
Abstract Specification of Legal Contracts ∗

Cristian Prisacariu
Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

cristi@ifi.uio.no

Gerardo Schneider
Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

gerardo@ifi.uio.no

ABSTRACT
The paper presents an action-based formal language called
CL for abstract specification of legal contracts. The purpose
of the language is to be used to reason about legal contracts
(and electronic contracts on the long run). CL combines the
legal notions obligation, permission, and prohibition from
deontic logic with the action modality of propositional dy-
namic logic (PDL). The deontic modalities are applied only
over actions, thus following the ought-to-do approach. The
language includes a synchrony operator to model “actions
performed at the same time”, and a special complementa-
tion operation to encode the violation of obligations. The
language has a formal semantics in terms of normative struc-
tures, specially defined to capture several natural properties
of legal contracts. We focus on the informal presentation of
the choices made when designing CL, and its semantics.

1. INTRODUCTION
Much research has been invested into giving a formaliza-

tion of legal contracts, and also into providing a machine
readable language for specifying contracts. Among the many
approaches the most promising are the ones based on vari-
ants of deontic logic. Such a formal language is desired for
doing static (like model-checking) or dynamic (like run-time
monitoring) analysis of (abstractions of) contracts. More-
over, the automation of the negotiation process for contracts
becomes a feasible goal.

We present a formal specification language for contracts,
called CL, able to represent obligations, permissions and
prohibitions, as well as what happens when obligations or
prohibitions are not respected. We focus on the informal
explanation of the language (though some formalization is
presented as well), and in particular on its design decisions.

The goal of CL is to faithfully capture several concepts
used in the context of legal contracts, to avoid deontic para-

∗Partially supported by the Nordunet3 project “COSoDIS –
Contract-Oriented Software Development for Internet Ser-
vices” (http://www.ifi.uio.no/cosodis/).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIL-2009 Barcelona, Spain
Copyright 2009 ACM 1-60558-597-0/09/0006 ...$5.00.

C := φ | OC(α) | P (α) | FC(α) | C → C | [β]C | ⊥
α := 0 | 1 | a | α×α | α · α | α+ α
β := 0 | 1 | a | β×β | β · β | β + β | β∗ | C?

Table 1: Syntax of the contract language CL.

doxes, and to preserve many of the natural properties rele-
vant to legal contracts. Since our main objective is to an-
alyze contracts through formal verification techniques, we
aim at a tractable language (i.e. decidable and with man-
ageable complexities). In this way, we can use formal tools
like model-checking and run-time monitoring.

2. THE CONTRACT LANGUAGE
CL is an action-based logic for specifying electronic and

legal contracts with model theoretic semantics in terms of
normative structures. The syntax of CL is defined by the
grammar in Table 1. Formal definition and technicalities of
CL are published in [6]. In what follows we provide intuitions
of the various features and syntax of CL. Some works related
to CL are [1, 3, 4, 7], which also consider deontic modalities
(i.e. O, P , and F) applied over actions.

In CL the deontic modalities are applied only over ac-
tions instead of over formulas of the logic. This is known
as the ought-to-do approach to deontic logic as opposed to
the more classic ought-to-be approach of Standard Deontic
Logic (SDL). The ought-to-do approach has been advocated
by von Wright [8] which argued that deontic logic would
benefit from a “foundation of actions”, since many of the
philosophical paradoxes of SDL would be removed.

The structured action of CL are constructed from a finite
set of basic actions a∈AB , 1, and 0 with the regular oper-
ators + and · (for choice and sequence).1 We add a concur-
rency operator× to model that two actions are done at the
same time. The model of concurrency that we addopt is the
synchrony model of Milner’s SCCS [5]. Synchrony is easy
to integrate with the other regular operations on actions.
In the SCCS calculus the synchrony model considers that
each of the two concurrent systems instantaneously perform
a single action at each time instant. It takes the assumption
that time is discrete and that basic actions represent the
time step. Moreover, at each time step all possible actions
are performed, i.e. the system is considered eager. For this
reason if at a time point an obligation to perform an action
is enabled then this action must be immediately executed so
that the obligation is not violated. Because of the assump-

1See discussion in [6] for why we exclude the Kleene star ∗.

tion of an eager behavior the scope of the obligations (and of
the other deontic modalities too) is immediate, making them
transient obligations which are enforced only in the current
world. One can get persistent obligations using temporal
logic modalities like the always, which are expressed in CL
with the PDL modality [β].

We define a conflict relation #C over actions which rep-
resents the fact that two actions cannot be done at the same
time. This is necessary for detecting (and for ruling out) a
first kind of conflicts in contracts: “Obligatory to go west
and obligatory to go east”. The second kind of conflicts that
the CL rules out are: “Obligatory to go west and forbidden
to go west” which is standard for a deontic logic.
CL defines an action complement operation which encodes

the violation of an obligation. Obligations (and prohibi-
tions) can be violated by not doing the obligatory action (or
doing the forbidden action). Intuitively action complement
α is a function which returns the action given by all the
immediate actions that take us outside α [1].
CL combines notions from both deontic logic and PDL

therefore, considering the dynamic modality [β]C which is
read as: “after the action β is performed then the contract
clause C should hold in the next world”. A first difference
from the standard PDL is that we consider deterministic
actions. This is natural and desired in legal contracts as
opposed to the programming languages community where
nondeterminism is an important notion. In contracts the
outcome of an action like “deposit 100$ in the bank account”
is uniquely determined. A second feature of CL is the intro-
duction of the synchrony operation× on the actions inside
the dynamic modality. Therefore, CL can reason about syn-
chronous actions and is related to extensions of PDL which
can reason about concurrent actions like PDL∩ with inter-
section, concurrent PDL, or dynamic deontic logic DDL [4].

In CL conditional obligations (or prohibitions) can be of
two kinds. (a) The first kind is given with the propositional
implication: C → OC(α); “If the internet traffic is high then
the Client is obliged to pay”. (b) The second kind is given
with the dynamic box modality: [β]OC(α); “After receiving
necessary data the Provider is obliged to offer password”.

Regarding the deontic modalities OC and FC , CL includes
directly in the definition of the obligation and prohibition
the reparations C which hold in case of violations. This mod-
els a notion of contrary-to-duty obligation (CTD) which is
in contrast with the classical notion of CTD as found in the
SDL literature [2]. In SDL, what we call reparations are
secondary obligations which hold in the same world as the
primary obligation. In our setting where the action changes
the world one can see a violation of an obligation (or pro-
hibition) only after the action is performed and thus the
reparations are enforced in the next (reachable) world.

The semantics of CL is given in terms of normative struc-
tures and it is specially defined to capture several proper-
ties which we find natural for legal contracts.2 One of the
interesting properties particular to CL is OC(α) ∧ OC(β) →
OC(α×β) (ex.: “Obliged to delay payment”and also“Obliged
to notify by e-mail” then we can conclude that “Obliged to
delay and notify at the same time”). Also particular to CL is
FC(α)→ FC(α×β) (prohibition of an action α implies that
any action that “includes” it is prohibited).

Other properties come from SDL, like: OC(α)→ P (α) or

2These intuitive properties are validities in the CL logic.

P (α) → ¬FC(α). Moreover, CL has properties from DDL,
like: OC(α · β) ↔ OC(α) ∧ [α]OC(β), F (α · β) ↔ F (α) ∨
〈α〉F (β), or FC(α + β) ↔ FC(α) ∧ FC(β) (and two similar
properties for permissions).

In the design decisions for CL we give special attention to
what we call unwanted implications.3 Some are related to
synchrony: FC(α×β) 6→ FC(α), P (α×β) 6→ P (α), OC(α) 6→
OC(α×β), or OC(α×β) 6→ OC(α); whereas other relate to
choices of actions: OC(α) 6→ OC(α+β), OC(α+β) 6→ OC(α),
OC(α+ β) 6→ OC(α×β) or OC(α×β) 6→ OC(α+ β).

With the formal apparatus of CL one could automatically
answer questions like (after writing a contract as a CL for-
mula): (a) Are there superfluous clauses? That is, could
we simplify the contract if one clause entails another, or if
some clauses would never be enacted due to unreachable
conditions? (b) What are the client’s (provider’s) obliga-
tions or rights? (c) Are client’s (provider’s) interests met
by the contract? The interests of one party (and not only)
are expressed as properties about the contract. These can be
written in CL or temporal logic for that matter, and proper-
ties may be checked on the abstract model of the contract.
Otherwise, one could do inference reasoning using a proof
system for CL. (d) Is the contract contradiction-free?

3. FINAL REMARKS
With CL our main interest is not the development of yet-

another-language for the specification and representation of
normative notions, but a formal system (based on logic) to
reason automatically about contracts. CL is not too expres-
sive as to capture all the features of legal contracts, but it
is expressive enough as to capture many useful abstractions
of legal contracts. This lack of expressiveness should not
be seen as negative since it will allow us to perform auto-
matic analysis of some properties of contracts, as we have
presented in this paper.

4. REFERENCES
[1] J. Broersen, R. Wieringa, and J.-J. C. Meyer. A

fixed-point characterization of a deontic logic of regular
action. Fundam. Inf., 48(2-3):107–128, 2001.

[2] J. Carmo and A. Jones. Deontic logic and
contrary-to-duties. In Handbook of Philosophical Logic,
pages 265–343. Kluwer, 2002.

[3] P. F. Castro and T. Maibaum. A complete and
compact propositional deontic logic. In ICTAC’07,
volume 4711 of LNCS, pages 109–123, 2007.

[4] J.-J. C. Meyer. A different approach to deontic logic:
Deontic logic viewed as a variant of dynamic logic.
Notre Dame J. Formal Logic, 29(1):109–136, 1988.

[5] R. Milner. Calculi for synchrony and asynchrony.
Theorethical Computer Science, 25:267–310, 1983.

[6] C. Prisacariu and G. Schneider. CL: An Action-based
Logic for Reasoning about Contracts. In WOLLIC’09,
volume 5514 of LNCS. Springer, 2009.

[7] R. Van der Meyden. Dynamic logic of permission, the.
In LICS’90, pages 72–78. IEEE, 1990.

[8] G. H. Von Wright. An Essay in Deontic Logic and the
General Theory of Action. North Holland, 1968.

3The unwanted implications (6→) are non-validities in CL.

