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Abstract

We understand by acontracta document written in natural language which engages sev-
eral parties into a transaction, and which stipulates commitments (obligations, rights, and
prohibitions) of the parties. Moreover the contract specifies also reparations in case of
contract violation (i.e. some obligations or prohibitionsare not respected). Because the
human language is ambiguous by nature, contracts (written in plain English, for example)
are inherent ambiguous. This ambiguity can, and many times is exploited by the parties
involved in the contract. The purpose of our research is to eliminate this ambiguity as
much as possible and to automate the process of designing, negotiation and monitoring
of contracts. For this purpose contracts should be amenableto formal analysis (including
model-checking) and thus should be written in a formal language.

There are currently several different approaches aiming atdefining a formal language
for contracts. Some works concentrate on the definition of contract taxonomies [1], while
others look for formalizations based on logics (e.g. classical [4], modal [3], deontic [6]
or defeasible logic [5]). Other formalizations are based onmodels of computation (e.g.
FSMs [7], Petri Nets [2], or process calculi [12]). None of the above has reached enough
maturity as to be consideredthesolution to the problems of formal definition of contracts.
In our opinion, the most promising approach to formalizing contracts is the one based on
logics of actions [13,14] (i.e. actions found in contracts). It has been argued for the need
to base deontic logic on a theory of actions which would solvemany of the paradoxes
deontic logic faces.

The method ofmodel-checkingis an old and established field of computer science.
Model-checking has been applied in several fields of computer science from hardware
circuits to concurrent programs. The idea ofmodel-checking electronic contractsis ex-
tremely new and of great interest. From our knowledge there has been no attempt of us-
ing the classical model-checking techniques (or an established model-checking tool) on
a real electronic contract example. Model-checking tools usually describe the system as
an automata-like structure and the property to be checked ina temporal logic (like CTL,
LTL, or µ-calculus). With the contract written in a formal language with semantics based
on a Kripke-like structure we wold have the automaton input for the model-checking
tools.

Our aim is to define a general framework for describing in a uniform way both the
contract and the properties.

In [11] we have provided a formal language for writing contracts, which allows to
write (conditional) obligations, permissions and prohibitions over (names of) humanac-
tions as well as reparations in case of violations. The language isspecially tailored for
representing statements found in contracts and is proven toavoid major deontic paradoxes
(for motivations and design decisions we refer the reader to[11]). Here we briefly sketch
and discuss the ideas behind the syntax of the contract languageCL.



Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C
CO := O(α) | CO ⊕ CO CP := P (α) | CP ⊕ CP CF := F (α) | CF ∨ [α]CF

A contract consists of two parts:definitions(D) andclauses(C). D specifies theas-
sertionsφ (which ranges over Boolean expressions including arithmetic comparisons,
like the budget is more than 200$), and the atomic actions present in the clauses. Actions
α are formalized by theCAT action algebra which we see later.C is the generalcon-
tract clause. CO, CP , andCF denote respectivelyobligation, permission, andprohibition
clauses.∧, ⊕, and∨ may be thought as the classical conjunction, exclusive disjunction,
and disjunction.

We borrow from Propositional Dynamic Logic (PDL) the syntax[α]φ to represent
that after performingα (if it is possible to do so),φ must hold. The[·] notation allows
having atest, where[φ?]C must be understood asφ ⇒ C. The syntax〈α〉φ captures the
idea that there must exist the possibility of executing actionα, in which caseφ must hold
afterwards. Following temporal logic (TL) [9] notation we haveU (until), © (next), and
� (always) with intuitive semantics as in TL. ThusC1 U C2 states thatC1 should hold
until C2 holds.©C intuitively states that theC should hold in the next moment.

In [10] we have defined a new algebraic structure to provide a well-founded formal
basis forCL and to help give a direct semantics to the language. The main contributions of
the algebra are: (1) A formalization of actions found in contracts; (2) The introduction of
a different kind of negation over actions; (3) A restricted notion of resource-awareness;
and (4) A standard interpretation of the algebra over specially defined guarded rooted
trees. The algebra is proven to be complete w.r.t. the interpretation as trees.

We called our algebraCAT to stand foralgebra of concurrent actions and tests.
CAT = (CA,B) is formed of an algebraic structureCA = (A, +, ·, &,0,1) which
defines the concurrent actions, and a Boolean algebraB = (A1,∨,∧,¬,⊥,⊤) which
defines the tests. Special care has to be taken when combiningactions and tests under the
different algebraic operators.

Actions ofA are constructed from atomic actionsAB by applying:choice(+), se-
quence(·), or concurrentcomposition (&). Tests ofA1 are constructed with the classical
boolean operators (∨, ∧, and¬) and the constants (⊥ and⊤). Moreover,(A, +, ·,0,1)
is an idempotent semiring and(A, +, &,0,1) is a commutative and idempotent semir-
ing. We consider aconflict relationover the set of atomic actionsAB (denoted by#C )

defined as:a #C b
def
⇐⇒ a&b = 0. The intuition of the conflict relation is that if two

actions are in conflict then the actions cannot be executed concurrently.
With the actions and their interpretation as guarded rootedtrees it is simple now to

give a direct semantics to the languageCL. In [11] the semantics ofCL was given through
a translation into a variant ofµ-calculus. We have usedCL and theµ-calculus semantics
in [8] to do model-checking of an example from a real contract.

We have used the state-of-the-art tool NuSMV and followed the steps: (1) first trans-
late the conventional contract into the formal languageCL; (2) translate syntactically the
CL specification into the extendedµ-calculusCµ to obtain a Kripke-like model (a labeled
transition system, LTS) of theCµ formulas (representing the semantics of theCL spec-
ification); (3) translate the LTS into the input language of NuSMV and perform model
checking using NuSMV; (4) in case of a counter-example givenby NuSMV, interpret it
as aCL clause and repeat the model checking process until the property is satisfied; (5)
finally, repair the original contract by adding a corresponding clause, if applicable.



Besides classical properties like liveness, safety, or response which can be specified
using LTL or CTL we are also interested in properties more specific to electronic con-
tracts. The first kind of properties issearch properties. Examples of search properties
include: listing of the obligations, or prohibitions of oneof the parties in the contract;
listing of the rights that follow after the fulfilling of an obligation; or what are the penal-
ties for whenever violating an obligation or prohibition, and so on. A second kind of
reasoning about a contract (formalized in our contract language) is quantitative reason-
ing with respect to the amount of obligations or of rights a contract imposes. Examples
of such properties include: the client would like to know if the contract can be changed
so that the client has a smaller number of obligations, or a greater number of rights; if
quantitative measures are inserted into the language (liketime or amounts) one could ask
to minimize time between certain events, or try to change thecontract so that a mini-
mal(maximal) amount is reached.
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