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Abstract

In this paper we address the problem of how two devices that are sensing
the same heart signal can generate the same cryptographic token by extracting
them from the Inter-Pulse Intervals (IPIs) of each cardiac signal. Our analysis is
based on the use of a run-time monitor, which is extracted from a formal model
and verified against predefined properties, combined with a fuzzy extractor to
improve the final result. We first show that it is impossible, in general, to correct
the differences between the IPIs derived from two captured electrocardiogram
(ECG) signals when using only error correction techniques, thus being impossi-
ble to corroborate previous claims on the feasibility of this approach. Then, we
provide a large-scale evaluation of the proposed method (run-time monitor and
fuzzy extractor) over 19 public databases from the Physionet repository con-
taining heart signals. The results clearly show the practicality of our proposal
achieving a 91% of synchronization probability for healthy individuals. Addi-
tionally, we also conduct an experiment to check how long the sensors should
record the heart signal in order to generate tokens of 32, 64 and 128 bits. Con-
trarily to what it is usually assumed (6, 12, and 24 seconds for individuals with
a heart rate of 80 beats-per-minute), the sensors have to wait 13, 28 and 56.5
seconds on median, respectively, to derive the same token from both sensor
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1. Introduction

Interest in biometrics has gained momentum in the last years mostly due to
the massive use of daily life devices like smartwatches, smartphones and laptops
[1, 2]. This technology identifies and authenticates people in an automatic way
based on biological and behavioral traits [3]. This interest is not temporary.5

According to a recently published report, global biometric market revenues will
reach $34.6 billion annually in 2020, especially in mobile devices [4].

From a technical point of view, biometrics can be classified into two main
groups depending on whether they use physiological or behavioral signals. Ex-
amples of physiological signals include fingerprints, iris, retina, heart and brain10

signals, whereas voice, signature analysis or keystroke dynamics are behavioral
signals. The main reason why such signals can be easily included in authenti-
cation systems is because they exhibit a number of desirable features: they are
universal, collectible, unobtrusive, permanent, unique, and difficult to circum-
vent [5].15

The research outcome in this area is that most gadgets, such as smartphones,
tablets, wearables and Implantable Medical Devices (IMDs), have been equipped
with one or more embedded sensors with the ability to measure biometric pa-
rameters from the bearer. Besides having biometrics sensors, most (if not all)
of these devices are enhanced with some wireless communication technology,20

e.g., Bluetooth, WiFi or Radio Frequency (RF), allowing them to share data
and to perform remote reconfiguration [6]. All the above has given birth to the
so-called Wireless Body Area Network (WBAN).

Figure 1: Two ECG signals from svdb [7] database.

In the last years, several works have focused on using the heart signal as part
of either authentication protocols [8, 9, 10], human identification [11, 12], or as25

a key generation algorithm [13, 14, 15, 16] to enable secure communications.
More concretely, authors use the Electrocardiogram (ECG) to extract the time
difference between two consecutive heartbeats (R-peaks). These time intervals
are referred to as Inter-Pulse Intervals (IPIs) or RR-intervals and have been
shown to contain some degree of entropy after applying a quantization algorithm30

(see Section 3.2.1). This makes the IPI values an ideal candidate to generate
tokens to be used in cryptographic solutions (e.g., [8, 10, 17, 18, 19]).
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In order to obtain a biometric signature based on the heart signal, different
sensors such as ECG, Photoplethysmographic (PPG) or Blood Pressure (BP)
can be used. The ECG signal is measured using electrodes usually placed on35

the chest which detect the tiny electrical changes in the heart and generate a
complex digital signal. The PPG detects the pulse of the heart by measuring
the amount of light which is reflected in the skin to a photodiode. As a light
source, most of the commercial gadgets have a LED on them, e.g., smartwatches
and sport wrists. As an example on how these advances may be used for new40

purposes, some researchers have recently used a BP sensor to get the bearer’s
heart signal [10]: this sensor can measure the pressure in large arteries in the
systemic circulation, so the signal reflects the up and down fluctuation of the
arterial pressure which is related to each heartbeat.

Using these sensors is not trivial though, as there are some technical difficul-45

ties due to different factors. For example, even when two similar sensors—from
the same manufacturer, having the same brand, and with the same capabilities—
are measuring the same heart signal in the same part of the body, the resulting
signal would likely be different in both sensors due to the noise of the signals,
missed data during the gathering phase, delays, or simply because of the bearer’s50

movements [20].
Along the same lines, it has been reported in [21] that both Heart-Rate

Variability (HRV) and Inter-Sensor Variability (VARis) measurements directly
affect the processing of the heart signal and, in particular, the peak detection
procedure. These issues become crucial when a cryptographic protocol entirely55

relies on biometric data acquisition to generate random tokens, e.g., random
seeds or fresh nonces, to be used for key generation [22] or in authentication
procedures [8].

In particular, the problem of signal synchronization is quite relevant in the
health sector where expensive medical electrodes are used. Let us consider a60

real example of measuring ECGs using two different sensors. Figure 1 shows two
ECG signals, channel 1 (ECG1) and channel 2 (ECG2), taken from the public
database svdb [7]. This database is composed of 78 half-hour ECG recordings
of supraventricular arrhythmias. The beats per minute (bpm) in both signals
are the same, or, in the worst case, show a difference of a few bpm. However,65

at low level, the time differences between two consecutive heartbeats (R-peaks),
are slightly different in ECG1 and ECG2. Thus, despite sensing the same ECG
from the same patient, both channels have different signals, and it is easy to
see that even by shifting any of the signals it could not be possible to fully
synchronize them.70

Authors are somehow aware of this problem and for instance in [20], a miss-
detection algorithm is proposed that given two ECGs, authors “manually” add a
peak in the place where it was supposed to be whenever it is detected that a peak
was missing in order to generate the same token in different devices. Some years
later, in [23], authors propose a key-exchange protocol among a Programmer275

2Device used to (re)configure IMDs.
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and an IMD where both devices generate the same key from the heart signal.
After gathering the same signal, authors apply a Bose-Chaudhuri-Hocquenghem
(BCH), which is an Error Correcting Code (ECC), to the generated keys in
both devices to finally get the same value.

1.1. Our Work80

No matter if authentication protocols for WBAN were published [8, 11, 24],
if key distribution schemes based on the heart signals were proposed [9, 23] or
whether authors assumed that there is a secure communication channel and a
shared key is derived from the heart signal to be used afterwards in a crypto-
graphic protocol [10, 13, 20, 25], all these proposals rely on the same assumption:85

there are two sensors measuring the heart signal and they can derive the same
cryptographic token under an IPI-based approach and after applying an ECC
algorithm like BCH. Unfortunately, after an in depth analysis (19 databases),
we show that the above claim does not hold when only an ECC algorithm is
used to correct errors between the two generated tokens.90

Motivated by this, we carry out an analysis on the (open) question concern-
ing the generation of a cryptographic token based on the analysis of IPI values
from different ECG devices that are sensing the same heart signal. Our analysis
is based on the use of a run-time monitor, extracted from a formal model, i.e., a
timed automaton, that is verified against predefined properties, combined with95

a fuzzy extractor (i.e., an ECC) to improve the final result. We show that it is
impossible, in general, to correct the differences between the two captured sig-
nals when using only the fuzzy extractor, thus being impossible to corroborate
previous claims on the feasibility of the approach.

Our proposed method can successfully synchronize two heart signals through100

IPI values and extract a common token that can be used afterwords as part of a
cryptographic protocol, as one more security check in order to proof that both
devices are attached to the same body by proving that they are listening to the
same heart signal, i.e., they are attached to the same body.

To the best of our knowledge, this is the first work to use a run-time monitor105

in combination with a fuzzy extractor. In addition, to demonstrate the validity
of our approach, we provide a large-scale evaluation of the proposed method over
19 public databases containing heart signals. However, we do not evaluate how
good or bad the IPI-based generated random tokens are from a cryptographic
point of view; we urge the reader to consult [26] for an in-depth analysis of this110

issue.
After applying our proposed solution to public databases containing at least

two measurements of heart signals (ECG1 and ECG2), we conclude that a fuzzy
extractor (or another error correction technique) is not enough to correct the
synchronization errors between the IPI values derived from two ECG signals115

captured via two sensors placed on different positions (Section 3). In particular,
we show that a pre-processing of the heart signal must be performed before the
fuzzy extractor is applied.
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1.2. Contributions

In summary, our contributions are:120

• We perform an in-depth analysis of the problem of how to synchronize
two cryptographic tokens generated by two different ECG sensors that
record the same heart signal and use the IPIs as the basics for generating
the mentioned tokens. We show how an initial signal pre-processing step
is necessary for the error correction algorithm (e.g., fuzzy extractor) to125

work properly. Our results show that it is not possible to assume that two
sensors can derive a common token just by applying an error correction
algorithm without having previously synchronized both signals. In sum-
mary, this first result gives evidence that the assumptions under which
previous IPI-based solutions operate are not correct and does not guaran-130

tee that the same token can be extracted from two ECGs sensors (Section
3.2).

• In order to perform the synchronization (at IPI values level) between two
ECGs sensors, we have generated a run-time monitor from a timed au-
tomaton, which has been verified correct with respect to predefined timing135

properties. We compare our results before and after applying a fuzzy ex-
tractor and demonstrate our improvement in performance (Section 3.3).

• We modified our timed automaton and the monitor in order to extract
a token with a given accuracy (namely 32, 64 and 128 bits), in order to
gather statistical information on how long it would take (median) to get140

a token with the requested accuracy. We found that to generate a 32,
64 and 128 bits tokens, a sensor should wait on median 13, 28 and 56.5
seconds, respectively (for individual with a heart rate of 80 beats-per-
minute), instead of 6, 12, and 24 seconds as reported in previous works,
i.e., [8, 11, 27, 28] (Section 3.3.2).145

• We have developed a proof-of-concept implementation of an ECG-based
token generator by using a BITalino shield3 (Section 4). This shield has
two ECG channels connected using wires and the pre-processing is exe-
cuted before the token generation (IPI-based approach in our particular
case) takes place. The purpose of this proof-of-concept is to shed further150

light on the technical real difficulties in getting a fully working implemen-
tation of such a solution.

• As it was previously stated, the contributions in this article shed light on
the feasibility of IPI-based solutions, where two sensors obtain such values
from the same organ (in our case the heart). On the other hand, in this155

article we do not analyze the security of IPI values, which has been widely
studied in the literature (e.g., [8, 10, 26, 18]).

3http://bitalino.com/en/
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1.3. Organization

The rest of this paper is organized as follows, in Section 2 we provide some
basic knowledge in order to facilitate the reading of the rest of the paper. Section160

3 presents the core of our work, while Section 4 introduces our proof-of-concept
implementation of the proposed solution. Section 5 contains a summary of the
main published papers in this research area. Finally, we conclude and present
future directions for further research in the last Section.

2. Background165

In this section we provide some preliminaries on Body Area Networks (BANs)
and we give a brief overview of the datasets used for the experiments. After this,
we yield an overview of related work that has explored how heart signals can be
applied to biometrics and cryptography. We also discuss why fuzzy extractors
are often used in the literature together with biometrics. Finally, we give some170

background about modeling and verification of real-time systems focusing on
how formal verification is used to verify the run-time monitor that we use in to
synchronize two ECG signals.

2.1. Body Area Networks

With the recent advances on technology, manufacturers are creating small175

and affordable sensors that people can be equipped with in order to acquire
different parameters from their vital signs. For instance, athletes usually wear
chest band to measure the heart beats while training or even when they are
competing. In the case of elderly people, they might be remotely monitored
without the need to be in a medical center. Moreover, nowadays it is common180

to have smartwatches or sport gadgets equipped with accelerometers, Global
Positioning System (GPS), and PPG to measure the heart rate. These devices
also have communication modules such as WiFi, Bluetooth or RF.

When all these gadgets are working together, it is said that they are part
of a Wireless Body Area Network (WBAN) (Figure 2). That is, a WBAN is185

a private network composed of sensors and/or actuators that measure different
vital signs and send this information to a central node, typically the bearer’s
smartphone—which is assumed to be trusted—that acts as a gateway between
the WBAN and the Internet [29, 30].

2.2. The Physionet Repository190

Physionet [31] is a public repository composed of different databases about
physiologic signals of healthy and patients with diseases. The main purpose of
this repository is to allow and encourage researchers to investigate in the study
of diseases and physiologic signals. Specifically, in this work we are only focusing
on heart signals and, more precisely, in those databases with at least two ECG195

channels. That being said, popular databases such as fantasia [32] or apnea-ecg
[33] are not considered in our study because there is only one ECG channel in
their records. On the contrary, when more than two ECG signals are found in
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Figure 2: Body Area Network.

the same file, we are taking the first two signals we found (in a sequential order)
in the .hea file which is a special file where the metadata of the record is stored.200

In order to automate the process, we implemented a script to download 19
databases from the Physionet repository. A description of the databases can be
seen in Table 1 where the number of files represents the number of patients we
used in our experiments. Apart from that, we computed the average number
(median) of R-peaks (heartbeats) that both the first channel of the ECG (ECG1)205

and the second channel of the ECG (ECG2) have. For each database we also
included the heart condition (if any) of the patients.

From that table it is interesting to see that the number of peaks, using the
well-established Pan-Tompkins algorithm for peak detection [51], is only equal
in three databases: cebsdb, qtdb and vfdb whereas the values are almost equal210

in the iafdb and twadb databases. All the rest of the databases (14 out of 19)
have different number of peaks.

Finally, Figure 3 shows the number of patients that cannot be considered
part of the dataset because they do not reach the minimum number of IPIs
which is 8, 16 and 32 to compute the tokens of 32, 64 and 128 bits respectively.215

2.3. Heart Signals in Cryptography

The use of ECG signals and IPI-based approaches for cryptographic appli-
cations has been widely studied in the literature. Even though some researchers
take more than the 4 Least Significant Bits (LSBs) of the IPI to generate cryp-
tographic tokens, e.g., [52, 53]), the vast majority of the research community,220

e.g., [8, 10, 11, 13, 15, 20, 54, 17, 55, 56, 57, 18, 19] use the 4 LSBs extracted
after applying the quantization algorithm explained in Section 3.2.1, or a slight
variation of it proven to contain some degree of entropy. As we try to be as gen-
eral as possible, we use the 4 LSBs to generate tokens in our experiments. It is
worth mentioning that although our work is focused on IPI values, which is the225
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Database Files Peaks Peaks Heart condition
in ECG1 in ECG2

afdb [34] 23 49003 48294 Atrial fibrillation
afpdb [35] 300 1817 1797 Paroxysmal atrial fibrillation
ahadb [36] 2 8473 8183 Healthy and ventricular ectopy
cebsdb [37] 60 360 360 Healthy
edb [38] 90 8852 881 Myocardial and hypertension
iafdb [39] 32 91 88 Atrial fibrillation or flutter
incartdb [40] 75 2263 2327 Coronary artery disease
ltafdb [41] 84 110632 108205 Paroxysmal
mitdb [42] 48 2204 2227 Arrhythmia
nsrdb [43] 18 99746 10066 No significant arrhythmias
nstdb [44] 15 2556 2544 Mitdb with noise
prcp [44] 10 4310 3355 Healthy
qtdb [45] 105 1044 1044 Holter recordings
sddb [46] 22 25969 36615 Arrhythmia
shareedb [47] 139 95809 95896 Hypertension
slpdb [48] 18 21087 23892 Sleep apnea syndrome
svdb [7] 70 2322 2323 Partial epilepsy
twadb [49] 100 185 184 Myocardial problems
vfdb [50] 22 3457 3457 Tachycardia

Table 1: Summary of the databases.

Figure 3: Deleted patients vs tokens length.
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most widely used approach, some authors have proposed alternative solutions
which work in a transform domain (e.g., [58] or [16]).

In most of the aforementioned IPI-based works it is assumed that there are
two devices listening to the heart signal and they extract a random token which
is used afterwards in a cryptographic protocol. However, to the best of our230

knowledge, no one has performed an in-depth empirical analysis to check if it is
indeed possible to extract a common token from the same signal (particularly,
the ECG) gathered from different devices over the same body. Our work aims
to fill in this gap and focused exclusively on IPI-based approaches.

2.4. Fuzzy Extractor235

Juels and Wattenberg were the first who introduced the term fuzzy com-
mitment in [59], where a cryptographic key is extracted from a biometric signal
such as an ECG or an Electroencephalogram (EEG). The process of generating
this key is through an algorithm called fuzzy extractor.

Fuzzy extractors are not only applied to key generation protocols based on240

biometrics [60, 61, 62] but also for generating keys for authentication purposes,
by using Physical Unconlable Functions (PUFs) [63, 64], and for key generation
in Vehicular Ad-Hoc Networks (VANETs) [65].

Formally, a fuzzy extractor is a function f which takes as input a biometric
signal w, and produces a random string R and a public parameter P . Fuzzy245

extractors are particularly suitable for cryptographic protocols because when
the input w′ changes slightly, i.e., w′ = w + ε for a very small ε, the random
output R remains invariant [66].

Generation

R

W Reproduction
P

W’

R

Figure 4: Scheme of fuzzy extractor [67].

Typically, a fuzzy extractor is composed of two main phases: generation
and reproduction [66]. As it can be seen in Figure 4, in the generation phase, a250

biometric signal w is received as input and two parameters are given as output: a
secret value R and a public value P . In the reproduction phase, a fresh biometric
signal w′ is given as input together with the public parameter P , previously
generated in the generation phase. If and only if the distance between these
two biometric signals—typically the Hamming distance—is less than a given255

threshold tr (Hamming(w,w′) < tr), then the same output R will be retrieved.

2.5. Modelling and Verification of Real-Time Systems

Our application is a typical example of a real-time system, where a number
of real-time constraints must be satisfied. Our proposed solution is based on
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the satisfaction of three important real-time properties concerning: i) the time260

between two consecutive peaks of each ECG signal; ii) the relative time between
peaks from the different heart signals; iii) the total sampling time to return back
a valid token. Note that this final requirement is to force the algorithm to finish
its execution after a fixed time. We give some upper-bounds of these times in
Section 3.3.2.265

The design, reasoning and implementation of real-time systems have been
addressed by different communities, in particular by formal methods researchers
and more specifically those concerned with real-time verification [68]. In that
community, the idea is to make an abstract model to represent the real-time sys-
tem or some specific time constraints of the system, and apply tools to increase270

the confidence that the model satisfies some properties. One of the most broadly
used formalism to model real-time systems is timed automata [69], for which rea-
sonable mature tools have been developed to reason about, e.g., UPPAAL [70]
and KRONOS [71]. In those tools, one specifies the model as a timed automata
and writes properties about it on a real-time logic called Timed Computation275

Tree Logic (TCTL) [72].
The idea is that after performing such verification on the model, one may

then write an implementation by taking the timed automaton as a starting point.
Depending on the abstraction level of the model, the implementation might be
more or less difficult to obtain. Though there is a gap between the model and280

the implementation, and errors might be introduced when an implementation
is obtained from the model, it is clearly an advantage to have a verified model
in the first place. As we will see later, in our case the implementation is di-
rectly obtained from the model, which gives us quite a high confidence on the
correctness of our solution with respect to the specified timing constraints.285

3. ECG-Based Token Generation Procedure

In this section, we first explain the methodology we have followed to carry out
our research. We then explain in detail how we generated tokens from different
ECG signals, and demonstrate how a pre-processing phase is needed to agree
on the same token generated. Finally, we propose a timed automaton satisfying290

our properties and create the corresponding monitor in order to synchronize the
signals (and thus generate the same token).

3.1. Our Methodology

All the experiments presented in this section were run on a Macbook Pro
2.4Ghz with 4Gb of RAM. The processing of all the patients’ signals were im-295

plemented on Matlab.
We analyze all the performed experiments and discuss the results obtained

after generating two tokens independently (emulating different sensors) in 4
scenarios: 1. running a quantization algorithm (Section 3.2.1); 2. running a
fuzzy extractor algorithm (Section 3.2.2); 3. running a run-time monitor (Section300

3.3.1), and; 4. running a run-time monitor and a fuzzy extractor algorithm
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(Section 3.3.2). Finally, from our results we conclude that synchronization of
the signals is a must if we want the sensors to derive the same token from the
ECG signal.

Regarding the run-time monitor, two specific values need to be computed305

beforehand: the time between two consecutive peaks from both the same ECG
channel and from different channels. To generate an upper-bound of those
values with statistical significance, we require the person to be quite and calm.
However, due to the fact that we are using the Physionet repository with all
the signals already measured, we decided to use the mean of the time interval310

between R-peaks of each one of the signals as an upper-bound which is a common
technique used in medical research [73]. Additionally, we set the maximum
time between consecutive peaks for different signals in the case of Physionet
repository to 1

fs
where fs is the reading frequency of the device where the signal

is gathered. This is due to the fact that this parameter is determined by the315

physical distance between sensors and in the case of the Physionet databases, all
the patients were monitored using wired ECG sensors attached to their chest.

Having computed those numbers, we have verified three main properties:
i) the time between two consecutive peaks of each ECG signal; ii) the relative
time between peaks from the different heart signals, and; iii) the total sampling320

time. Similarly [20], we consider that when the time interval between two con-
secutive peaks from the same signal is longer than the computed upper-bound,
then the monitor resets its clocks and considers that there a miss-detected peak
was found. Also, when the time interval between two consecutive peaks from
different signals is longer than 1

fs
then the monitor resets its clocks and consid-325

ers that those peaks are not synchronized. Finally, we have proved that after
t seconds, the final state is always reached and if and only if there are enough
synchronized IPI then a token is computed.

3.2. Debunking ECG-Based Token Generation Myths

3.2.1. Token Generation Algorithm330

Our first experiment goal was to generate as many tokens of 128 bits as pos-
sible from both channels (ECG1 and ECG2) of the patients of all the databases
to know how different they are. In order to process the ECG signal—which is
a continuous signal, it must be transformed to a discrete one. This process is
known as quantization (e.g., uniform or dynamic quantization) and it is one of335

the most important steps in the token generation based on heart signals [74].
As far as we know, in the context of ECG IPI-based approaches, the dynamic

quantization firstly proposed by Rostami et al. in [8] is the most extended in the
literature. In a nutshell, their algorithm works as follows. First, the ECG signal
is cleaned (i.e., the DC component is eliminated and then the ECG signal is340

passed through a pass-band filter with 0.67Hz and 45Hz cut-off frequencies [75]).
Second, R-peaks are extracted from the heart signal by using Pan-Tompkins
algorithm [76] and the time difference between R-peaks are computed and thus,
the IPIs are generated. Third, the IPIs values are dynamically transformed
into values between 0 and 1. Then the data are multiplied by 256 and rounded345
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to the nearest integer. Finally, the Gray code encoding scheme with 8-bit of
precision is used to facilitate error correction and the 4 LSBs of each IPIs are
extracted to generate a token. This token is computed by appending these 4
LSBs [17, 19]; in order to create a 128-bit number at least 32 IPIs should be
processed. The source code of the dynamic quantization is freely available at350

https://github.com/aylara/synchro (i.e., see getIPIsSignal.m file).
The pseudocode of the aforementioned IPI extraction algorithm, which is

also used in this paper to process the signal and extract the 4 LSBs of the IPIs,
is shown as Algorithm 1.

Algorithm 1 IPIs’ extraction.

1: procedure IPIgeneration(record)
2: signal ← get signal(record)
3: freq ← get sampling frequency(record)
4: cleaned signal ← ECG pre-processing(record)
5: IPIs ← Pan Tompkins(cleaned signal,freq)
6: IPIs ← dynamic quantization(IPIs)
7: result ← [ ]
8: for ipi ∈ IPIs do
9: grey← grey code(ipi)

10: IPINEW ← get LSB(gray)
11: result.append(IPINEW)
12: end for
13: return result
14: end procedure

As mentioned before, we generate as many 128 bits tokens as possible per355

user per database and the result of this analysis can be seen in the second column
of Table 2. Note that this column contains the sum of all the tokens extracted
per database for only one channel (ECG1 or ECG2). Also, we computed how
many of these tokens are similar by calculating the Hamming distance between
each pair of tokens from both channels (ECG1 and ECG2) before performing360

any signal processing and compared them pairwise. The results can be seen in
the third column of Table 2. It is interesting to see that the number of similar
tokens is extremely low in all databases which means that the output of the
quantization algorithm cannot directly be used to generate similar tokens in
different devices.365

As a conclusion, we corroborate our claim that just applying an IPI extrac-
tion algorithm like the one presented in Algorithm 1) composed of the Pan-
Tompkins algorithm plus a dynamic quantization to generate tokens is not
enough to guarantee that the same token will be generated in two different
sensors.370
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DB Tokens Similar Similar Tokens Similar Similar tokens
(Alg 1) tokens tokens (FE) (RM) tokens (RM) (RM+FE)

afdb 35690 8 (0.02%) 77 (0.2%) 1549 (%) 847 (54.6%) 1495 (96.5%)
afpdb 14505 40 (0.27%) 740 (5.1%) 9251 (%) 45 (0.48%) 1196 (12.9%)
ahadb 511 0 (0%) 0 (0%) 15 (%) 2 (13.3%) 14 (93.3%)
cebsdb 2577 2 (0.07%) 1360 (52.7%) 839 (%) 59 (7.0%) 835 (99.5%)
edb 24262 21 (0.08%) 497 (2.0%) 3769 (%) 1995 (52.9%) 3706 (98.3%)
iafdb 207 0 (0%) 34 (16.4%) 23 (%) 11 (47.8%) 23 (100%)
incartdb 5127 0 (0%) 69 (1.3%) 1117 (%) 4 (0.3%) 241 (21.5%)
ltafdb 271605 185 (0.06%) 1188 (0.4%) 21337(%) 92 (0.4%) 870 (4.0%)
mitdb 3198 0 (0%) 45 (1.4%) 770 (%) 0 (0%) 110 (14.2%)
nsrdb 52290 1980 (3.7%) 4072 (7.7%) 13965(%) 26 (0.1%) 1176 (8.4%)
nstdb 1160 0 (0%) 8 (0.6%) 171 (%) 0 (0%) 25 (14.6%)
prcp 825 0 (0%) 0 (0%) 22 (%) 2 (9.0%) 20 (90.9%)
qtdb 3413 1 (%) 216 (6.3%) 1346 (%) 695 (51.6%) 1315 (97.6%)
sddb 21280 1212 (5.6%) 1732 (8.1%) 1364 (%) 572 (41.9%) 1029 (75.4%)
shareedb 405775 2638 (0.6%) 4758 (1.1%) 60440(%) 297 (0.4%) 3229 (5.3%)
slpdb 8860 0 (0%) 0 (0%) 172 (%) 27 (15.6%) 169 (98.2%)
svdb 5710 2 (0.03%) 105 (1.8%) 2984 (%) 9 (0.3%) 315 (10.5%)
twadb 528 0 (0%) 31 (5.8%) 204 (%) 107(52.4%) 203 (99.5%)
vfdb 2144 0 (0%) 49 (2.2%) 221 (%) 93 (42.0%) 216 (97.7%)

Table 2: Number of tokens of 128-bit tokens generated by Algorithm 1 (column 2); Number of
similar tokens after running Algorithm 1 (column 3); Number of similar tokens after running
Algorithm 1 + Fuzzy Extractor (FE) (column 4); Number of tokens after running Algorithm
1 + Run-time Monitor (RM) (column 5); Number of similar tokens after running Algorithm
1 + Run-time Monitor (RM) (column 6); Number of similar tokens after running Algorithm
1 + Run-time Monitor + Fuzzy Extractor (RM+FE) (column 7).

3.2.2. Fuzzy Extractor

Following the scheme presented in [61], we implemented a fuzzy extractor al-
gorithm, which was specifically adapted to work with ECG signals. The scheme
of the fuzzy extractor can be seen in Figure 5. The fuzzy extractor takes as
input two ECG signals (ECG1 and ECG2) and two random numbers (PRNG1375

and PRNG2). The ECG1 and the mentioned random numbers are provided in
the generation phase since they are needed in the computation of the Helper
Data (i.e., (s, x)), which is used in the reproduction phase together the ECG2

signal. The result of the fuzzy extractor is a pair of identical values R. Our
fuzzy extractor is publicly available at https://github.com/aylara/synchro380

(i.e., see simulation_fuzzyextractor.m file).
We assign the following values for the parameters m, n, k and t of the BCH:

m = 7, n = 127, k = 50, t = 13), following the guidelines given in [61].The
parameter t = 13 represents a trade-off between the correction capability and
the the ability the adversary has to break the protocol. Thus this parameter385

should not be increased arbitrarily since it would increase the success probability
of an adversary. This means that the BCH can recover at most 13 different bits
from words of 128 bits (i.e., a 10% of the bits). We urge the reader to consult
[77] for a detailed description of BCH parameters and their implications. An
additional argument for this 10% value (t = 13) is that we have empirically390

demonstrated that is not possible to achieve 90% of similarity in the tokens
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Figure 5: Fuzzy extractor.

generated without our run-time monitor together with the fuzzy extractor (see
columns 3 and 4 from Table 2).

In order to check how the fuzzy extractor behaves, we used the output of
the Algorithm 1 as input of the fuzzy extractor and computed the Hamming395

distance between each pair of tokens compared tokens pairwise and the results
can be seen in the third column of Table 2. Even if our fuzzy extractor produces
a slight improvement, with respect to the results obtained without performing
any pre-processing of the signal (see column 2), the results are far from being
the expected ones. For instance, the cebsdb database which achieves a 52.7%400

of the similar tokens in both channels is not a good result, i.e., 1 out of 2
generated tokens is random. The reason for getting these poor results stems
from the fact that the distance between the IPIs calculated from each sensor
clearly exceeds the correction capacity of the fuzzy extractor (BCH encoder).
In our experimentation, for words of 128 bits the correction capacity is set to405

t = 13.

3.3. How to Generate ECG-Based Tokens

3.3.1. Timed Automata

Timed automata are composed of five main parts: clocks, time-checks, ac-
tions, events and states. For our timed automaton, we have defined three dif-410

ferent clocks, namely c1, c2 and c3, which are in charge of checking the time
properties of the heart beats in our model. Concretely, c1 checks an upper bound
for the execution of the automaton, that is, how long the automaton should be
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Figure 6: Time-checks used in the timed automaton.

executed; c2 checks when the peaks from both signals are synchronized or not,
and; c3 checks when there are missed peaks in the same signal.415

All the time checks used in the automaton were obtained after having ana-
lyzed all databases. We show in Figure 6 a representation of these time checks.
More concretely:

tc This value varies in time and between each person. In order to compute
tc, as stated in Section 3.1, the person should be in a quite and peaceful420

environment. For our experiments and following the similar technique
proposed in [73], we calculated the mean time between R-peaks of each
pair of ECGs (ECG1 and ECG2), which is the value assigned to the time-
check tc.

tm This value is determined by the physical distance between sensors and425

hence, it is directly affected by the speed of the blood pumped from the
heart to the rest of the body. In our particular case, all the databases of
the Physionet repository always consider electrodes attached to the chest
of the patients, so we forced this value to be less than 1

fs
where fs is

the sampling rate. So, tm < tc, otherwise a missed peak is detected and430

discarded by the automaton.

ts This value is a bound that determines how long each “session” of the
execution of the monitor should be. We set this value to be equal to the
longest signal encountered in our databases, in order to ensure we consider
all the signals.435

Table 3 shows all the variables and constants of our automaton (shown in
Figure 7), defined as a tuple A = {L,X,Σ,∆, F}, where:

• L = {E0, E1, E2, E3, E4} is the set of locations (with E0 and E4 the initial
and final states, respectively);
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Clocks
c1 Sampling time
c2 Time between peaks of two signals
c3 Time between two consecutive peaks (same signal)

Time-checks
tc Time between two consecutive peaks (same signal)
tm Time between peaks of two signals
ts Sampling time

Actions
Log Stores those IPIs which are not synchronized
Reset Initializes the clocks given as input
ReturnPeaks Returns the non-synchronized IPI set
Sync Checks what IPIs are synchronized

Events
PeakECGx R-Peak of ECGx, where x ∈ [1, 2]
ε No event

States
E0 Initial state
E1 When a peak of the first signal is detected
E2 When a peak of the second signal is detected
E3 When one peak of each signal is detected
E4 When the max time is detected (c1 ≥ ts)

Table 3: Properties of the automaton (Figure 7).

• Σ = {Log ,Reset ,ReturnPeaks,Sync} are all the actions;440

• X = {c1, c2, c3} is the set of clocks;
• ∆ ⊆ L×X × Σ× 2X × L is the transition relation, where F ⊆ L is a set

of accepting locations.
The Log action keeps a list of those IPIs which are not synchronized ac-

cording to our time constraints. Reset initializes the clocks given as input.445

ReturnPeaks returns the list of non-synchronized IPIs. Finally, the Sync action
computes the list of IPIs which are synchronized.

Regarding the events, we have two types: when a peak comes from the ECG1

or from the ECG2. Additionally, we have defined ε which means that we do not
wait for any event to occur and we force the runtime monitor to check if the450

condition is satisfied to perform the transition to the corresponding state.
The automaton has 5 states. All the clocks and variables are set to 0 in the

initial state E0. Note that whenever c1 ≥ ts then the computation finishes (the
automaton is in state E4). The rest are intermediate states, ensuring progress
in the computation provided the relevant timing constraints are respected (“ac-455

cepting” or “rejecting” peaks).
We implemented our timed automaton in Uppaal [70], allowing us to validate

and verify our model in a formal way. Our verified model was then translated
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E0

E1

E2

E3 E4

✏|[c3 > tc]! Reset(c3)
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c1, c2, c3 := 0

✏|[c1 � ts]! ReturnPeaks

✏|[c1 < ts]! Reset(c3)

PeakECG1 |[c3  tc & c1  ts]! Reset(c2, c3)

PeakECG2 |[c2  tm]! Sync

PeakECG1 |[c2  tm]! Sync✏|[c2 > tm]! Log(PeakECG2)

✏|[c2 > tm]! Log(PeakECG1)

✏|[c1 � ts]! ReturnPeaks

✏|[c1 � ts]! ReturnPeaks

✏|[c1 � ts]! ReturnPeaks

PeakECG2 |[c3  tc & c1  ts]! Reset(c2, c3)
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Figure 7: Heart based timed automaton.

into a runtime monitor implemented as Matlab code. The source code of both
implementations are available at https://github.com/aylara/synchro (i.e.,460

see Automaton and UPAAL folders).
We tested our generated runtime monitor with the output of the Algorithm

1. The number of tokens has decreased considerably as it can be seen in the
fifth column of Table 2. After that, we then computed the Hamming distance
between each pair of tokens compared pairwise and the results can be seen in the465

sixth column of Table 2. Note that, in general, the number of similar tokens has
increased considerably after running the run-time monitor with respect to the
third column. However, this improvement does not come for free. The penalty
we have to pay is that the number of tokens has decreased per database as it
can be seen in fifth column of such a Table.470

3.3.2. Timed Automaton & Fuzzy Extractor

As already explained, our approach consists of combining our monitor (ex-
tracted from our verified timed automaton, for synchronizing the tokens (based
on IPI values) extracted from two different ECG signals) and the fuzzy extractor
(to correct some bits).475

The results can be seen in the last column of Table 2. After applying this
solution we can successfully generate the same token from different sensors with
high probability in the majority of the databases, i.e., 10 out of 19 databases
have a probability higher than 90% of taking two similar tokens generated on
different sensors. However, despite of our method improves the current state of480

the art, it will remains low for 8 databases, namely afpdb, incartdb, ltafdb, mitdb,
nsrdb, nstdb, shareedb and svdb whereas sddb achieves a 75.4% of probability
that two arbitrary tokens be similar.

From the above results, we can clearly conclude that the best databases
to be used to extract cryptographic tokens are the ones with healthy patients.485

Moreover, our method seems to work reasonably well with those patients whose
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Figure 8: Time needed to generate a 32-bit token.

disease is not severe. Hence, we recommend not to use databases such as mitdb
which is widely used in the research community for security purposes [8, 20, 53,
78, 79] or nsrdb [19, 80] to mention a few.

Having empirically demonstrated the effectiveness of our proposed method,490

the only question that remains uncovered yet is how long the run-time monitor
needs to listen to the heart signal in order to obtain a token which can be used
later on as part of a cryptographic protocol.

We conducted an additional experiment to measure how long the run-time
monitor needs to keep listening an ECG signal in order to produce a token of495

1. 32 bits (Figure 8); 2. 64 bits (Figure 9), and; 3. 128 bits (Figure 10). To carry
out this test, we modified the original timed automaton (Figure 7) in such a
way that, instead of having 3 different clocks (c1, c2 and c3), we only keep c2
and c3, and replace c1 by a counter. By doing so, as soon as the automaton
detects that the length of the token is 32, 64 or 128 respectively, then the final500

state E4 is reached. Roughly speaking, taking into account that we can only
extract the 4 LSBs from an IPI, the automaton will stop when it finds 8, 16
or 32 synchronized IPIs. We have then re-implemented our new automaton in
Matlab, getting a new monitor.

Furthermore, in order to make Figures 8, 9 and 10 more readable, we decided505

to discard some of the outliers and we kept the 70% of the original data. It
can be observed that, in order to get a 32-bit token, sensors need to listen
approximately for 13 seconds on median. Similarly, to get a 64-bit or 128-bit

18



Figure 9: Time needed to generate a 64-bit token.

Figure 10: Time needed to generate a 128-bit token.
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token, they should listen the ECG for 28 and 56.5 seconds, respectively, on
median. It is also noticeable that although at a first sight the above mentioned510

timing values might appear to be excessive, this generation process will only be
executed once, typically in the setup phase of the cryptographic protocol (e.g.,
key generation and synchronization processes between two sensors).

4. Proposed Solution

In this Section we provide a proof-of-concept implementation to demonstrate515

whether two sensors can derive the same token from the heart signal using
real hardware. The purpose of the presented proof-of-concept is to show the
feasibility of our solution as well as the minimum requirements for generating
common tokens on different ECG sensors. For this first approach, and similarly
to previous proposals (e.g., [23, 81, 82]), we assume the communications to be520

secure between the sensors and the gateway (at least during the set-up phase).
Alternatively, we could have used noisy cryptography [83] to share sensitive
information (the two ECGs in our particular case) via insecure channels.

A real example in which the above scenario can occur is as follows. Imagine
that Alice is wearing a smart T-shirt with an ECG monitor similar to the one525

proposed in [84]. This T-shirt is already paired with her smartphone which
makes the communication channel secure. Additionally, she has a pacemaker
which is as well paired with the smartphone. In this scenario, the smartphone
is acting as a WBAN gateway due to its computational resources in terms of
CPU, storage, memory and communication capabilities. The above example is530

integrated within what is called body area networks. Another example, perhaps
more futurist and within the area of the intelligent and connected cars could
be the following. A driver (Bob) holds a smart-watch with an ECG sensor—
note that this type of product is already on the market [85]. As for the car,
the steering wheel, and as a novelty, also has an ECG sensor [86, 87]. As535

in the above example, both ECG sensors are securely connected to the car’s
central control system that acts as gateway. The two described examples are
completely different but in both scenarios the two sensors must calculate the
same cryptographic token (derived from the ECG recorded by each sensor) with
the help of the gateway.540

Summarizing, our system has three entities: a gateway and two ECG sen-
sors (e.g., smart T-shirt and pacemaker).4 Figure 11 provides an architectural
view of the system. Once the ECGs signals have been gathered by the sen-
sors, they are sent to the gateway in order to be synchronized by using the
timed-automation (see Section 3.3.1 and Figure 7). After that, the already syn-545

chronized signals are sent back to the sensors, the peak extractor procedure
(Algorithm 1) is executed to extract the tokens, and finally the fuzzy extractor
(see Section 3.2.2 and Figure 5) is applied to the processed signals in order to
generate the same cryptographic token.

4Note that it could have also been possible to use one of the sensors as a gateway.
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Figure 11: System model using both a timed automaton and a fuzzy extractor.

We have basically deployed the scheme presented in Figure 11 by using a550

low-cost hardware dedicated for research purposes named BITalino5. This shield
has two ECG channels and a Bluetooth connection. As in the Alice example,
we had to pair our hardware with the gateway which, in our case, was a laptop
as can be seen in Figure 12.

More concretely, it works as follows: 1) First, sensors measure the heart555

signal and send the gathered ECGs to the gateway via a secure communication
channel. Once the signal is received by the gateway, the run-time monitor is
executed in order to synchronize both signals. 2) After the signals are synchro-
nized, the sensors receive the position of the peaks that must be removed by
the gateway. For this communication to occur a secure channel is also needed.560

3) When the the list of peaks to be removed is received, the sensors proceed
to delete them—note that at this point both signals are synchronized in terms
of R-peaks—in order to proceed with the token generation. 4) Finally, a fuzzy
extractor is applied to the processed signal in order to generate the same token.
The helper data can be transmitted from one sensor (generation process) to the565

other one (reproduction process) without the necessity of a secure channel.
It is worth mentioning that the gateway cannot generate a token by itself

to be used in the WBAN; its role is to synchronize the signal and thus helping

5http://bitalino.com/en/
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Figure 12: Proof-of-concept based on the BITalino platform.

the sensors to generate a shared token. However, at the end of this protocol,
not only the sensors can generate the same token but also the gateway may570

do it. The source code of our implementation can be downloaded from https:

//github.com/aylara/synchro.

4.1. Security Analysis

In order to solve the problem of creating the same token in two sensors, two
aspects need to be addressed: i) a secure communication channel (sensor(s)–575

gateway) must be used, and; ii) sensors have to share their gathered ECGs with
the gateway to synchronize them.

Traditionally, authors have assumed that different sensors can extract the
same token by measuring the same signal from an organ (in our case the heart).
Most authors rely on the fact that, in order to derive the same token, the (active)580

attacker must be reading the ECG of the bearer at the same time as the devices
are and such probability is almost negligible [88]. On the other hand, other
proposals (e.g., [8, 20]) assumed that the communication can only be established
if the devices are close enough (commonly named as neighborhood area): the
attacker should be a few centimeters from them and would be easily detected.585

In these security protocols, the ECG is used to derive a common secret between
different sensors and thus, the ECG can be considered as the secret key. The
signal must therefore be transmitted over a secure communication channel.

A more recent approach was presented in [81]. In this work, authors use the
ECG to securely distribute symmetric cryptographic keys. However, authors590

use a trusted central node in charge of establishing a secure communication
between sensors that want to share some data. In this approach all the devices
(two sensors and the gateway) are on the body as they need to record the ECG
at the same time and by themselves—in our case only the two sensors have
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to collect the ECG signal—and the secure channel is established by using a595

fuzzy commitment scheme [59]. In this work, we demonstrated that only by
using a fuzzy commitment scheme is not enough to generate the same token
in different devices. In [81] and our proposal, once the cryptographic token
synchronized between the sensors is established, they can exchange information
directly without involving anyone else. For instance, after the setup phase,600

smart-watches, wrist-bands and IMD can securely exchange data with each
other regardless of the brand, manufacturer or the purpose of the device.

It is important to note that our proof-of-concept implementation is secure
if and only if the communication channel between the sensors and the gateway
is secure (like most of the proposed solutions in this field). This is because605

both sensors are sending the ECG to the gateway and thus, an attacker (A) can
sniff the communication channel, extract the signals and perform the matching
operation. The only extra information that A would need is the specific instant
the tokens have started to be computed. It is also remarkable that the secure
channel requirement is only used for the very first time (set-up phase of the610

protocol); once the two ECG signals are synchronized, there is no longer any
need to keep the channel secure.

In this paper we empirically demonstrated that the assumption of two sensors
deriving the same token from the heart (ECG signal), is at least questionable.
We showed that, in addition to the error correction techniques, a new step615

is needed before extracting such a token: the synchronization of the signal.
To achieve this, there are two options: 1) one of the sensors sends the ECG
to the other one in order to synchronize the signal and the latter sends the
synchronized signal back to the first one, or; 2) a trusted and external party
is used to synchronize the signal and communicate the final decision to the620

sensors. Either way, the main consequence from a security point of view is
that now Eve—a passive attacker, just by eavesdropping on the communication
channel might synchronize both ECG signals and extract a common key. To
combat this we proposed two main approaches: 1) assume a secure channel in
the set-up phased, or; 2) assume that the channel is insecure all the time and625

use some protection mechanism such as solutions based on noisy cryptography
[83].

5. Related work

Several studies have been done in the area of security and privacy applied
to biometrics, and in particular where heart signals are involved (e.g., [8, 9, 19]]630

In most of these works, there are three main assumptions: 1) bits extracted
from the heart signal can be considered random [8, 10]; 2) two sensors placed
in the same body can generate the same random token from the heart signal
[11, 20, 18, 78], and; 3) two sensors should gather 32 consecutive peaks in
order to generate a 128 bits nonce which is approximately a 32 seconds signal635

[13, 19]. As far as we are concerned, this work is the first one that empirically
demonstrates that the usual assumptions made in the aforementioned papers
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regarding the token generation in different devices at the same time are at least
questionable.

On the one hand, it is usually assumed that the random numbers derived640

from IPIs can be directly used on cryptographic applications because of the high
entropy degree that the 4 LSBs have. Additionally, some researchers have tried
to improve the strength of the entropy per IPI in order to guarantee a higher
security level [10, 15, 18]. However, Ortiz et al. questioned the entropy quality
of the IPI values and the dependence of the results on the dataset used [26].645

In our work, the involvement of the two sensors is necessary because thanks
to this (and the acquisition of the same IPI values derived from the recorded
ECGs) they mutually verify they are close to each other (i.e., that they are in the
neighbourhood area as is commonly named in distance bounding protocols) and
additionally they can authenticate each other. Therefore, this kind of distance650

checking (and mutual authentication if necessary) is made by the participation
of both sensors (on the same organ).

On the other hand, researchers have usually assumed that a person equipped
with different heart sensors can extract the same nonce from the ECG by using
a fuzzy extractor (see [80] for a comparison between fuzzy commitment and655

fuzzy vault schemes). For example, authors in [8] propose a security protocol
where a patient equipped with an IMD and a doctor with a Programmer can
extract the same nonce from the patient’s ECG. Similar assumptions are made
in [9, 78, 27], just to cite a few of them. Contrarily to any prior proposals, in
our work we have demonstrated that error correction algorithms, such as fuzzy660

extractors, are not enough to claim that sensors placed in different parts of the
body can generate the same token using an IPI-based approach.

Recently, some authors have taken into account that some events may occur
during the measurement process that increase the difference between the gen-
erated tokens. For instance, it is possible that noise appear in the extraction665

of the signal and the detection of heart peaks will be affected [20]. Because of
that, [20] proposes a mechanism to statistically calculate where a peak should
be in the ECG signal and they manually add it so that the entropy degree is
not affected. Also, other parameters such as HRV and VARis can alter the peak
detection algorithm [21] and they must be taken into account to ensure that the670

keys are equal enough. In this work, we not only take those issues into consid-
eration but also the heart signal is never modified so that other computations
can be applied over the signal such as medical checks of the heart.

Finally, it was stated in [8, 11, 27, 28], that sensors have to keep listening
the ECG for about 30 seconds to generate a 128 bits token. In our work we675

have proved that in order to generate a 128 bits token, two sensors should be
reading the heart signal for almost 1 minute (56.6 seconds) on median, time
which we have obtained experimentally and it is in general much larger that it
was previously claimed.
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6. Conclusion680

In this paper we tested whether error corrections algorithms, including fuzzy
extractors, can be used alone to claim that two different sensors are able to derive
equal tokens from two ECG signals measured at different parts of the body by
using an IPI-based approach as proposed in many previous works [8, 10, 11,
15, 27]. We run the experiments against 19 public databases from Physionet685

repository, and we can clearly conclude that a pre-processing of the heart signal
is mandatory for generating the same token. Because of that, we proposed
a run-time monitor, based on a timed automaton, to synchronize both ECG
signals before the peaks are computed and before the fuzzy extractor takes
place. Finally, we run once again the same experiments and errors are reduced690

to zero in many of the tested databases.
Additionally, we also conducted one more experiment to check how long the

sensors should record the heart signal in order to generate tokens of 32, 64 and
128 bits and, contrarily to what it is usually assumed (6, 12, and 24 seconds
for individual with a heart rate of 80 bpm), the sensors have to wait 13, 28 and695

56.5 seconds on median respectively to derive the same token from two ECG
sensors.

Future Work. There have been two main decisions we made which might be
improved in the future.

Timed Automaton. The mean value has been used as the upper-bound time for700

RR intervals as it has been previously proposed in medial research [73],
and the consequence is that certain peaks are missed and the run-time
monitor does not synchronize as many peaks as it might do. We plan to
further research on this line and refine our timed automaton to achieve
better results, specially in those databases that do not perform as well.705

Extend to other biometrical signals. We have focused on heart signals by using
two channels (ECG1 and ECG2). We plan to extend our analysis and
proposal to other physiological signals like Photoplethysmograms (PPGs),
Blood Pressure (BP) or even using the Electroencephalograms (EEGs), as
proposed in [89].710
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