
GSPeeDI – a Verification Tool for Generalized

Polygonal Hybrid Systems

Hallstein A. Hansen1 and Gerardo Schneider2

1 Buskerud University College, Kongsberg, Norway
Hallstein.Asheim.Hansen@hibu.no

2 Dept. of Informatics, University of Oslo, Oslo, Norway.
gerardo@ifi.uio.no

Abstract. The GSPeeDI tool implements a decision procedure for the
reachability analysis of GSPDIs, planar hybrid systems whose dynamics
is given by differential inclusions, and that are not restricted by the
goodness assumption from previous work on the so-called SPDIs.
Unlike SPeeDI (a tool for reachability analysis of SPDIs) the underlying
analysis of GSPeeDI is based on a breadth-first search algorithm, and it
can handle more general systems.

1 Introduction

Hybrid systems combine dynamic and discrete behavior, and mathematical mod-
els can be defined for systems arising from real scenarios (e.g., a chemical plant)
as well as for artificial constructions (e.g. by hybridizing a complex differential
equation into connected piece-wise smaller equations). These systems are gener-
ally hard to analyze: most important verification problems are undecidable for
non-trivial classes of hybrid systems. In this paper we deal with a class of planar
hybrid systems whose dynamics is given by differential inclusions: generalized

polygonal hybrid systems (GSPDIs). The reachability problem for GSPDI has
been shown to be decidable [7].

A GSPDI is a pair H = 〈P, F〉, where

e

a
P

X0

Xf

b

Fig. 1. GSPDI.

P is a finite partition of the plane (each
P ∈ P being a convex polygon), called the
regions of the GSPDI, and F is a func-
tion associating a pair of vectors to each
polygon: F(P) = (aP ,bP). In a GSPDI
every point on the plane has its dynam-
ics defined according to which polygon it
belongs to: if x ∈ P , then ẋ ∈ ∠

bP

aP
. The

angle ∠
b

a
denotes a differential inclusion,

meaning that the tangent vector at any
point of a given trajectory must be a lin-
ear combination of vectors a and b.

A complicating factor in the reachability analysis of GSPDIs is the presence
of regions where the trajectory is allowed to enter and leave the region through

the same edge, to slide along, or bounce off a given edge. For instance, in the
example shown in Fig. 1 the dynamics of region P allows the trajectory to slide
and bounce off the edge e. A region where no trajectory can enter and leave
through the same edge is said to be good, and a GSPDI where all the regions are
good is called an SPDI (we say that that SPDI satisfies the goodness assumption).

The tool GSPeeDI is the only tool we know of that implements a decision
procedure to solve the reachability problem for this particular class of hybrid
systems.

2 GSPeeDI

The tool GSPeeDI3 is a collection of utilities to manipulate and reason mechan-
ically about GSPDIs. It is implemented in 3000 lines of Python code.

The tool takes as input a GSPDI, together with a source and a target inter-
val, on given edges. The tool operates on a graph whose nodes are the edges of
the polygons (and not the polygons themselves) which are connected with di-
rected arcs labelled with edge-to-edge one-dimensional successor functions over
edge intervals. An edge interval represents an interval on a given edge. In order
to check for reachability, we use a standard breadth-first search (BFS) model
checking approach. We start from a set A containing an initial edge interval.
Then we iteratively apply the possible transitions from the current set, adding
the resulting edge intervals to A. The search ends if an edge interval from A

contains the sought-after edge interval, or it ends when, if the sought-after edge
interval cannot be reached, the fix-point is reached.

There are three kinds of possible transitions that one may take:

– Edge-to-edge transitions. The result of following the dynamics of a region,
and represented as one step transition on the graph.

– ’Cycle’ transitions. We only need to analyze simple cycles, which are then
converted into meta-transitions in the graph. Using acceleration of such sim-
ple cycles we are able to compute all the edge intervals reachable by taking
the cycle any number of times, without iterating the cycle in most cases.

– Sink transitions. We know how to identify those simple cycles that cannot
be exited. These transitions will only be applied at the end since no other
continuation is possible.

Using acceleration techniques for analyzing cycles instead of iterating them,
we can sucessfully analyze large systems, even though the algorithm has a worst
case complexity which is doubly exponential.

On the left of Fig. 2 we illustrate a typical input file containing a GSPDI
composed of 8 regions. From this file we can generate the edge-to-edge transi-
tions, and then create a picture of the GSPDI as shown in the upper right part
of the figure. The lower right hand part shows a typical use scenario, where the
imprecision is caused by a built-in floating point conversion routine in Python.

3 http://heim.ifi.uio.no/hallstah/gspeedi/

Input file

Points
P 1 1.5 1.5

P 2 2 2
P 3 1 2

P 4 1 1
P 5 2 1

P 6 3 2
P 7 2 3
P 8 1 3

P 9 0 2
P 10 0 1

P 11 1 0
P 12 2 0
P 13 3 1

Regions

R 1 1 9 1 2 6 13 5

R 2 2 2 2 7 6
R 3 3 3 1 3 8 7 2
R 4 4 4 3 9 8

R 5 5a 5b 1 4 10 9 3
R 6 6 6 4 11 10

R 7 7 7 1 5 12 11 4
R 8 8 8 5 13 12

Vectors

V 1 0 1
V 2 -1 1

V 3 -1 0
V 4 -1 -1
V 5b 0.2 -1

V 5a 0.1 -1
V 6 1 -1

V 7 1 0
V 8 1 1
V 9 -1.1 -1.1

Generated figure

Session log

./search.py data/swimmer-g.graph ’2->3~2-7’ 0.5 ’2->3~2-7’ 0.2
Searching from:

N2->3~2-7 at [[0.5, 0.5]]
to

N2->3~2-7 at [[0.20000000000000001, 0.20000000000000001]]
True

In this example the search refers to a node in the
graph, N2->3 2-7, which represents the edge 2-7.

Since any edge may be traversed in both direc-
tions, we uniquely identify that we traverse the
edge going from region 2 to region 3.

Fig. 2. Example.

While the example contains only 8 regions, it has 84 simple edge cycles
(including permutations). We may use various optimization techniques to reduce
the search space, but even so, the number of possible paths reachable from a
single edge may number in the thousands when we combine the cycles with
edge-to-edge transitions.

3 Comparing and Contrasting with SPeeDI

A comparison with HyTech [3] is not meaningful since HyTech semi-decides more
general hybrid systems than GSPeeDI, but it runs out of memory very quickly for
very simple GSPDIs for which GSPeeDI gives an almost immediate answer due

to acceleration. The obvious tool to compare GSPeeDI with is the tool SPeeDI
[1], since GSPeeDI generalizes SPeeDI.

Our tool contains two major enhancements over SPeeDI, which justified a
completely new implementation of reachability analysis for GSPDIs: We can
analyze systems that are not restricted by the goodness assumption, and we do
so using breadth-first (instead of depth-first) search.

Being able to analyze systems where the goodness asumption does not hold
increases the number of analyzable systems. The practical implications for the
design of the tool are considerable, and include a more complex vector/function
library, and looser restrictions on what constitutes a feasible path of traversed
edges and cycles. This in turn leads to a larger search space, so if all the regions
are good, then SPeeDI performs much better, but SPeeDI cannot handle systems
with non-good regions.

Another difference is that SPeeDI’s algorithm is based on depth-first gen-
eration of feasible paths. While the depth-first algorithm may not necessarily
generate the shortest possible counter example, it does have the advantage of
generating the counter example as part of the algorithm itself.

4 Complexity

There are two main factors contributing to the run-time complexity of the tool.
One is the computation of all the simple cycles in the directed GPSDI graph.
The other is the execution of the breadth-first search algorithm. The latter has
been shown to have a doubly exponential time complexity in the worst case.
However, in practice we can apply a set of heuristics which reduce this complexity
considerably, as explained below.

Computing all simple cycles may be

Fig. 3. Larger GSPDI example

infeasible for large graphs: The number
of simple cycles in a complete, directed
graph with n nodes is exactly

n−1
∑

i=1

(

n

n − i + 1

)

(n − i)!

For computing all simple cycles we
have implemented the algorithm due to
Tarjan [8], which has a time bound of
O((n+e)(c+1)), where e is the number
of edges and c the number of cycles in
the graph. Clearly, the number of cycles
is the factor determining the point at
which a problem becomes infeasible.

Informal testing have shown that running an unmodified algorithm on exam-
ples with hundreds of nodes quickly becomes infeasible, both due to the execution
time of the algorithm, and the number of (unpermutated) cycles.

Because of this the tool includes several domain specific optimizations to the
algorithm. In particular we only investigate prefixes to cycles where:

– There actually are trajectories that make a complete cycle.
– The cycles will not be redundant. Cycles where the trajectories bounce off

edges are not required to be analyzed.
– The generation of a cycle will not help analysis. This happens if a node

represents an interval that may be reached in its entirety by any trajectory.

We will demonstrate the optimizations’ effectiveness on a bigger example
(partially shown in Fig. 3). The GSPDI contains 334 nodes (in the reachability
graph). A run of the unmodified algorithm finds that the total number of cycles
(without permutations) is 181398.

If we apply only the first optimization, we reduce that number to 1041 cycles.
Adding the second optimization reduces the number to 112 cycles, and applying
all three leaves us with 85 cycles. The optimizations cut off 811, 229, and 183
prefixes respectively.

So, for this particular example, we find that more than 99% of the possible
cycles are redundant. Computing the number of permutations gives us a total
of 1100 cycles subsequently used as meta-transitions in the breadth-first search.

The execution time of the program which generates the cycles is less than a
minute on a low-end, modern CPU. On the same system a reachability search
returning false (thus having computed the entire reach-set for a particular start-
interval) finishes execution in slightly over ten seconds.

5 Discussion

We have presented a prototype tool for solving the reachability problem for
generalized polygonal hybrid systems. The tool implements a BFS algorithm (as
presented in [4]), following the theoretical results published in [7]. The algorithm
is based on the analysis of a finite number of possible qualitative behaviors, in-
cluding only simple loops which may be accelerated in most cases. Since the
number of such behaviors may be extremely big, the tool uses several power-
ful heuristics that exploit the topological properties of planar trajectories for
considerably reducing the set of actually explored paths on the reach-graph.

The main applications of GSPDIs is to over-approximate non-linear differen-
tial equations on the plane. Then we can apply GSPeeDI to perform reachability
analysis. There is ongoing and future work in the area of automatically4 par-
titioning the plane and generating GSPDIs based on such equations, based on
whether properties such as Lipschitz continuity applies and can be exploited.
This will allow for analysis of larger, real-world problems. The application of
GSPeeDI to over-approximate planar differential equations could be combined
with simulation techniques in order to further refine parts of the hybridized
equation to make more precise analysis. This, together with the use of the phase

4 A simple, ad-hoc application for automatic partitioning is distributed with the tool.

portrait (see below) will produce less ’do not know’ answers and increase the
number of ’yes’ and ’no’ answers.

One line of future work is incorporating support for enhancements, opti-
mizations and utilities currently available for SPeeDI, that have been already
explored theoretically for SPDIs. This include the computation of the phase
portrait of a system [2], which may allow both optimizations [6] and compo-
sitional parallelization [5] of the reachability analysis algorithm. Note that the
implementation of such features will not add to the complexity of the tool as
all the information needed to compute the phase portrait (invariance, viabil-
ity and controllability kernels, and semi-separatrices) is already computed when
analyzing simple cycles (see [5, 6] for more details).

We conjecture that the cycle generation and breadth-first search may mu-
tually benefit from running in parallell and working with a shared state. There
may, for example, be no need to generate cycles for sufficiently explored parts
of the graph.

Acknowledgments. We would like to thank Gordon Pace for useful suggestions
on how to improve the efficiency of the tool.

References

[1] E. Asarin, G. Pace, G. Schneider, and S. Yovine. SPeeDI: a verification tool for
polygonal hybrid systems. In CAV’02, volume 2404 of LNCS, pages 354–358, 2002.

[2] E. Asarin, G. Schneider, and S. Yovine. Towards computing phase portraits of
polygonal differential inclusions. In HSCC’02, number 2289, 2002.

[3] T. Henzinger, P.-H.Ho, and H.Wong-toi. Hytech: A model checker for hybrid sys-
tems. Software Tools for Technology Transfer, 1(1), 1997.

[4] G. Pace and G. Schneider. Model checking polygonal differential inclusions using
invariance kernels. In VMCAI’04, volume 2937 of LNCS, pages 110–121, 2003.

[5] G. Pace and G. Schneider. A compositional algorithm for parallel model checking
of polygonal hybrid systems. In ICTAC’06, volume 4281 of LNCS, pages 168–182,
2006.

[6] G. Pace and G. Schneider. Static analysis for state-space reduction of polygonal
hybrid systems. In FORMATS’06, volume 4202 of LNCS, pages 306–321, 2006.

[7] G. J. Pace and G. Schneider. Relaxing goodness is still good. In ICTAC’08, volume
5160 of LNCS, pages 274–289, Istanbul, Turkey, September 2008.

[8] R. E. Tarjan. Enumeration of the elementary circuits of a directed graph. Technical
report, Ithaca, NY, USA, 1972.

