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Abstract

We understand by eontracta document written in natural language which engages sev-
eral parties into a transaction, and which stipulates camenits (obligations, rights, and
prohibitions) of the parties. Moreover the contract spesifilso reparations in case of
contract violation (i.e. some obligations or prohibiticare not respected). Because the
human language is ambiguous by nature, contracts (wriitplain English, for example)
are inherent ambiguous. This ambiguity can, and many tisiegploited by the parties
involved in the contract. The purpose of our research isitnieate this ambiguity as
much as possible and to automate the process of designiggtiai®on and monitoring
of contracts. For this purpose contracts should be ametabBdemal analysis (including
model-checking) and thus should be written in a formal |aaggu

There are currently several different approaches aimidgfating a formal language
for contracts. Some works concentrate on the definition nfreat taxonomies [1], while
others look for formalizations based on logics (e.g. ctzdq¥], modal [3], deontic [6]
or defeasible logic [5]). Other formalizations are basedrwdels of computation (e.g.
FSMs [7], Petri Nets [2], or process calculi [12]). None of tibove has reached enough
maturity as to be considerdige solution to the problems of formal definition of contracts.
In our opinion, the most promising approach to formalizingitacts is the one based on
logics of actions [13,14] (i.e. actions found in contrackshas been argued for the need
to base deontic logic on a theory of actions which would sohamy of the paradoxes
deontic logic faces.

The method ofmodel-checkings an old and established field of computer science.
Model-checking has been applied in several fields of commmdience from hardware
circuits to concurrent programs. The ideanoddel-checking electronic contradtsex-
tremely new and of great interest. From our knowledge thasshteen no attempt of us-
ing the classical model-checking techniques (or an estaddi model-checking tool) on
a real electronic contract example. Model-checking toslsally describe the system as
an automata-like structure and the property to be checkademporal logic (like CTL,
LTL, or u-calculus). With the contract written in a formal languagéwgemantics based
on a Kripke-like structure we wold have the automaton inmutthe model-checking
tools.

Our aim is to define a general framework for describing in darm way both the
contract and the properties.

In [11] we have provided a formal language for writing contsa which allows to
write (conditional) obligations, permissions and protidsis over (names of) humaat-
tionsas well as reparations in case of violations. The languagpésially tailored for
representing statements found in contracts and is proveroid major deontic paradoxes
(for motivations and design decisions we refer the readgrf). Here we briefly sketch
and discuss the ideas behind the syntax of the contractdaeg.



Contract := D ; C
C:=0¢|Col|Cp|Cr|CAC|[a]C[(a)C|CUC| OC|OC
Co:=0(a)|Co®Co Cp:=Pla)|Cp®dCp Cr:=F(a)|CrV|[a]CF

A contract consists of two partdefinitions(D) andclauseqC). D specifies thes-
sertions¢ (which ranges over Boolean expressions including aritfor@mparisons,
like the budget is more than 20p$nd the atomic actions present in the clauses. Actions
« are formalized by th€ A7 action algebra which we see latéris the generaton-
tract clauseCp, Cp, andCr denote respectivelgbligation permissionandprohibition
clausesA, @, andVv may be thought as the classical conjunction, exclusiveidgtjon,
and disjunction.

We borrow from Propositional Dynamic Logic (PDL) the synfaX¢ to represent
that after performingy (if it is possible to do so)¢ must hold. The:] notation allows
having atest where[¢?]C must be understood @s = C. The syntaX«)¢ captures the
idea that there must exist the possibility of executingaawii, in which case) must hold
afterwards. Following temporal logic (TL) [9] notation waNe ¢/ (until), O (nexd, and
O (alway9 with intuitive semantics as in TL. Thus, ¢ C. states that’; should hold
until Co holds.(OC intuitively states that thé should hold in the next moment.

In [10] we have defined a new algebraic structure to provideltrfiounded formal
basis folC £ and to help give a direct semantics to the language. The roatnilbutions of
the algebra are: (1) A formalization of actions found in caats; (2) The introduction of
a different kind of negation over actions; (3) A restrictemtian of resource-awareness;
and (4) A standard interpretation of the algebra over spigaefined guarded rooted
trees. The algebra is proven to be complete w.r.t. the irg&apon as trees.

We called our algebr& A7 to stand foralgebra of concurrent actions and tests
CAT = (CA,B) is formed of an algebraic structuted = (A, +,-,&,0,1) which
defines the concurrent actions, and a Boolean algBbra (A1, V, A, -, L, T) which
defines the tests. Special care has to be taken when comhitings and tests under the
different algebraic operators.

Actions of A are constructed from atomic actiontss by applying:choice(+), se-
quence-), or concurrentcomposition &). Tests of4; are constructed with the classical
boolean operators/( A, and—) and the constantsl(and T). Moreover,(A, +,-,0,1)
is an idempotent semiring arld4, +, &, 0, 1) is a commutative and idempotent semir-

ing. We consider @onflict relationover the set of atomic actiondp (denoted by#¢)

defined asu #¢ b & a&b = 0. The intuition of the conflict relation is that if two

actions are in conflict then the actions cannot be executecucoently.

With the actions and their interpretation as guarded rotseks it is simple now to
give a direct semantics to the langudgé In [11] the semantics @ £ was given through
a translation into a variant gf-calculus. We have use&tC and theu-calculus semantics
in [8] to do model-checking of an example from a real contract

We have used the state-of-the-art tool NuSMV and followedstieps: (1) first trans-
late the conventional contract into the formal langu@ge (2) translate syntactically the
C L specification into the extendedcalculusC . to obtain a Kripke-like model (a labeled
transition system, LTS) of théu formulas (representing the semantics of ¢he spec-
ification); (3) translate the LTS into the input language afSWV and perform model
checking using NuSMV; (4) in case of a counter-example glwemNuSMYV, interpret it
as aCL clause and repeat the model checking process until the pyapesatisfied; (5)
finally, repair the original contract by adding a corresgagalause, if applicable.



Besides classical properties like liveness, safety, ggaiese which can be specified
using LTL or CTL we are also interested in properties morec#joeto electronic con-
tracts. The first kind of properties &earch propertiesExamples of search properties
include: listing of the obligations, or prohibitions of onéthe parties in the contract;
listing of the rights that follow after the fulfilling of an digation; or what are the penal-
ties for whenever violating an obligation or prohibitiomdaso on. A second kind of
reasoning about a contract (formalized in our contractlagg) is quantitative reason-
ing with respect to the amount of obligations or of rights atcact imposes. Examples
of such properties include: the client would like to knowtiétcontract can be changed
so that the client has a smaller number of obligations, oreatgr number of rights; if
gquantitative measures are inserted into the languagetifiteeor amounts) one could ask
to minimize time between certain events, or try to changecthr@gract so that a mini-
mal(maximal) amount is reached.
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