given the description of a Minsky machine M and its initial
configuration (q,m, n), will M eventually halt? The reachability problem can
be phrased over MM configuration space as: Given a Minsky machine M, will
configuration (q′,m′, n′) be reachable from configuration (q,m, n)? The halting
problem can be trivially posed as a reachability query, where the initial state
q stands for the first instruction, with m and n being the allowed initial values
of the counters, and the state q′ represents the finite set of all Halt instruction
numbers, with no restrictions on the final counter values m′ and n′.

On the Notion of Simulation

Proving that two systems are equivalent requires showing that each simulates
the other. Even though the idea of simulation (abstraction or realization) is ac-
cepted in the Computer Science community to mean “machines that perform
the same computation” [21, 22, 19], in dynamical systems, simulation is cap-
tured by the notions of topological equivalence and homomorphism [23, 24, 25].
Defining a general notion of simulation for systems combining discrete and con-
tinuous dynamics is not easy. Some ad hoc definitions (sufficient for decidability
analysis) have been presented in [26, 27, 28]; in particular the work presented
in [8] provides a notion of simulation for PCDs. In the following sections, every
time we establish that a system A simulates another system B in some ad hoc
sense, we make sure that it provides a reduction from the reachability problem
for A to the reachability for B; hence if reachability is undecidable for B, then
it must be so for A.

3. Between Decidability and Undecidability

We show that for several natural classes of 2-dimensional hybrid systems,
the reachability problem is as hard as for 1-dim PAMs, and hence, open.

5An attempt to decrement 0 produces an error.
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3.1. Hierarchical Piecewise Constant Derivative System (HPCD)

Hierarchical piecewise constant derivative systems can be seen as hybrid
automata where the dynamics at each location is given by a PCD.

Definition 3.1. A hierarchical piecewise constant derivative system is a hybrid
automaton HPCD = (X , Q, f, I0, Inv, δ) such that Q and I0 are as before while
the dynamics at each ` ∈ Q is a PCD and each transition tr = (`, g, γ, `′) is
such that: (1) Its guard g is a line segment in R2; and (2) The reset relation
γ corresponds to an affine function: x′ = γ(x) = Ax + b. The Inv for a state
is defined to be the support set, SuppPCD(H) minus the guards of the outgoing
transitions. If all the PCDs are bounded, then HPCD is said to be bounded. 2

Coefficients in the (in-)equations of the ingredients are assumed to be ratio-
nal.

We introduce a 1-dim coordinate system on each edge e of the polygonal
region in every PCD, and on every guard g of the HPCD. We denote a point
with local coordinates x on edge e by (e, x), or whenever unambiguous, just as
x.

It can be argued that the term hierarchical in the above definition is super-
fluous and that in fact HPCDs are equivalent to two dimensional linear hybrid
automata. The definition is intended to emphasize the fact that the trajectory
behaves mostly like a PCD, with a few reset induced discontinuities. The HPCD
reachability problem REACHHPCD can be defined as:

Problem 3.2. Given a HPCD H, is the state (`f ,xf ) reachable from (`0,x0)?

To prove its openness, we will show that each HPCD H can be simulated
by a PAM A, and that there is a HPCD H that simulates A. For proving the
first, we should: (1) Encode an initial and final point of H by points on some
intervals of A; (2) Represent a configuration of H by a configuration of A; (3)
Simulate an edge-to-edge transition of H by some function application on A.

Lemma 3.3 (PAMs simulate HPCDs). Every bounded HPCD H can be sim-
ulated by a PAM.
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Proof: We arrange all the edges of H in the real line (in an arbitrary order)
and we represent each edge-to-edge successor function and each reset function
by an affine map (restricted to an interval). Assembling all those affine maps
together yields the PAM A simulating H (see Fig. 4).

Let H be a HPCD and PCDi the PCD of location `i. We encode each
region of PCDi by parts of a PAM A. Let e0 be an input edge of region R and
e1, · · · , ek be output edges of R and reachable from e0 by the one-step successor
Succe0ei(λ) = aiλ + bi (1 ≤ i ≤ k) (see Fig. 4). We partition edge e0 into
intervals I1, · · · Ik in the following way: Ii = Pree0ei(ei). Suppose that each
edge ei (0 ≤ i ≤ k) has local coordinates ranging from 0 to di. We dispose
sequentially all the edges of R in the positive real line, starting for example at
position p, i.e., ei = (li, ui] with l0 = p, u0 = p + d0 and for all 1 ≤ i ≤ k,
li = ui−1 and ui = li + di. Hence, a point on edge ei with local coordinates λ
will be situated on the real line R in position li + λ (see Fig. 4). We proceed in
the same way for the other regions of PCDi.

Let Succeiej (λ) = aiλ+ bi be a one-step successor, we define a function f as
follows:

f(z) = Aiz +Bi if z ∈ Ii
where Ai = ai and Bi = bi + lj − aili

We show now that for λ0 ∈ ei and λf ∈ ej , Succeiej (λ0) = λf iff zf = f(z0).
Let Succeiej (λ0) = λf = aiλ0 + bi such that λ0 and λf have coordinates z0 =
li + λ0 and zf = lj + λf on R. Thus

λf = aiλ0 + bi iff zf − lj = ai(z0 − li) + bi
iff zf = aiz0 + (bi + lj − aili)
iff zf = Aiz0 +Bi

iff zf = f(z0).

We have then constructed a function f for each one-step successor. The
PAM A corresponding to the PCD of location `i is defined then as the function
that consists of the body of all the functions f above. Up to now we have
encoded just a simple PCD, it remains to encode the jumps from location `i to
location `j in order to simulate a HPCD by a PAM. This is done in the same
way as before, since the reset are edge-to-edge affine functions.

From the above results we have that Reach(H,x0,xf ) iff Reach(A, z0, zf ).
2

The above simulation is valid only if the HPCD H is bounded; infinite edges
of an unbounded HPCD cannot be arranged on the real line.

In order to prove that HPCDs simulate PAMs we should: (1) Encode an
initial and final point of A by points on some edges on H; (2) Represent a
configuration of A by a configuration of H; (3) Simulate one-step computation
of A by some trajectory segment (many-steps successor) on H.

Lemma 3.4 (HPCDs simulate PAMs). Every PAM A can be simulated by
a HPCD. Every bounded PAM A can be simulated by a bounded HPCD.
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ẋ = 0

ẏ = 1

0 ≤ y ≤ 1

y = 1 ∧ x ∈ Ii

x := aix+ bi; y := 0

e′

e

γ(e′, x, y) = (e, aix+ bi, 0)

Ii

(a) (b)

Figure 5: (a) The HPCD that simulates a PAM; (b) An equivalent SA.

q = 1 ∧ 0 ≤ p < 1/2
V

q′ = 0 ∧ p′ = 2p

q̇ = 1

ṗ = 0

0 ≤ p, q ≤ 1

q = 1 ∧ 1/2 ≤ p ≤ 1
V

q′ = 0 ∧ p′ = 2− 2p

Figure 6: One-State Tent Map HPCD.

Proof: Let A be defined by f(z) = aiz+ bi if z ∈ Ii for i ∈ {1, · · · , k}, where Ii
are rational intervals. We define a one-location HPCD with a one-region PCD
defined by y ≥ 0 ∧ y ≤ 1, i.e., there are two edges e ≡ y = 0 and e′ ≡ y = 1,
and dynamics defined by vector (0, 1) as shown in Fig. 5-(a). There are as many
transitions as intervals Ii of the PAM. The guards are of the form y = 1∧x ∈ Ii,
with their reset functions being of the form γ(x, y) = (aix + bi, 0). The initial
point z0 of the PAM is encoded as a point (x0, y0) ∈ e with abscissa x0 = z0.
Hence, it is easy to see that points with abscissae fn(z0) will be visited in
sequence, establishing simulation.

If moreover A is bounded, the stripe region 0 ≤ y ≤ 1 can be replaced by
the rectangular one: 0 ≤ y ≤ 1 ∧ −M ≤ x ≤M with M large enough, and this
yields the required bounded HPCD. 2

From the above two lemmas, we have then the following theorem.

Theorem 3.5 (bounded HPCDs are equivalent to bounded PAMs). When
restricted to bounded systems, REACHHPCD is decidable iff REACHPAM is. 2
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Example 3.1. Consider the PAM describing the Tent Map [29]:

f(x) =

{
2x+ 0, if x ∈ [0, 1/2) (≡ I1)
−2x+ 2, if x ∈ [1/2, 1] (≡ I2)

The HPCD simulating this PAM is shown in Fig. 6. 2

3.2. PCDs with Translational Resets

Here we show that a bounded PAM can be simulated by a PCD augmented
with translational resets of the form x′ = x + c. This result is achieved by real-
izing the affine transformations by intersecting the rectilinear flow with orthog-
onal edges and by simulating the PAM variable (x) on the two PCD variables
(p and q) in turns. The next iterate is computed based on the variable that
carries either a copy of the current value or of the previous iterate. Using the
boundedness of the PAM, we can see that the PCD variables lie in a bounded
region in every state. Thus, by separating the states (along each dimension) by
a distance greater than the absolute maximum value of the variables, we can
ensure that state invariants are non-overlapping. The following evident lemma
simplifies the proof.

Lemma 3.6. Every bounded PAM is equivalent to a 1-dim “positive” PAM
where all intervals are positive.

Proof: Just shift the PAM to the positive semi-axis. 2

Results proved over these positive PAMs are thus applicable to general
bounded PAMs as well. We can now prove a key result:

Theorem 3.7. A bounded PAM can be simulated by a PCD with translational
resets.

Proof: Consider an equivalent positive PAM f(x) = aix + bi , x ∈ Ii
(i = 1, 2, · · · , n), with the intervals enumerated in the increasing order. Let L
be a number such that ∀i, L > bi, and L is greater then the right extremity
of the rightmost interval In. Corresponding to the i-th function of the PAM,
we will have two states Pi and Qi. In Pi, the variable p flows from p0 = bi to
xn+1(≡ bi + aixn) at the rate ṗ = ai. The other variable q drops from q0 = xn
to 0 at the rate q̇ = −1. The guard q = 0 thus ensures that the system spends
t = q0 time in this state. This allows the affine term aixn to be computed,
without using comparative guards or affine resets. In the Q states, the roles of
p and q are reversed, i.e., q uses p’s value to grow to the next iterate, while p
just drops to 0, effectively keeping track of time. From Pi, there are transitions
to each possible state Qj . The variable p retains the value it just computed,
while q is reset to the constant portion (bj) of the next iterate of x. In Qj , q
will accumulate the rest of its target value (ajx) by flowing for time x (stored
in p) at the rate aj . Similarly, from Qi, there are transitions to each possible
state Pj , while there are no transitions within P -states or within Q-states.

The above expressions are adjusted, now assuming that each state is asso-
ciated with a different large constant “base”, i.e., x becomes LSi + x in state

14



Si, where LSi is the base value derived from the value L defined above. As x
evolves in a state, p and q will not be able to inadvertently cross over to another
state because of the designed difference in their base values; the need to adjust
the base value during state transitions leads to translational resets. The full
details of the construction are provided below:

• Corresponding to the i-th function of the PAM, we have two states Pi and
Qi associated with the constants LPi = 4iL− 3L and LQi = 4iL− L.

• In Pi, p grows at rate ṗ = ai from LPi
+p0(= bi) to aiq0(= xn) + bi +LPi

,
while q drops from q0 + LPi to LPi at the rate q̇ = −1. Here q0 denotes
the unscaled previous iterate xn, using which xn+1 is being computed by
spending exactly t = q0 time in this state.

• Qi behaves exactly as above with p and q swapped, i.e., this corresponds
to the case where q grows to the next iterate, while p just drops to LQi .

• In Pi and Qi, the values of p and q are both bounded by {(LPi/Qi
−

L,LPi/Qi
+L)}, which is equal to {(4iL−4L, 4iL−2L)} in Pi and {(4iL−

2L, 4iL)} in Qi. Clearly, none of rectangular regions can overlap.

• From Pi, there are transitions to each possible state Qj with guard q =
LPi ∧p ∈ Ij , i.e., “p has reached the next iterate of x” and “p is in the in-
terval corresponding to the j-th PAM function”. The reset (translational)
is p′ = p− LPi

+ LQj
∧ q′ = q − LPi

+ LQj
+ bj , i.e., “p, which holds the

current value of x, is translated to the range of the destination state (to
prevent overlap)” and “q is in fact reset to the constant portion (bj) of the
next iterate of x” (since the value of q before the transition was a constant,
this can be expressed by a translation). The portion proportional to xn
(i.e., ajxn) will be gained by flowing for time xn (stored in p) with slope
aj .

• Similarly, from Qi, there are transitions to each possible state Pj . There
are no transitions within P -states or within Q-states.

This PCD with translational resets simulates the PAM, as p and q take turns
simulating x. It can be seen that xf is reachable from x0: (i) if (p = LQj

+xf , q =
LQj + bj); or (ii) if (p = LQj + bj , q = LQj + xf ) is reachable from the starting
state (p = x0 +LQk

, q = LQk
+ bk). Here k, j are indices of intervals containing

x0 and xf , that is x0 ∈ Ik, xf ∈ Ij . The disjunction is necessary because p
reaches only even iterates and q reaches only odd iterates of x0. 2

Example 3.2. The Tent Map can be simulated by a PCD with translational
resets, using two variables p and q and 2 × 2 = 4 states. Setting L = 3(>
max(rn, bi) = 2), we get LP1

= 3, LQ1
= 9, LP2

= 15, LQ2
= 21. Thus:

P1: flows ṗ = a1 = 2 and q̇ = −1, with transitions:

→ Q1: guard q = 3 ∧ p ∈ [3 + 0, 3 + 1/2), reset p′ = p − 3 + 9 = p + 6 ∧ q′ =

q − 3 + 9 + 0 = q + 6

15



12 < p, q < 18

P2

0 < p, q < 6

P1

p = 9 ∧ 9 ≤ q < 9.5
V

p′ = p − 6 ∧ q′ = q − 6

q = 3 ∧ 3 ≤ p < 3.5
V

q′ = q + 6 ∧ p′ = p + 6

Q2

p = 21 ∧ 21.5 ≤ q ≤ 22
V

p′ = p − 4 ∧ q′ = q − 6

q = 15 ∧ 15.5 ≤ p ≤ 16
V

q′ = q + 8 ∧ p′ = p + 6

Q1p
=
21 ∧

21 ≤
q
<

21.5 V

p ′
=
p−

18 ∧
q ′

=
q −

18

ṗ = 2

q̇ = −1

ṗ = −2

q̇ = −1 q̇ = −2

ṗ = −1

q̇ = 2

ṗ = −1

6 < p, q < 12

q
=
15

∧
15

≤
p
<
15
.5
V

q
′ =

q
−
6
∧
p
′ =

p
−
6

p
=
9
∧
9.
5
≤
q
<
10
V

p
′ =

p
+
8
∧
q
′ =

q
+
6

q
=
3 ∧

3.5 ≤
p ≤

4
V

q ′
=
q
+
20 ∧

p ′
=
p
+
18

18 < p, q < 24

Figure 7: PCD with Translational Resets simulating the Tent Map.

→ Q2: guard q = 3 ∧ p ∈ [3 + 1/2, 3 + 1], reset p′ = p − 3 + 21 = p + 18 ∧ q′ =

q − 3 + 21 + 2 = q + 20

P2: flows ṗ = a2 = −2 and q̇ = −1, with transitions:

→ Q1: guard q = 15 ∧ p ∈ [15 + 0, 15 + 1/2), reset p′ = p − 15 + 9 = p − 6 ∧ q′ =

q − 15 + 9 + 0 = q − 6

→ Q2: guard q = 15 ∧ p ∈ [15 + 1/2, 15 + 1], reset p′ = p − 15 + 21 = p + 6 ∧ q′ =

q − 15 + 21 + 2 = q + 8

Q1: flows q̇ = a1 = 2 and ṗ = −1, with transitions:

→ P1: guard p = 9 ∧ q ∈ [9 + 0, 9 + 1/2), reset q′ = q − 9 + 3 = q − 6 ∧ p′ =

p− 9 + 3 + 0 = p− 6

→ P2: guard p = 9 ∧ q ∈ [9 + 1/2, 9 + 1], reset q′ = q − 9 + 15 = q + 6 ∧ p′ =

p− 9 + 15 + 2 = p + 8

Q2: flows q̇ = a2 = −2 and ṗ = −1, with transitions:

→ P1: guard p = 21 ∧ q ∈ [21 + 0, 21 + 1/2), reset q′ = q − 21 + 3 = q − 18 ∧ p′ =

p− 21 + 3 + 0 = p− 18

→ P2: guard p = 21 ∧ q ∈ [21 + 1/2, 21 + 1], reset q′ = q − 21 + 15 = q − 6 ∧ p′ =

p− 21 + 15 + 2 = p− 4.
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(b)(a)

Figure 8: Two forbidden configurations in PCD2m: (a) Flow vector parallel to an edge; (b)
Branching in a vertex.

(a) (c)(b)

R2

R1

R4

R3

Figure 9: A PCD2m on the torus: Three views.

Clearly, p and q take turns simulating the PAM variable x. (See Fig.
7) 2

3.3. PCDs on 2-Dimensional Manifolds

In this section we will study the reachability problem of PCDs defined on
surfaces, or 2-dimensional manifolds (introduced in section 2.4). To define a
PCD on a triangulated surface S, a PCD should be defined on each of its trian-
gles. We call this class of systems PCD on 2-dimensional manifolds (PCD2m).
We impose a couple of restrictions on the dynamics (see Fig. 8):

• The flow vector is never parallel to an edge of its triangle.

• Every vertex can be an input vertex for at most one triangle.

The first assumption is just for simplicity and can be removed. The second
one ensures unicity of trajectories and excludes “branching” in vertices. In
Fig. 9 we define a PCD on a torus and show how to represent it as a family of
PCDs on triangles. As before, a point xf is reachable from another point x0 if
there exists a trajectory from x0 to xf , defining the reachability problem:
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Problem 3.8. Given a PCD2m H, is point xf reachable from x0?

We show that indeed the decidability of Problem 3.8 is an open problem,
showing as before that REACHPCD2m is equivalent to REACHPAM for a large
subclass of PAMs. We recall that V (f) ⊂ R is the finite set of all the “vertices”
(i.e., extremities of intervals) of a PAM f .

The idea of translation from a PCD on a manifold to a PAM is as follows. By
definition a manifold is a finite collection of triangles with identified edges, and
a PCD defines a constant flow in each triangle. This flow defines a piecewise-
affine successor relation between edges of the triangle. Identification between
edges gives another piecewise affine relation between edges (only identification
between an output edge and an input one matters for reachability). By taking
the union of the successor relations and the useful identifications we can obtain
a PAM, defined on the edges of the triangulation of the manifold, which simu-
lates the PCD. If we want to put it onto the real line, we are obliged to“tear”
some edges from each other in certain vertices and dispose all the edges on the
line. Formally speaking, this operation can destroy continuity or injectivity.
Nonetheless the PAM remains continuous and injective if we identify points on
the line corresponding to the same vertex. We call such PAMs regular (see
Definition 3.9 below).

Conversely, given a regular PAM, we first put it on a horizontal stripe with
vertical flow (like in Lemma 3.4). Next we replace every affine map from a closed
interval to another one by identification of the source and the target intervals
on the upper and lower edges of the stripe (injectivity and continuity insure
that this identification is correctly defined). In virtue of manifold classification
theorem (Theorem 2.4) we obtain a piecewise constant flow on a manifold with
some disks removed. “Sewing” these holes by disks with trivial dynamics we
obtain a required PCD on a manifold.

In what follows we sketch these constructions with more details.

Definition 3.9. A PAM f defined on a compact domain D(f) is regular if
there exists an equivalence relation ∼ on the set V (f) of its vertices such that
f/ ∼ is an injective continuous function. 2

In other words, the function f should become injective and continuous after
identifying finitely many groups of finitely many points. It should thus satisfy
the following:

• f is injective on the interior of its intervals D(f) \ V (f) (we say that f is
almost injective);

• for any two vertices u and v, we have that f(u) ∼ f(v) if and only if u ∼ v;

• values of f in all the vertices coincide (up to ∼) with left and right limits
of adjacent intervals. Formally, whenever f(x) = ax + b for x ∈ (u, v), it
should be that f(u) ∼ au+ b and f(v) ∼ av + b.

We denote by PAMreg the class of regular PAMs, and the corresponding
reachability problem by REACHPAMreg

.
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Figure 10: From a PCD2m to a regular PAM: (a) A fragment of a PCD2m H; (b) The PAMreg

F simulating H; (c) The equivalence relation ∼.
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Lemma 3.10 (PAMreg simulate PCD2m). Every PCD2m can be simulated by
a regular PAM.

Sketch of the proof: Let H be a PCD2m. The reduction is analog to the
simulation of HPCDs by PAMs (see Lemma 3.3), but special effort is necessary
to ensure regularity. We suppose that the support manifold is triangulated,
and we consider all the triangles separately. We will represent every edge e of
every triangle by a line segment r(e) of the same length as e on R (and every
point x ∈ e is represented by a point r(x) ∈ r(e)). These segments r(e) are
positioned in groups of one or two. Namely when a triangle has two input edges
their representations should be adjacent on R, and similarly for two output
edges (see Fig. 10-(a)). In all the other cases the representing intervals on R
should be put apart of each other. All these representing intervals constitute
the support of the PAM f . The mapping itself is defined as a finite union of
affine and piecewise affine mappings of two following types.

Flow-mappings For each triangle the successor map (corresponding to the
flow) from its input to its output edges is in fact piecewise affine (with
two pieces). We reproduce this map on the representing intervals. Thus
representing intervals of its input edges are mapped onto representatives
of its output edges – it can be done by a two-piece map (see example on
Fig. 10).

Identification-mappings For each pair of identified edges e1 and e2, if one of
them (say e1) is input, and the other one (e2) is output, then the repre-
sentative r(e2) of the output edge is mapped onto the representative r(e1)
of the input one. (If two input or two output edges are identified, then the
flow of the PCD2m cannot traverse this edge, and it is useless to map their
representatives to each other.)

The PAM obtained is not injective nor continuous, but it becomes so if we
glue together all its vertices corresponding to identified vertices of H (this is a
finite equivalence relation ∼). Hence, the PAM is regular.

The relation betweenH and f can be described as follows: For any trajectory
ξ(t) ofH take the points xi where it enters and exits every triangle. These points
belong to the edges of the triangulations, and hence are represented by some
points r(xi) in the PAM f . The sequence {r(xi)}i is in this case a trajectory of
the PAM f .

The converse is also true, every trajectory {yi}i of f represents in this way
some trajectory of H. Indeed, we should just take the sequence {xi = r−1(yi)}
in R2 and build a trajectory of H that passes through the points xi. Whenever
the mapping from yi to yi+1 is a flow-mapping, we connect xi with xi+1 by a
straight line segment. By construction of f , this segment is always parallel to
the flow vector of H and can hence be seen as a trajectory segment of H. By the
same construction, whenever the mapping from yi to yi+1 is an identification-
mapping in f , then the points xi and xi+1 are identified and represent the same
point in H. Hence, we have obtained a trajectory of H which hits the edges in
the points {xi}. 2
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The example depicted in Fig. 10 helps understanding the construction. The
part (a) of the figure presents three triangles of a PCD2m with corresponding
flow vectors (for the third triangle we only consider its input edge). Notice that
AB is identified with EF and ED with HA. The part (b) presents the PAM
simulating the PCD2m. We have cut the perimeter of the first triangle in the
vertices B and A in order to put the three edges on the real line. Similarly
for two other triangles. In this way every edge of every triangle is represented
in the PAM. The flow of the he PCD2m brings every point on AC and CB to
a point on AB. This is represented in the PAM by a 2-piece affine mapping
from ACB onto A′B′ designated as “flow 1” on Fig. 10 (b). Similarly for “flow
2” from A′B′ to E′DF ′. Last, but not least the identifications between edges
are represented by other affine mappings in the PAM: from A′B′ to EF and
from E′D to HI. The PAM obtained has discontinuities in C and D, but after
identifying vertices according to (c) it becomes injective and continuous.

We now turn our attention to the simulation of a PAMreg by a PCD2m.

Lemma 3.11 (PCD2m simulate PAMreg). Every regular PAM can be simu-
lated by a PCD2m.

Sketch of the proof: LetA be a regular PAM defined as f(z) = fi(z) = aiz+bi
if z ∈ Ii for 1 ≤ i ≤ n. We obtain a PCD2m by a construction similar to Lemma
3.4. In a polygon R ⊃ [−M ;M ]× [0; 1] (with M large enough), the dynamics is
defined by vector (0, 1)6. To realize the function f by identification of edges, we
partition the edges of the PAM (see Fig. 11: on the bottom of the rectangle R we
define Iki = (fi(Ii)∩ Ik)×{0}, on the top, we define Jk

i = (Ii ∩ f−1i (Ik))×{1}).
Almost injectivity of the PAM A guarantees that these intervals do not overlap.
Continuity guarantees that a whole closed edge is identified with another edge
(up to ∼-equivalence on vertices).

Next we identify each non-empty Jk
i with Iki via the function fi (which is

an affine bijection between these two edges). It is easy to find a triangulation
such that Iki and Jk

i are its edges, hence we have represented our system as a
PCD on a compact surface with boundary.

By the Classification Theorem for Surfaces with Boundary (see Theorem 2.4)
we have that this surface is equivalent to a manifold with some disks removed
and we obtain then a PCD2m just “sewing” the disks. We associate with these
disks a zero slope vector. 2

From the above two lemmas the Turing equivalence of REACHPAMreg
and

REACHPCD2m
restricted to points on edges is immediate. On the other hand no-

tice that REACHPCD2m
restricted to points on edges is equivalent to REACHPCD2m

.
Indeed, in order to check whether xf is reachable from x0, it suffices to draw
a trajectory from x0 till it hits some edge in a point x′0, to draw a trajectory
backwards from xf till it hits some edge in a point x′f , and check reachability
from x′0 to x′f (both points belong to edges).

6In order to respect the definition of regular PCD2m we take a polygon without vertical
edges rather than a rectangle.
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Figure 11: Simulation of a PCD2m by a PAMreg: Edge Jk
i identified with Iki via fi.

Theorem 3.12 (PCD2m are equivalent to PAMreg). Reachability for PCD2m

is decidable iff reachability for regular PAMs is. 2

3.4. Other Open Subclasses

Various other intermediate subclasses of low dimensional hybrid automata
simulate a PAM. We now present some of the interesting cases, based on earlier
proofs and constructions.

3.4.1. Variants of Linear, Timed and Rectangular Automata

We first establish some simple corollaries of Theorem 3.5. Observing the
construction in the proof of the theorem, we see that the only features of HPCDs
/ LHAs used can be captured by the simple LHA class (see Fig. 5-(b) for the
simple LHA corresponding to the HPCD in Fig. 5-(a)).

Definition 3.13. A simple LHA (SA) is a 2-dimensional LHA with only one
location ` and 2 variables: one clock y, and one memory cell x. The invariant
is of the form C ≤ y ≤ D, guards are of the form y = D ∧ x ∈ I, and resets of
the form γ(x, y) = (ax+ b, c). 2

The next result follows immediately from the proof of Theorem 3.5.

Corollary 3.14 (SAs are equivalent to PAMs). Reachability for SAs is de-
cidable iff reachability for PAMs is. 2

We deduce that the same holds for any class between SAs and HPCDs.

Corollary 3.15 (Intermediate classes are equivalent to PAMs). For any
class C of hybrid automata, such that SA ⊆ C ⊆ HPCD, reachability for C is
decidable iff reachability for PAMs is. 2
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(a) (b)

ẋ = 1
ẏ = 1

0 ≤ y ≤ 1

y = 1 ∧ x− 1 ∈ Ii

x := ai(x− 1) + bi; y := 0

e′

e

γ(e′, x, y) = (e, ai(x− 1) + bi, 0)

Ii + 1

Figure 12: (a) Another HPCD that simulates a PAM; (b) The corresponding AUTA.

Another simple corollary concerns a variant of updatable timed automata [30,
14] with affine resets, based on the proof of Theorem 3.5.

Definition 3.16. A 2-clocks affine updatable timed automaton (2AUTA) is a
LHA with two clocks x and y, invariants of the form C ≤ y ≤ D, guards of the
form y = D ∧ x ∈ I and resets of the form γ(x, y) = (ax+ b, 0). 2

Corollary 3.17 (AUTAs are equivalent to PAMs). Reachability for 2AU-
TAs is decidable iff reachability for PAMs is.

Sketch of the proof: In Lemma 3.4 a HPCD H (see Fig. 5) that simulates a
PAM was built. We obtain another HPCD H′ applying an affine transformation
to H, where the edge e remains unchanged whereas e′ is translated by one unit
to the right. H′ is represented in Fig. 12-(a), where given I = [l, u] the notation
I + 1 is a short for [l+ 1, u+ 1]. It is not difficult to see that the automaton of
Fig. 12-(b) is a 2AUTA equivalent to H′. 2

Next, we extend the constructions devised for proving Theorem 3.7 to char-
acterize other extensions of timed automata that can simulate a PAM. In Corol-
lary 3.17 we have shown that the affine reset suffices. Our constructions below
shows that it is possible to capture a PAM in a HPCD with comparative guards
and simple translational resets.

Proposition 3.18. A bounded PAM can be simulated by a 2-clock automaton,
when translational resets and comparative guards are allowed.

Proof: The following HPCD with 2n states of the form Pj and Qj simulates
the equivalent positive PAM. We associate a number LPi/Qi

with each discrete
state that is separated from every such number by at least L in the positive and
negative directions. The state Pj (and Qj) is defined as:
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• p flows from LPj + p0 to LPj + p0 + ajp0 + bj with ṗ = +1;

• q flows from LPj
+ 0 to LPj

+ ajp0 + bj with q̇ = +1;

• The discrete transitions will be of the form Pj → Qk with guard ajp− (1+
aj)q+ bj +LPj = 0∧ q ∈ Ik and reset p′ = 0 +LQk

∧ q′ = q−LPj +LQk
.

2

These ideas can be adapted to show that decidable initialized rectangular
automata [13, 12] can simulate a PAM, when extended with comparative guards
or when uninitialized. We only prove the latter here.

Proposition 3.19. A bounded PAM can be simulated by a 2-dim (uninitialized)
rectangular automaton.

Proof: The following rectangular automaton with 2n states of the form Pj and
Qj simulates the equivalent positive PAM. The state Pj is defined as follows,
with the other states defined symmetrically:

• While entering this discrete state, p has the current value of x;

• p flows from pin to 0 with ṗ = −1;

• q flows from bj to bj + pinaj with q̇ = aj ;

• The invariant is p > 0 ∧ q ≶ bj , with the inequality determined by aj ’s
sign;

• The discrete state transitions are of the form Pj → Qk with guard p =
0 ∧ q > 0 and reset p′ = bk ∧ q′ = q. Since q is not reset even though its
flow changes in the next state, this HA is not an “initialized” automaton.

2

3.4.2. Variants of HPCDs

The proof methodology of Theorem 3.7 can be extended to characterize the
simplest HPCD subclass that can simulate a PAM without using resets at all
(i.e., all the resets are identity relations); our construction uses both overlapping
invariants and comparative guards.

Proposition 3.20. A bounded PAM can be simulated by a HPCD with com-
parative guards, 3 different flows +1,−1, 0 for each variable and no resets.

Proof: Consider a PAM f(x) = aix+ bi , x ∈ Ii , i = 1, 2, · · · , n. Once again,
we use the “taking-turns” idea. Unlike the proof of Theorem 3.7, we cannot
initialize a variable’s value at bi as we do not have resets. So, we now have
p evolving from xn−1 to xn+1, while q remains stationary at xn. The guard
condition p = aiq+ bi makes the HA jump to the next state at the correct time.
Since xn+1 could be greater or less than xn−1, the flow will need to be +1 or
−1 respectively. Hence, each P (and Q) state now corresponds to two states:
P+ and P−. We will construct a HPCD with 4n states of the form P±j and

Q±j that simulates this PAM; p and q will again take turns simulating x i.e.,
p2m = p2m+1 = x2m and q2m−1 = q2m = x2m−1, at the end of each discrete
transition. Consider a state P±j defined as follows:

24



• Since the initial value of x is pin ∈ Ij , the variable q should flow from some
qin to the new value of x, that is qout = ajpin + bj .

• q’s flow is q̇ = +1 since qout > qin in P+
j . To ensure this inequality, the

condition q < ajp + bj should be incorporated in all the guards leading
to P+

j . Symmetrically, in P−j , the opposite inequality q′out ≤ qin and flow
q̇ = −1 should be used. This is also insured by the guard.

• p remains stationary (and equal to pin), i.e., ṗ = 0 in this state, in order
to ensure that q flows to the correct amount.

• The guard condition is satisfied when q reaches qout, i.e., q = ajp+ bj .

• The transitions out of this state are of the form P±j → Q±k only. In
the next state, q stays fixed at this computed value, while p flows to the
next iterant of x. In particular, the guard for jumping to Q+

k will be
q = ajp+ bj ∧ q ∈ Ik ∧ p < akq+ bk. (The last constraint will be p ≥ if we
are jumping to Q−k ).

The Q±j states are defined exactly as above, with p and q interchanged. The
above HPCD without resets simulates the given PAM. In particular, the reach-
ability query “Is xf reachable from x0” is true iff (Q±n , p = xf , q = xf−1) or
(P±n , p = xf−1, q = xf ) is reachable from (Q±m, p = x0, q = x1), where xf−1
is some pre-image of xf . Here indices m and n are such that x1 ∈ Im and
xf−1 ∈ In, and the ± signs depend on whether x2 > x1 or not and whether
xf > xf−1 or not. There can be at most n pre-images of the target xf , and hence
n reachability queries; further, a factor of two arises from having to accomodate
p or q reaching xf (odd or even iterations). 2

The idea can be further adapted to show that PAMs can also be simulated
by HPCDs when augmented with origin-dependent rates (introduced in [31])
and overlapping state-invariants (HPCDx).

Proposition 3.21. A PAM can be simulated by an origin-dependent HPCD
with rectangular guards / invariants, and identity resets.

Proof: The following origin-dependent HPCD with 2n states of the form Pj and
Qj simulates the equivalent positive PAM. The state Pj is defined as follows,
with other states defined symmetrically:

• p flows from p0 to 0 with ṗ = −1;

• q flows from 0 to ajp0 + bj with q̇ = aj + bj/p0;

• Discrete state transitions are of the form Pj → Qk with guard being p =
0 ∧ q ∈ Ik ∧ q > 0 and identity resets. 2

4. Undecidability Results

True to its “open” nature, the HPCD class does not present any direct
mechanism to simulate a Turing machine (TM) or a Minsky machine (MM).
Using one HPCD variable for each MM counter makes measuring one time unit
difficult; storing at least one of the counters in both the variables (or both
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counters in both variables) corresponds almost directly to the original problem
of simulating a TM by a PAM. In this section, we show how to extend HPCDs
in order to be able to simulate a Minsky Machine.

4.1. HPCDs with One Counter

Consider the class of HPCD1c which are HPCDs augmented with a counter
c. In each location `, the state vector (x, y) evolves according to a PCD, while
c remains constant. Guards have the form P (x, y) ∧ Q(c) where P (x, y) is as
for HPCDs and Q(c) ≡ c = 0 | c > 0 | true. Resets are as for HPCDs, but they
can also increment or decrement c. We prove that the reachability problem
for HPCD1c is undecidable showing that an HPCD1c H can simulate Minsky
machines for which reachability is known to be undecidable.

In this section we need a concrete syntax to describe Minsky machines.
In accordance with the Definition 2.8 we will represent the MM by a list of
numbered instruction of the forms:

qi : m++, goto qj
qi : m−−, goto qj
qi : if m = 0 then goto qj else goto qk,

and the similar ones for n (and also halt).

Proposition 4.1 (HPCD1c simulate MMs). Every Minsky machine can be
simulated by a HPCD with one counter, so HPCD1c reachability is undecidable.

Sketch of the proof: We associate with each qi of a Minsky machine M a
location `i of HPCD1c. In order to encode a configuration ofM which is a triple
(qi,m, n), we represent it in H by (`i, x, y, c) with the point (x, y) = (2−m, 0)
representing the first counter of M, and c = n storing the second one. The
PCD associated to the location `i simulates the instruction for the state qi. To
increment or decrement m we just divide or multiply x by 2, an operation than
can be performed by a PCD. To test whether m = 0, we check whether x > 0.75.
All the operations on n are done directly on the counter c. Fig. 13 represents
PCD simulating instructions m++, m = 0? and n++; PCDs for the three other
instructions (m−−, n−− and n = 0?) are similar.
Putting all those PCDs together we obtain a HPCD1c which simulates M. 2

4.2. HPCDs with Other Infinite Structures

In this section, we augment HPCD with different infinite or periodic struc-
tures allowing an infinite number of regions, or a periodic origin-dependent
dynamics, or merely integrity testing in the guards. In all the cases, very simple
constructions allow Minsky machines to be simulated, and hence their reach-
ability becomes undecidable. We capture the value of both counters m and n
using one continuous unbounded integer variable x = 2m3n; the second variable
y is used as a temporary variable for other computations. Incrementing and
decrementing the counter correspond respectively, to multiplying and dividing
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qi : n + +, goto qjqi : m + + goto qj

jump to ℓj

2−m

ℓi jump to ℓk jump to ℓj

2−m 2−m

c + +, jump to ℓj

qi : if m = 0 then goto qj
else goto qk

(b) (c)(a)

Figure 13: Sketch of the simulation of a Minsky Machine by a HPCD1c: Location `i.
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Figure 14: Sketch of the simulation of a Minsky Machine by a HPCD∞.

by the appropriate prime factor, which can be done by a simple affine reset. The
problem of simulating a Minsky Machine over an augmented HPCD now reduces
to the problem of checking if m > 0 given the numerical value of x = 2m3n, and
being able to recover the original value of x at the end.

We will first consider HPCDs for which we relax the condition of having a
finite number of regions. We call this class of systems, HPCDs with infinite
partition (HPCD∞). We are not going to define this class formally, since we
are just interested in showing that this additional feature (having an infinite
partition, even with very simple periodic structure) leads immediately to the
undecidability of the reachability problem for HPCD∞.

Proposition 4.2 (HPCD∞ simulate MMs). Every MMM can be simulated
by an (unbounded) HPCD with infinite partition. Hence reachability is undecid-
able for HPCD∞.
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Figure 15: Simulation of a Minsky Machine by a HPCDx, case of m = 0 test.

Sketch of the proof: The hybrid automaton H will have a location `k for each
state qk of the MM. We represent the MM counters by a point on the x-axis
with the integer abscissa x = 2m3n in a HPCD∞ as in Fig. 14.

If the instruction qi increments or decrements a counter, this corresponds
to an affine operation on x (division or multiplication by 2 or 3). In this case
the PCD for the state `i contains one region x > 0 ∧ 0 < y < 1, the flow is
ẋ = 0, ẏ = 1 (as on Fig. 14), and the jump goes to the target location and
performs the necessary division or multiplication.

The only non-trivial operation is to test whether a counter is 0. Notice, that
whenever x is odd we know that m = 0, and whenever x is not multiple of 3 we
know that n = 0. Our periodic infinite partition allows to detect such situations.
Hence, to simulate an instruction of the form qi : if m = 0 then qj else qk, we
make a jump from all the odd en edges of the location `i to the location `j , and
from the even ones to `k. 2

Another way of introducing “infinite patterns” is allowing continuous dynam-
ics with some periodic behavior that depends on the initial points after a reset
is done. We have already discussed origin-dependent rate HPCDs (HPCDx) in
Section 3.4.2. In the construction of the following proposition we will use a
HPCDx with rather particular periodic rate functions.

Proposition 4.3 (HPCDx simulate MMs). Every MM can be simulated by
an unbounded HPCDx with periodic functions as dynamics. Hence the reacha-
bility is undecidable for such systems.

Sketch of proof: We associate with each MM-state qi a location `i, and use
the same encoding of the counters in the abscissa: x = 2m3n. Incremening /
decrementing is simulated as in the proof of Proposition 4.2 above.

For the instruction qi : if m = 0 then qj else qk the location `i uses origin-
dependent periodic dynamics. Its PCDi (see Fig. 15) is defined by regions:
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R1 : 0 < y < 1, and R2 : −1 < y < 0. The dynamics in both regions is given
by the vector (0, f(x0)) and the last two by (0,1). Here f(x0) = (−1)bx0+1/2c.
This means, in particular, that points on e1 with odd integer abscissae go down
and hit the edge e3, while even ones go up to e2. Jumping from e3 to location
`j , and from e2 to `k terminates the construction. 2

The above definition allows the dynamics to be defined by any function of
the initial point. To simulate a Minsky Machine, we needed to use functions
that have a periodic pattern to obtain an “infinite pattern”, as before. Yet
another application of the same idea concerns HPCDs with integrity testing in
the guards.

Proposition 4.4. Reachability is undecidable for HPCDfn−int, an extension
of HPCDs where the guard can include a function integer(x) that returns true
if the parameter x is an integer.

Sketch of the proof:

• A discrete state `i corresponds to the program-state qi of M.

• The value of the counters is captured in the variable x as 2m3n while y is
a dummy variable typically flowing from 0 to 1 in each state. Note that
the rectangles corresponding to the different discrete states are bounded
(because of y) but could possibly overlap.

• MM computations: incrementing / decrementing a counter can be sim-
ulated as in the proofs of two previous results. We should address here
the test instruction. The idea is that m > 0 if and only if x/2 is integer
(similarly, n > 0 iff x/3 is an integer). Using this observation, we simulate
the instruction qi : if m = 0 then qj else qk as follows:

1. State `i1 has ẋ = 0 and ẏ = 1 and jumps to state `i2 with guard y = 1
and reset x′ = 1

2x;

2. State `i2 has ẋ = 0 and ẏ = 1 and jumps to state `j with guard
y = 1 ∧ integer(x) and reset x′ = 2x, and jumps to state `k with
guard y = 1 ∧ ¬ integer(x) and reset x′ = 2x.

The operations on the other counter are similar.

Clearly the HPCD simulates the 2-counter MM M. Since reachability is
undecidable for the MM, it has to be undecidable for the HPCD as well. 2

5. Understanding PAMs

Having refined the decidable and undecidable frontiers of the HPCD class,
we subject PAMs to a similar extend-restrain analysis.
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5.1. PAM’s Proximity to Undecidability

We briefly mention one contrived extension of PAMs than enables MM sim-
ulation, thus making reachability undecidable over that class.

Proposition 5.1. PAMs that can check if a given number x can be expressed
as p−i (the class “PAMpow”), where p is a given prime number and i is an
unknown positive integer, can simulate a Minsky Machine.

Proof: The idea is to encode the two counters m and n, and the line-number
(MM instruction) l in one real number as x = l+ 2−m3−n. Thus when x lies in
the range Il ≡ (l, l + 1], the i-th instruction of the MM needs to be executed.
Thus the MM instructions can be encoded as follows:

• (qi : m++, goto qj) corresponds to x′ = (x− i) 1
2 + j, x ∈ Ii;

• (qi : m−−, goto qj) corresponds to x′ = (x− i)2 + j, x ∈ Ii;
• (qi : if m == 0 goto qj else goto qk) corresponds to x′ = x− i+ j, x ∈
Ii ∧ x− l = 3−n and to x′ = x− i+ k, x ∈ Ii ∧ x− l 6= 3−n. 2

5.2. PAM’s Proximity to Decidability

The simplest PAM is one where every interval maps exactly onto another
interval. Thus the mapping unwinds to a cyclical application of functions, pos-
sibly preceded by some finite prefix.

Definition 5.2 (1-dim oPAM). A 1-dim Onto PAM (oPAM) is a PAM where,
for every interval Ii in the PAM definition, there is an interval Ij also in the
definition such that {aix+ bi|x ∈ Ii} = Ij. 2

Next we prove a crucial lemma:

Lemma 5.3. In a 1-dim oPAM with k intervals, every point has at most 2k
unique successors.

Proof: If interval Ii maps onto Ij , the end points (li, ri) have to map onto
(lj , rj) or to (rj , lj). No other mapping is possible because of our restriction
that the affine post-image of Ii has to exactly and completely overlap with Ij .
Hence, there are only two possible equations linking xj with xi:

1. Direct (li → lj , ri → rj): xj = lj + xi−li
ri−li (rj − lj);

2. Flipped (li → rj , ri → lj): xj = lj + ri−xi

ri−li (rj − lj).

In other words, if we define d =
x0−lx0

rx0
−lx0

, only the points that are lj + d(rj − lj)
or lj + (1 − d)(rj − lj) are ever reachable. Thus, every interval has only two
possible reachable points from a given x0. Since there are k intervals, after 2k
iterations all possible successors would have been explored, and there will be a
cycle of period ≤ 2k in the path. 2

This observation about exactly onto affine maps leads to the following:

Theorem 5.4. Reachability is decidable for 1-dim oPAMs.
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Proof: The reachability query can be verified after the partitioning algorithm
converges, yielding several non-overlapping “interval-node-paths” of the form
Pi → Pi+1 · · · → Pj → Pj+1 · · · → Pj i.e., a cycle of interval-nodes possibly
preceded by a linear path of interval-nodes. If the given x0 and xf do not lie
on the same interval-node-path, then xf is unreachable from x0. Otherwise,
numerically iteration is performed from x0. If xf is not reached in 2k steps,
where k is the length of the interval path containing x0, we can conclude that
xf is unreachable using Lemma 5.3 above. Hence, xf is reachable iff it is
encountered on this 2k-long path starting at x0. 2

Remark. We can quickly conclude that xf is unreachable if
xf−xlf

xrf
−xlf

is

not equal to
x0−xl0

xr0−xl0
or

xr0
−x0

xrf
−xlf

, where [xlf , xrf ] and [xl0 , xr0 ] are the interval

partitions containing xf and x0 respectively.

Example 5.1. f(x) = 2x+ 1/3, x ∈ [0, 1/3)(≡ I1) and f(x) = 1/2− x/2, x ∈
[1/3, 1](≡ I2) is an oPAM as f([0, 1/3]) = [1/3, 1] and f([1/3, 1]) = [0, 1/3].
Points reachable from x0 = 1/4 are: x1 = 2/4 + 1/3 = 5/6, x2 = 1/2− 5/12 =
1/12, x3 = 2/12 + 1/3 = 1/2, x4 = 1/2− 1/4 = 1/4 = x0, as expected. 2

5.3. An Approximate Reachability Algorithm

Reachability is easily semi-decidable for PAMs, with the procedure being
iterating x0, f(x0), f(f(x0)), · · · until xf is reached. If xf is not reachable, this
algorithm will never converge. We present a simple algorithm for approximat-
ing the reachable points (see Alg. 1), where the intervals Ii of the PAM are
partitioned, until all the successors (post-images) of points in one interval map
onto exactly one complete interval (an extension of this idea was presented in
[32]). Whenever this algorithm terminates (yielding a 1-dim oPAM), it com-
putes the exact reachability relation. If we interrupt it after a certain number
of iterations, it computes an under-approximation of reachability.

6. Related Work

The reachability question is decidable for certain classes of hybrid systems.
In [33], it was shown that reachability is decidable for timed automata (TA),
which are a particular case of hybrid automata where all the variables have
slope 1. In [7], the decidability of the same problem for 2-dim PCDs was proved.
In [30], some extensions of TA are considered (updatable timed automata) for
which the decidability of the emptiness problem is studied. It has been shown
that the reachability problem for multirate automata (a hybrid automaton where
the variables run at any constant slope; see [34, 35]) and rectangular automata
[12, 13] is decidable, under certain conditions. Some more decidability results
were given for subclasses of linear hybrid systems, extended integrator graphs
[36], and for timed graphs with one stopwatch [37].

On the other hand and not surprisingly, many undecidability results have
been recorded. In [12], it was shown that the reachability problem for rectan-
gular automata with at least 5 clocks and one two-slope variable (with rational
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Algorithm 1: Over-Approximation of PAM Reachability

1. Let the initial partition P be the set of PAM intervals {Ii}
2. Pick an interval Pi in P and calculate its post-image P ′i . Let P ′i span the

intervals Pl, Pl+1, · · · , Pr−1, Pr.

3. P ′i induces r − l + 1 parts on Pi: Pi1 · · ·Pir−l+1
such that Pij maps onto

Pl+j−1. It could also partition Pl and Pr in case it maps onto a sub-interval
rather than covering the whole of Pl or Pr. In all, the total number of parts
in the partition can increase by 0 to n+ 1.

4. Update P so it now holds the newly induced parts as well.

5. Repeat steps 2 − 4 until every interval Pi maps onto exactly one interval
Pj already in P

If this refinement procedure terminates, we construct a graph which contains
two nodes P+

i (direct) and P−i (flipped) for each interval Pi. If the post image of
Pi is Pj , and the affine function on Pi preserves orientation (i.e., has a positive
coefficient), we connect P+

i to P+
j and P−i to P−j . If the post image of Pi is Pj ,

and the affine function on Pi changes orientation (i.e., has a negative coefficient),
we connect P+

i to P−j and P−i to P+
j . We get a graph representation of the

PAM. Thus, xf is reachable from x0, if there is a path from P+
x0

to P+
xf

in this

graph (where xi ∈ Pxi
), and also xi and xf divide their respective intervals

in the same proportion α : β. Another possibility is that there is a path from
P+
x0

to P−xf
in this graph, and also xi and xf divide their respective intervals in

inverse proportions α : β and β : α. 2
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slopes k1 6= k2) is undecidable and that the reachability problem is undecidable
for rectangular automata with at least 5 clocks and one skewed clock (see LHA,
section 2.2, for restrictions that have been relaxed). In [38], it was shown that
the reachability question for TA with 3 stopwatches and for TA with 1 memory
cell with assignments between variables is undecidable. Other undecidability
results (always for the reachability problem) were given for TA with 6 memory
cells without assignment between variables [39], for TA with two three-slope
variables [40], for TA with two non-clock constant slope variables [10], for TA
with additive clock constraints [33] and for TA with two skewed clocks [34].

Some other undecidability results were given for low (three or less) dimen-
sional spaces, besides those mentioned results in the introduction. In [41], it
was proved that Turing machines can be simulated by dynamical systems with
piecewise affine functions (in 3 dimension spaces). In [20], two elementary func-
tions are constructed: one in one dimension that simulates Turing machines
with an exponential slowdown and one in two dimensions that simulate TMs
in real time (see references therein for other undecidability results). Among
other results, in [27], it is shown that smooth ordinary differential equations in
R2 can simulate an arbitrary Turing machine; in [18], it is proved that TMs
can be simulated by 2-dim PAMs, by 1-dim countable PAM (PAMs with an
infinite number of intervals) and by a continuous piecewise-monotone functions
in linear time. As a relevant result in the same work, it is also shown that there
exist TMs that cannot be simulated by a 1-dim PAM. In [3], results are given
concerning the frontier between decidability and undecidability for low dimen-
sional systems, in particular for the reachability problem for 1-dim PAMs. In a
more recent work, it is shown that PAMs are equivalent to Pseudo-Billiard Sys-
tems, which may be seen as 2-dim linear hybrid automata with only one state,
and that more general classes of functions lead to undecidability of reachability
problem for such class [42, 43].

A construction similar to the “taking-turns” idea (see section 3.2) was used
by Berard and Duford to prove that the emptiness query is undecidable for
timed automata with four clocks and additive clock constraints [44].

7. Conclusion

Although intense research has been pursued over the last one or two decades,
there is no clear elucidation of the decidability boundary for the hybrid automa-
ton reachability query. Fig. 1 summarizes the relationship between the main
hybrid models we have considered in this work. The contribution of this pa-
per is twofold. First, we have shown that between 2-dim PCDs (for which the
reachability problem is decidable [7]) and 3-dim PCDs (for which reachability
is undecidable [8]), there exists an interesting class, 2-dim HPCD, for which the
reachability question is still open. We have also shown that the same is true
for several similar classes, namely 2-dim rectangular automata and 2-dim linear
hybrid automata with additional restrictions, and also for PCDs on 2-dim mani-
folds. Moreover, we refined the decidability frontier by exploiting the expressive
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redundancy of the hierarchical piecewise constant derivative system class def-
inition. We introduced the “taking-turns” idea, that the two PCD variables
could alternatively compute PAM iterations. We also showed how we could
exploit the finite range of the PAM to construct non-overlapping state invari-
ants. These ideas helped show that a 1-dim PAM can be simulated by a 2-dim
PCD augmented with translational resets only, or with overlapping invariants
and comparative guards, with identity resets. We also demonstrated how decid-
able classes, like timed and initialized rectangular automata, can be extended
into classes open for the reachability problem. Second, we have proved that
2-dim HPCDs are really in the boundary between decidability and undecidabil-
ity, since adding a simple counter or allowing some kind of “infinite pattern” to
these systems, makes the reachability problem undecidable. A simple algorithm
for over-approximating reachability was presented. It revealed that the problem
is decidable, for those PAMs that converge during this iteration.

There are many related questions still unresolved: What is the least con-
strained 2-dim HPCD that is decidable? Can we sharpen the decidability fron-
tier defined by initialized rectangular HPCDs and simple planar differential in-
clusion systems? Can the openness of the 1-dim PAM and the one-stopwatch
automata classes be compared? A different perspective on the decidability of the
PAM class may be obtained from the literature on discrete chaotic dynamical
systems [45]. Another less explored research problem would be to the charac-
terization of the undecidability problem in other models of computation, such
as the Blum-Shub-Smale model [46] and models of recursive analysis.
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