
FESCA 2009

Wrap Your Objects Safely 1

Olaf Owe and Gerardo Schneider2,3

Department of Informatics
University of Oslo, Norway

Abstract

Despite the effort of researchers on distributed systems, programming languages, and security, there is still
no good solution offering basic constructs for guaranteeing minimal security at the programming language
level. In particular, the notion of a wrapper around an object or component controlling its interaction with
the environment has not properly been addressed. This kind of “local firewall” may play two different roles:
(1) The untrusted part is what is inside the wrapper; (2) The untrusted part is the environment. In this paper
we propose the addition of a language primitive for creating wrapped objects and components, and sketch
a formalization based on a minimal object-oriented language for distributed systems using asynchronous
communication.

Keywords: Wrappers, security, objects, components

1 Introduction

Open distributed systems and embedded devices offer many new challenges to the
research community, from design to correct functioning, including modeling, prac-
tical implementation issues, and most notably security. The latter in particular is a
crucial aspect to be taken into account, as the uploading or downloading of an ap-
plication to a device may compromise data privacy, confidentiality or integrity. The
above justifies the need to find new solutions to guarantee a minimum of security at
run-time. This is far from easy since the openness of modern systems implies that
we do not know with what possible environments the software will be interacting.

One way to enforce security in open distributed systems, and in Internet in
particular, is to use the sandbox model of Java. The Java sandbox consists of a set
of rules to limit an untrusted applet to execute certain operations when arriving to
the site where the browser who called the applet resides. An alternative model to
the sandbox is to run downloaded “signed” code only, which means that it is up to
the user to allow only completely trusted code. Similar models are used in trusted
devices like Java smart cards.

1 Partially supported by the Nordunet3 project COSoDIS and the EU project Credo.
2 Email: olaf@ifi.uio.no
3 Email: gerardo@ifi.uio.no

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:olaf@ifi.uio.no
mailto:gerardo@ifi.uio.no

Owe & Schneider

The use of such security measures is, however, left to a late state of development,
and is independent of the particular application. The use of a sandbox model is in
general considered a good programming practice, since it relies on the separation of
concerns approach. Along the same lines, and to complement the above, we propose
a programming language primitive for wrapping objects and components.

We suggest that a wrapper consists of a kind of membrane defined “around”
an object (or component) in order to isolate it from its environment. Any com-
munication between the inside and the outside of the membrane is controlled by
the operational part of the wrapper, which filters (modifies, deletes, adds) messages
according to the underlying security policy specified by the wrapper. We can see
a wrapped object in two ways: (1) The untrusted part is the object inside the
wrapper, so we need to protect the environment from the wrapped object; (2) The
untrusted part is the environment, so we wrap the object to protect it from the
environment it will run in.

We propose the definition of a language primitive, safeNew, that will be respon-
sible for instantiating a wrapped object. The safeNew construct is parametrized
with the class that the object is an instance of, and with the “controller” of the
wrapper. This second parameter of safeNew is a special kind of finite automaton
that specifies which actions are to be taken for any input/output communication
event, or more complex history traces. We call it the wrapper automaton. In order
to be of practical use, a library with predefined wrappers should be provided to the
programmer, together with a language for creating new wrapper automata.

It has long been identified that the shared-state concurrency model is not ideal
for open distributed systems. This is despite the fact that one of the most widespread
languages used nowadays, namely Java, relies on such model. The natural style for
modeling distributed systems is by message-passing and concurrency, for instance
objects running concurrently communicating asynchronously through method calls,
as in the Creol model [10]. In order to formalize and experiment with our proposal,
we have chosen Creol as the underlying language, due to its communication model,
its simple semantics, and simulation tools directly related to the operational seman-
tics. In addition, Creol supports dynamic upgrade of classes, allowing new code to
be communicated, where wrappers may also protect against unsafe code.

Creol is a modeling and programming language, based on an asynchronous com-
munication model for active, distributed objects with conditional release points and
high-level process control. Non-blocking method calls provide efficiency in a dis-
tributed setting. The language addresses many of the objections of current object-
oriented languages, for instance the inheritance anomaly, the problem of blocked
processors waiting for a synchronous call, as well as problematic verification is-
sues [11]. Furthermore, Creol supports dynamic reconfiguration by means of class
upgrades. An upgrade may consist of added attributes, added interfaces, added
definitions of new methods, as well as redefinitions of old methods. A class upgrade
is made by sending a special message into the configuration, which is then spread to
the classes and objects in a distributed manner, and installed independently at the
affected objects, without stopping execution. Since the upgrade of classes is done
through messages, it means that insertion of new upgrades in a hostile environment
may be unsafe, with the result that unsafe code may be installed and executed. By

2

Owe & Schneider

CL ::= class Id begin Vdecl ? {{with Id}? Mtds}∗ end
Type ::= Id{[{Type}+,]}?
Vdecl ::= var {{v}+, : Type {= e}?}+,
Mtds ::= {Msig == {Vdecl; }? s}+
Msig ::= op Id {({in Par}? {out Par}?)}?
Par ::= {{v}+, : Type}+,

Figure 1. BNF for class declarations.

focusing on controlling the flow of messages in and out of wrappers, we then address
the issues of unsafe data and code flow.

The main contributions of our paper are: (1) The proposal of a programming
language primitive, called safeNew to create wrapped objects; (2) An operational
semantics of the language primitive and related language constructs, adapting ear-
lier work on Creol to the current setting; (3) The extension of Creol with a novel
notion of self-contained component, to accommodate wrapped components.

The paper is organized as follows. Section 2 recalls the relevant parts of Creol,
and Section 3 presents a modified operational semantics of the language suitable
for our purposes. Section 4 shows how to extend Creol with a primitive for creating
wrapped objects and we discuss how to wrap components. We then present an
example in Creol in Section 5, where we “protect” what is inside the wrapper from
external accessing. Section 6 discusses related work, and the last section concludes.

2 The Creol Language: Syntax

In Creol [11,12,8], objects execute concurrently, encapsulating an execution thread
and an internal process queue. Active behavior is interleaved with passive behav-
ior by means of release points. Consequently, elements of basic data types are not
considered as objects in the language, and the language includes an underlying
functional language for defining data types and associated functions. Objects have
identities, which are unique; communication takes place between named objects,
and object identities (references) may be exchanged between objects. Creol object
variables are typed by interfaces extended with semantic requirements and mech-
anisms for type control in dynamically reconfigurable systems. The language is
strongly typed, ensuring that invoked methods are supported by the called object
(when not nil), and that formal and actual parameters match [12]. Objects are dy-
namically created instances of classes, and multiple inheritance is supported, with
late binding of method calls.

The basic syntax of the language is presented in Fig. 1, where we show the
BNF grammar for simple class declarations. Curly brackets are used as meta-
parentheses, superscript ? for optional parts, superscript ∗ for repetition zero or more
times, whereas {. . .}+, denotes repetition one or more times with “,” as delimiter.
Identifiers Id denote interface, class, type, or method names. In Fig. 2 we present the
language syntax for imperative statement lists, with typical terms for each category.
Overlined terms such as s, e, and v, denote lists of statements, expressions, and
variables, respectively. We here ignore class inheritance and interfaces, which are

3

Owe & Schneider

Syntactic categories. Definitions.

t in Label

g in Guard

p in MtdCall

s in Stm

v in Var

e in Expr

m in Mtd

x in ObjExpr

b in BoolExpr

g ::= wait | b | t? | g ∧ g

p ::= x.m |m
s ::= ε | s; s

s ::= (s)

| v := e | v := new Id(e)

| if b then s else s fi

|while b do s od

| !p(e) | t!p(e) | t?(v) | p(e; v)

| await g | await p(e; v)

Figure 2. Syntax for imperative statements.

not central to the discussions of this paper. Classes define a number of attributes
(with initial values) and a number of method definitions. A method is defined by
an imperative statement list, accessing the class attributes, the local variables as
well as the input and output parameters of the method (given by the keywords in
and out). In order to allow type correct call-backs, a method may use the implicit
caller parameter, letting the (minimal) type of the caller be given by the so-called
cointerface of the method (given by a with clause). Parameters, as well as this,
used for self reference, are read-only.

Assignment, if- and while-constructs follow traditional syntax. Multiple assign-
ments are allowed (as in x, y := y, x, which may be used for swapping). Object
creation has the syntax v := new C(e) where C is the class name and e the list of
actual class parameters, if any. Methods calls may be local, as in m(...), or remote,
as in x.m(...) where x is an object expression. Note that remote attribute access
is not permitted, as (asynchronous) method interaction is the only communication
mechanism of the language.

An asynchronous method call has the syntax !p(e), if no return values are needed,
and t!p(e) otherwise. In the latter case, the tag t will be assigned a unique tag value
identifying the call (relative to the current object). With the guard await t? one
may test if a return from the callee has arrived, otherwise the guard is false and the
current process is suspended and put on the process queue of the current object.
Once a return has arrived, the return values can be picked up by the reply statement
t?(v) and assigned to v. The static typing checks that the variable list v has the
correct length and type.

The non-blocking method call await p(e; v) (where p is of the form x.m or m)
is a short form of t!x.m(e); await t?; t?(v), where t is a fresh (or unused) label.
Furthermore, the synchronous and blocking method call p(e; v) is a short form of
t!x.m(e); t?(v), where the unguarded reply statement corresponds to active waiting.
Thus synchronous calls can be reduced to asynchronous calls. A local call m(e; v) is
understood as a remote call to self, this.m(e; v) (and measures are taken to provide

4

Owe & Schneider

self reentry). Remote method calls are typically programmed by non-blocking calls,
thereby avoiding deadlock and active waiting.

Guards are used to control processor release and may consist of Boolean condi-
tions, return tests, and definite release (wait). When a process is released or com-
pleted, an enabled process (if any) is chosen from the local process queue. Therefore
explicit signaling is not part of the language. The run method of an object is called
upon creation, and initiates active behavior. Release points in the run method, for
instance an asynchronous recursive call, allow processes in the process queue to be
handled. Notice that a method call creates an invocation event message sent to the
callee, which results in an activation of the called method, which is placed on the
process queue of the callee. And the completion of a method activation generates
a return event message sent back to the caller (with the caller and tag value as
implicit parameters).

3 The Creol Language: Semantics

This section will present a simplified and adapted version of the original Creol’s op-
erational semantics, better suited to our purpose of extending the language (in the
next section) with a wrapping primitive and notions of locality and self-contained
components. Creol’s operational semantics is formally defined as a set of rewriting
logic (RL) equations and rules in Maude [6]. RL captures concurrency naturally:
given a set of rewriting rules and equations, the rules are non-deterministically ap-
plied modulo the equations. If several rules can be applied to distinct subterms, they
can be executed in a concurrent rewrite step. As a result, concurrency is implicit in
RL semantics. Rules and equations may be unconditional or have a conditional on
its application. In the latter case the format is lhs −→ rhs if condition for rules
and lhs = rhs if condition for equations.

In particular, RL includes a model of object-orientation: objects are represented
by terms of the type 〈o : C | a1 : v1, . . . , an : vn〉 where o is the object’s identifier, C

is its class, the ai’s are the names of the object’s fields, and the vi’s are the corre-
sponding values. A system state can then be modeled as a configuration, which is
defined as a multiset of RL objects and messages representing object communica-
tion. It is customary to introduce the configuration sort as a supersort of the object
and message sorts, with two constructors ([ctor]):

op none :→ Config [ctor] .
op : Config Config → Config [ctor assoc comm identity: none] .

Here white-space is used as a convenient infix symbol for the composition operator,
and we exploit Maude’s built in understanding of associativity, commutativity, and
identity (with none as identity element).

The operational semantics of Creol is based on this model, representing Creol
classes and objects as RL objects, and using messages to reflect method invocations
and method returns. It provides an executable simulator for Creol, consisting of
the operational semantics rules, corresponding to the imperative statements of the
language, as well as run-time system functions such as method binding and message
transport.

5

Owe & Schneider

A Creol object is represented by a Maude object of the form:

<o : C | Att: A, Lvar: L, Pr: S, PrQ: W, InQ: Q, Icnt: I, Ocnt: N >

where o is the object identity, C is the class name, A the state of the attributes
(a map from variable names to values), L the state of the local variables, S the
statements of the active process, W the process queue, Q the queue of incoming
messages, I a system variable used to generate unique tag values for method invo-
cations, and N a system counter used for generating unique identity of new objects
(generated by this object). In contrast to the object-oriented model of Maude,
classes are represented explicitly, in order to allow explicit control of method bind-
ing and inheritance. A Creol class is represented by a Maude object of the form:

<C : Cl | Mtd: M, Att: A >

where C is the class name, M a multiset of method declarations (each with code
and local variables), and A a list of attributes (with initial values). For simplicity,
we ignore inheritance in this paper, otherwise there would be a field Inh : S defining
the inheritance list. In the rules we omit fields not relevant for the rule, following the
convention of Full Maude. For instance, the following rule defines object creation
in Creol (ignoring class parameters for simplicity):

(New): <C : Cl | Mtd: M, Att: A >

<O : C’ | Pr: v:=new C; S, Ocnt: N >

−→ <C : Cl | Mtd: M, Att: A >

<O : C’ | Pr: v:=ob(O,N); S, Ocnt: N+1 >

<ob(O,N): C | Att: A+(this 7→ ob(O,N)), Lvar: ε, Pr: run(), PrQ: ε, InQ: ε,
Icnt : 1, Ocnt: 1 > .

where ε denotes an empty list. The right hand side introduces a new object, with
identity given by ob(O,N) (“the Nth object generated by O”) where ob is a con-
structor for generating identities. The parent object assigns this identity to the
variable v, increases its object counter, and afterwards continues executing the rest
of the statements S of its active process. (By our convention, the other attributes
of the parent object remains unchanged.) The new object is given default values to
all attributes, including the implicit variable this, and is started by a synchronous
call to its run method. In presence of inheritance, the calculation of attributes A of
the new object would be more involved.

Fig. 3 presents the operational semantics of our version of Creol, apart from
object creation and safeNew, which are discussed separately. Matching is modulo
associativity, commutativity, and identity (ACI) for the multiset constructor, and
modulo associativity and identity for the list constructor (with ε as identity ele-
ment, and semicolon as composition operator). In particular, matching modulo the
identity s; ε=s ensures that left hand sides with pattern s; S (in Pr) match s. For
a state L, the notation L[X] denotes the value bound to the variable X, and +
is used for state composition (and overriding). Evaluation of terms is done by the
eval function, while enabled tests if a guard, statement or statement list is enabled,
i.e. it is unguarded or starts with a guard that is satisfied. Programs are assumed
to be type correct. Class inheritance and class parameters are ignored, since these

6

Owe & Schneider

(Assign): 〈O : C |Att: A, Lvar: L, Pr:(X:=E; S)〉
−→ if X in A then 〈O : C |Att: (A + (X 7→ eval(E, A + L))), Lvar: L, Pr: S 〉

else 〈O : C |Att: A, Lvar: L + (X 7→ eval(E, A + L))), Pr: S〉 fi .

(call): 〈O : C |Att: A, Lvar: L, Pr: (T !OE.m(E); S), Icnt: I 〉
−→ 〈O : C |Att: A, Lvar: L, Pr: (T :=I; S), Icnt: I+1 〉

invoc m(O, I,eval(E,A + L) to eval(OE, A + L)).

(Message): (MSG to O) 〈O : C |InQ: Q〉
−→ 〈O : C |InQ: (Q; MSG)〉 .

(Bind): 〈C : Cl |Mtd: M〉 〈O : C |PrQ: W , InQ: (invoc m(E); Q) 〉
= 〈C : Cl |Mtd: M〉 〈O : C |PrQ: (W ; bind(m,E,M)), InQ: Q〉
if m in M .

(Return): 〈O : C |Att: A, Lvar: L, Pr: return(E) 〉
−→ 〈O : C |Att: A, Lvar: ε, Pr: ε 〉

comp (eval((tag,E), A + L) to L[caller]).

(Reply): 〈O : C |Att: A, Lvar: L, Pr: (T?(X); S), InQ: (Q; comp(I, E); Q′) 〉
−→ 〈O : C |Att: A, Lvar: L, Pr: (X :=E; S), InQ: (Q; Q′) 〉
if I==eval(T, A + L).

(Guard): 〈O : C |Att: A, Lvar: L, Pr: (await G; S), PrQ: W , InQ: Q 〉
−→ 〈O : C |Att: A, Lvar: L, Pr: S, PrQ: W , InQ: Q 〉
if enabled(G, (A +L), Q).

(Suspend): 〈O : C |Att: A, Lvar: L, Pr: S, PrQ: W , InQ: Q 〉
−→ 〈O : C |Att: A, Lvar: ε, Pr: ε, PrQ: W ; (L, S), InQ: Q 〉
if not enabled(S, (A + L), Q).

(Activate): 〈O : C |Att: A, Lvar: ε, Pr: ε, PrQ: (L, S); W , InQ: Q 〉
−→ 〈O : C |Att: A, Lvar: L, Pr: S, PrQ: W , InQ: Q 〉
if enabled(S, (A + L), Q).

Figure 3. Rules concerning standard constructs and communication. Maude variables are capitalized.

concepts are not the focus here. The obvious rules for multiple assignment, if-,
and while-statements are omitted. Furthermore, we ignore rules for self-reentry (in
the case of local synchronous calls). The operational semantics gives an executable
interpreter for Creol programs (when adding Maude definitions of auxiliary func-
tions). The presented semantics is based on code copying; a more space-efficient
run-time system could be made by using instruction pointers and code sharing.

A method call results in an invocation message placed in the configuration, and
the tag variable is assigned the value of the invocation counter (call). The invocation
message is transported through the network by a non-deterministic rule (Message),

7

Owe & Schneider

allowing message overtaking. Method binding is then done by placing a copy of
the method activation on the process queue (Bind). The bind function will extract
a method activation consisting of a copy of the local variable (with initial values)
and the code, inserting the statement return(x) at the end where x is the list of
formal out parameters; and the actual parameters values are assigned to the formal
parameters, including the implicit parameters caller and tag. The execution of a
return statement (the last statement in a method) causes a completion message,
and the (Message) rule will ensure transportation to the in-queue of the caller object,
which may wait passively for a reply in a suspended process (by means of an await
statement) or actively by a reply statement. Enabled processes become activated
or reactivated when the active process is suspended/terminated.

4 Syntactic Extensions to Creol

Suitability of Creol
The model of objects running concurrently, communicating asynchronously through
methods calls and with processor release points, as presented so far, is too abstract
when it comes to modeling certain aspects of the Internet: The Internet involves
security issues which escape from the scope of such an abstract model. The first lim-
itation is the fact that all the messages are “thrown” into the system configuration
–modeling the network– which are then redirected to the incoming queues of the
target objects (allowing overtaking). This is of course reasonable as an abstraction,
but not if the aim is to prove, for instance, that a secret message does not end up
in the wrong queue. A malicious object may change messages, other objects and
even the definition of classes. Moreover, concerning security, as a modeling language
Creol also needs to be extended with a model of the attacker, i.e. a process which
may add, modify and delete messages and modify the definition of methods and
attributes in classes.

First, we make the system fully open (i.e. allowing intrusion mechanisms), by
adding the following rules schemas:

(message-deletion): m to o −→none .
(message-creation): none −→m to o .
(message-alteration): m to o −→m’ to o’ .

assuming messages have the form m to o where m is the message content (either an
invocation or a completion with actual parameter values, or an upgrade message)
and o is the destination of the message. Note that the two last rules are not
executable in Maude when m and o are variables, since the right hand sides are not
fully determined. Also notice that since the class upgrade mechanism of Creol is
done through message passing, it means that safety of data, as well as of code, is
affected by alteration or insertion of messages.

Second, we need to add the notion of locality. Currently all messages go to a
global pool, also containing all objects and classes, and there is no way to group
them into units with a local pool. Locality is needed, among other things, to model
local networks and computers connected to the network. In Maude we can create
localities in a very similar way as we create wrappers.

8

Owe & Schneider

Finally, we need to define a suitable language for defining wrapper automata.
This can be done by using the underlying functional data type language of Creol.

Addition of safeNew, wrappers and components
We show now how to define a notion of self-contained component, which may be
seen as local subsystem containing all class code needed. We then show how to
implement wrappers and the language primitive safeNew.

We introduce a sort Component with the constructor:

op + : Classes System →Component [ctor].

where sort System is like Config but without class declarations, and where Classes
is a multiset of class declarations. We define sort Wrapper as a subsort of System:

sort Wrapper .
subsorts Wrapper < System .
op { | } : Component Automaton →Wrapper [ctor].

Notice that this definition allows nesting of wrappers, in the sense that the
inside configuration of a wrapper may again contain inner wrappers. We syntac-
tically extend the Creol language shown in Fig. 2 with the following command:
safeNew C(E; FA) where E is a list of parameters, as for unwrapped objects, and
FA is the wrapper automaton (left underspecified here). We will sometimes omit
the parameters E in what follows since their treatment is as for the normal new
operation for creating unwrapped objects. At run-time a wrapper is created by
a safeNew command, creating a new object together with its class as well as the
given automaton. Since any message in the configuration is accessible to any (mali-
cious) observer, the wrapper must be created with the relevant classes inside, before
sending any message to the configuration. We need, however, to keep the classes
accessible to any other process outside the wrapper. We achieve this by copying the
relevant classes inside the wrapper:

(safeNew): CL +<O: C’ |Pr: v:=safeNew C(FA); S, Ocnt: N >

−→ CL + <O: C’ | Pr: v:=ob(O,N); S, Ocnt: N+1 >

{ classes (CL,C) +
<ob(O,N): C | Att: A+(this 7→ ob(O,N)), Lvar:ε, Pr: run(), PrQ: ε, InQ: ε,

Icnt : 1, Ocnt: 1 >

| FA } .

where CL is of sort Classes, FA represents an automaton in a given state (here
the initial state), and the classes function extracts from CL all class declara-
tions (and their superclasses) of class names textually occurring inside the dec-
laration of C. Notice that the wrapper contains a self-contained unit, in the sense
that all code needed is found inside the unit. However, in order to communicate
with the outside environment, messages must be imported and exported through
the wrapper boundaries. A possible wrapper configuration may then look like
{< C : CL|... > + < o : C|... > (m to o) (m′ to o′) |FA}. The syntactic distinction
between the configuration inside the wrapper from the outside one guarantees a cer-
tain safe-by-construction property, since it is not possible to get into the wrapper

9

Owe & Schneider

unless there is a semantic rule “throwing” messages from the configuration to the
inside of the wrapper. The correctness-by-construction is then guaranteed seman-
tically by induction over the set of rules. Also various tests ensuring code security
and checking may be placed inside the classes function.

A wrapped object will then perform as before with standard Creol rules, without
being aware that it is wrapped, including processing of method invocations and reply
statements. Method binding is also done as in standard Creol since copies of the
relevant class declarations are found inside the wrapper (adjusting the (Bind) rule to
the syntax for components). However, we must add rules to control the flow of
messages from inside the wrapped component to its environment, and vice versa.
The rule for importing into the wrapper is as follows:

(Import): MSG to O { CL +SS | FA }
−→ { CL + SS output(FA,import(MSG to O)) | state (FA,import(MSG to O)) }
if O in SS and accept(FA,import(MSG to O)).

where MSG denotes a message content, SS a system state, output the output func-
tion of a state machine for a given input, state the state resulting from the step
taken by the automaton, and accept the accepting condition. An automaton takes
two kinds of inputs: messages directed into the wrapper and messages directed out
of the wrapper. To make an automaton distinguish between these, we use the two
constructors import and export, letting import encode messages directed into the
wrapper, and export for messages directed out of the wrapper. In our setting an
automaton can be defined in the functional sublanguage of Creol defining construc-
tors for each automaton state (including variable substitutions), and by defining
the three functions: output, state, and accept, given an automaton state and input.
The rule for exporting from the wrapper is as follows:

(Export): { CL +SS (MSG to O) | FA }
−→ output(FA,export(MSG to O))

{ CL + SS | state(FA,export(MSG to O)) }
if not O in SS and accept(FA,export(MSG to O)).

Standard object creation can still be done by the previous (New) rule (adjusted
to the component syntax). Thereby objects may be added inside a wrapped com-
ponent, resulting in components that contain many objects and many classes, in
such a manner that all code is found within the wrapper. The resulting system
may contain several copies of the classes involved, some inside wrappers and some
outside. This has the benefit that each wrapped unit may decide which class up-
grades it does accept and which it does not accept. As a result the different class
copies may evolve differently and exist in different versions of the same class. The
rules given handle this. We have so far not defined components with their own
identity which may be manipulated in the context of other components. That is,
we cannot import third-parties components, delete them, etc. This stronger notion
of component could be added to Creol, but it is not presented in this paper.

10

Owe & Schneider

class RWController(db: DataBase)

begin

var free: Bool = true, readers: ObjSet = ∅, writer: Obj = null

pr, pw: Nat = 0 // pending calls to db.read and db.write

with RWClient

op OR() == await free; if writer 6= null then free := false;

await (writer = null); free := true fi;

readers := readers ∪ {caller}
op CR() == await (caller∈ readers);

readers := readers \ {caller}
op OW() == await free; free := false;

await (readers = ∅ ∧ pr = 0 ∧ writer = null);

free := true; writer := caller

op CW() == await (pw = 0 ∧ writer = caller); writer := null

op read(in k: Key out x: Data) == await (caller ∈ readers);

pr := pr + 1; await db.read(k; x); pr := pr – 1

op write(in k: Key, x: Data) == await (writer = caller);

pw := pw + 1; await db.write(k,x); pw := pw – 1

end

Figure 4. A consistent read/write class.

5 Example: Readers and Writers

We present now an example that will serve the purpose of illustrating the use of
safeNew in the second sense explained in the introduction (i.e., we try to protect
what is inside the wrapper).

Let us consider an application allowing users to read and write a shared database.
In Fig. 4 we show a Creol class RWController (taken from [8]) with consistency
checking, so no reading is possible while writing and a write waits until all the reads
have completed before starting. We assume given a shared database db, which pro-
vides two basic operations read and write. Through interface specifications, these
are assumed to be accessible for RWController objects only. Clients will communi-
cate with an RWController object to obtain read and write access to the database.
RWController provides read and write operations to clients and in addition four
methods to synchronize read and write activity: OR (OpenRead), CR (CloseRead),
OW (OpenWrite) and CW (CloseWrite). A read session happens between invo-
cations of OR and CR and writing between invocations of OW and CW. A client
is assumed not to terminate unless it has invoked CR and CW at least as many
times as OR and OW, respectively. To ensure fair competition between readers and
writers, invocations of OR and OW compete on equal terms for a guard free. If
the condition for reads or writes is unsatisfied, free is set to false and the process is
suspended.

A program creating an instance of the above class should contain the following
line: rwcons := new RWController(db), where db is an interface of the DataBase
class.

We now show how we could obtain the same consistent updating of the database
by using wrappers. The program creating the instance of the wrapped object is only
slightly changed since it will contain safeNew instead of a new statement: rwcons
:= safeNew DataBase(;Aut). Here we create a database object with a wrapper,
using the automaton to protect the usage of read and write operations. The wrap-

11

Owe & Schneider

i : exp(comp (·) to user)

/ o : exp(comp (·) to user)
/ c := c − 1

i : imp(invoc read(user, t, k) to db) /

o : imp(invoc read(user, t, k) to db) /
c := c + 1c := 0

i : exp(comp (·) to u) / c := c − 1
/ o : exp(comp (·) to u)

i : imp(invoc ow(u) to db)

/ c == 0

o : exp(comp (t) to user) / c == 0
i : imp(invoc cw(user, t) to db) /

/ user := u / tag := t

o : exp(comp (tag) to user)

/ u 6= user / o : exp(comp (·) to u)

i : exp(comp (·) to u) / c := c − 1

c > 0

c := c + 1

s0 s1

s3

s2

o : exp(comp (tag) to user)

/ c == 0

/ o : imp(invoc read(·) to db)
/ c := c + 1
i : imp(invoc read(·) to db)

o : imp(invoc write(user, t, k, x) to db) /

i : imp(invoc write(user, t, k, x) to db) /

Figure 5. Example: Wrapper automaton.

per automaton Aut, shown in Fig. 5, takes care of the consistency of the read and
write activity. The labels in the edges represent actions taken when the given tran-
sition is triggered, and conditions that must be satisfied in order the transition to
be taken, separated by “/”. We use the notation i : imp(invoc m(u, E) to o) to
denote that the automaton reads the invocation to method m from the outside pool
of messages in order to import it inside the wrapper, where o is the callee. The
message should match m(u, E), where the first parameter u identifies the caller
and E are other parameters. Whenever the parameters are not useful for the cur-
rent state of the automaton, we write m(·). When taking a transition labeled with
o : imp(invoc m(u, E) to o), the automaton imports the invocation by u of method
m(E), to the inside of the wrapper. Again we write m(·) as before if the param-
eters are not needed. In order to export messages from the wrapper we use exp,
and again combined with i and o the automaton reads from the inside of the wrap-
per and writes to the outside. There are then different possibilities, for instance
i : exp(comp m(·) to u) reads the method call m(·), from user u, from inside the
wrapper, whose execution has been completed, and o : exp(comp m(·) to u) sends
it to the outside of the wrapper (directed to user u). Besides, the transitions of the
wrapper automaton contains Boolean conditions, in the example c == 0 and c > 0,
where c is a local variable for counting pending reads and writes. Whenever a certain
parameter is only used locally (at one particular transition) we use implicit local
matching, and when matching is needed among different transitions, we do it explic-
itly by using extra variables. For instance the transition from s2 to the initial state
s0 contains labels i : imp(invoc cw(user, t) to db) and o : exp(comp (t) to user). In
this case t is a tag used for matching (locally) the invocation of cw with its comple-
tion, while user is here matched with the assignment done in the transition from
state s0 to s1. We use (·) to denote any pending message in the pool. For instance,
i : exp(comp (·) to u), in the loop transition in state s3, reads any completed method
call from user u, from inside the wrapper.

The automaton then allows all the reads to start till a request to start a write
(ow(u)) is taken from the outside pool of messages. Before throwing the message
into the wrapper, the automaton waits until all the pending reads finish and then

12

Owe & Schneider

gives exclusive access to the writer to update the database. The counter c guarantees
that the writer only writes when no pending reads remains (when c == 0). Once
the user getting the exclusive write to the database (in the automaton is represented
by user) gets access, then he can have an unlimited number of reads and writes in
any order till he decides to finish his exclusive access (by sending a message cw(·)).
The automaton then finishes his access after all his pending reads and writes are
completed (taken care by all the transitions from s2 to s2).

Notice that in the automaton we have not included any check that only registered
readers and writers are allowed to access the database, but this may be easily added.
We have shown a picture of the wrapper automaton since it is more readable, but
by using the functional language of Creol we can define finite state machines as the
input/output automaton used in this example (as done in [9]).

6 Related work

The idea of a programming language primitive to create wrapped objects control-
ling their interaction with the environment they are in is new, to the best of our
knowledge. However, the general idea of wrappers and controlled communication is
not new at all, including “boxed” calculi, behavioral interfaces, different ad-hoc fil-
ters, and even aspect-oriented programming. In what follows we will briefly discuss
a few representative works related to the concept of wrapper. We will also mention
a few approaches that may be used as wrapper automata.

Composition-filters [1] enable an aspect-oriented programming technique where
different aspects are expressed in filters in a declarative manner. Different aspects
can be expressed as filters, which can then be composed together and attached to
the objects programmed in different object-oriented languages. Composition filters
are very similar to our wrappers, with the main difference being that safeNew is a
primitive of a programming language, and composition filters cross-cut the object
definition.

Undoubtedly many “boxed” calculi are based on the idea of a membrane, or
box, which acts as a wrapper. These include mobile ambients [3], boxed ambients
[2] and the Seal calculus [4]. The above calculi concentrate on the construction and
communication of ambients, including mobility through ambient migration. This
is, however, a feature not needed for modeling web services, which is one of our do-
main of application. Our setting is based on objects communicating asynchronously
through message passing (method calls) and although it is possible to model objects
(e.g. by using input channels in the Seal calculus), none of the above calculi are
inherently object-oriented. Moreover, in these calculi messages need to be coded as
ambients, adding an extra complexity on the design.

The expressive power of aspect-oriented programming (AOP) [13] is different
from that of wrappers, as it may involve control of low-level issues such as the
number of assignments to particular variables, which we have not addressed with
our wrappers. On the other hand, a wrapper may remove or replace a call to or from
an environment, for instance in order to make incompatible components compatible.
This is not possible with AOP. The notion of wrapper has been motivated by the
desire to build abstract protection concepts with a simple semantics which may be

13

Owe & Schneider

exploited by formal program analysis tools. However, the ideas presented may also
be reused to build more low-level wrappers, reacting on for instance assignments,
but then with a less modular semantics.

We have not given a language for writing wrapper automata since it can be en-
coded in Maude (and thus in Creol) in the same manner as presented in [9]. Besides,
many existing formalisms may be used to specify wrapper automata depending on
the intended use, as for instance input/output automata, security automata [19],
interface automata [7], and edit automata [14].

Moreover, wrappers may also be seen as contracts, in particular deontic elec-
tronic contracts. This kind of contract refers to an agreement between parties
where it is established what are the obligations, permissions and prohibitions of
each party. Contracts may be written in a contract logic, as for instance the ones
presented in [5,18], and the wrapper may consist of an automaton automatically
extracted from such contract specification. This seems to be particularly useful for
wrapping components [17].

Java platforms do already contain a kind of wrapper, as the whole point of
these platforms is to protect untrusted code in some sandbox, where the sandbox
wraps applets. The main difference with our approach is that we wrap individual
objects (and those class instances created inside the wrapper), and that instead of
one Security Manager doing the wrapper, we allow a custom wrapper per object.

7 Final Remarks

In this paper we have proposed a new programming language primitive to create
wrapped objects. The rationale behind this is that we believe developers must have
at their hands the possibility of controlling certain security issues when program-
ming in insecure environment, or when using components issued by third-parties.
The main theoretical contribution is the fact that such a primitive may be added
to a language in a way that it is correct-by-construction. As a proof of concept
we have shown how the safeNew primitive may be added to Creol, a highly asyn-
chronous object-oriented language with formal semantics in rewriting logic. For
this purpose Creol has been extended with a suitable notion of self-contained com-
ponent, allowing nested component. The general ideas may be applied to other
languages than Creol and other communication models, including event-based lan-
guages, synchronous communication, or other component models. The extension to
shared variable systems is less trivial and would require a less modular semantics.

An interesting application domain, besides the Internet, is embedded systems.
In particular, the state-of-the-art of open smart cards allowing post-issue upload of
multiple-applets is unreliable from the security point of view. The main problem
is that the current model of firewalls between applets does not work properly, and
many attacks are possible due to failures in the model, the implementation of the
virtual machine, or other related bugs [15,16,20]. We do not claim that our proposal
will solve all those problems, but that at least will mitigate some of them.

The definition of wrappers as we did in Creol could be the starting point of
defining different layers of localities. In fact local networks and computers may
be represented as wrappers, without the notion of automaton controlling the input

14

Owe & Schneider

and the output. The only issue will be the addition of a local pool where only
explicit rules will allow a given message to navigate in or out from the wrapper. We
will need to extend it with an identifier, since localities may need to be referenced.
Firewalls could be added in a straightforward manner: a locality with a firewall
will essentially be the same as a wrapper as we defined it for the safeNew (with
the automaton) but over a collection of objects and classes. Thus, firewalls are
instances of wrappers in the second sense mentioned in the introduction, where the
untrusted part is the environment.

A third use of the idea of wrapper is in the context of components. When
a component is deployed, its user can only rely on that the component satisfies
its specification. As a self-contained executable (and black-box) unit, the user
can at least guarantee that the component behaves at run-time according to its
specification. One way to do so is to wrap the component when it is received with
its specification and let the wrapper warn in case of a bad behavior.

Our decision of using automata-like formalisms for controlling the wrapper is
motivated by the fact that in many cases we may use standard verification tech-
niques, like model checking, to prove that the wrapper satisfies certain properties.
In the reader and writer example (Section 5), the class definition in Fig. 4 has been
shown correct using a Hoare-like reasoning style in [8]. Though we have not per-
formed the exercise, we believe proving the same properties in our wrapper using
model checking will be much easier (and fully automatic).

Future work includes: (1) Addition of a library with “standard” wrappers; (2)
Development of a full language for writing automata and wrappers; (3) Use of
existing security-like automata as wrapper automata; (4) Application to a real case
study, including applications from Internet and smart cards.

Acknowledgments.
We are indebted to the anonymous referees for helpful comments, and to Pablo

Giambiagi for insightful discussions and participation in an early draft of this paper.

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting object interactions using
composition filters. In ECOOP Workshop, volume 791 of LNCS, pages 152–184, 1993.

[2] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In TACS, volume 2215 of LNCS, pages
38–63. Springer, 2001.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. In FoSSaCS, volume 1378 of LNCS, pages 140–155.
Springer, 1998.

[4] G. Castagna, J. Vitek, and F. Z. Nardelli. The seal calculus. Inf. Comput., 201(1):1–54, 2005.

[5] P. F. Castro and T. S. E. Maibaum. A complete and compact propositional deontic logic. In ICTAC,
volume 4711 of LNCS, pages 109–123. Springer, 2007.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Specification and programming in rewriting logic. Theoretical Computer Science, 285:187–243, Aug.
2002.

[7] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC/FSE’01, pages 109–120. ACM, 2001.

[8] J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent objects with asynchronous method
calls. In SwSTE’05, pages 141–150. IEEE C.S., Feb. 2005.

15

Owe & Schneider

[9] I. Grabe, A. Torjusen, and M. Steffen. Executable interface specifications for testing asynchronous creol
components. Technical Report 375, Dept. of Informatics, Univ. of Oslo, 2008.

[10] E. B. Johnsen, J. C. Blanchette, M. Kyas, and O. Owe. Intra-object versus inter-object: Concurrency
and reasoning in creol. In 2nd Intl. Workshop on Harnessing Theories for Tool Support in Software,
ENTCS, 2008. To appear.

[11] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed concurrent objects.
Soft. and Syst. Modeling, 6(1):35–58, Mar. 2007.

[12] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for distributed concurrent
systems. Theoterical Computer Science, 365(1–2):23–66, Nov. 2006.

[13] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. V. Lopes, and C. Maeda. Aspect-oriented
programming. In Proceedings of the European Conference on Object-Oriented Programming, volume
1241 of LNCS, pages 220–242. Springer-Verlag, 1997.

[14] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for run-time security
policies. Int. J. Inf. Sec., 4(1-2):2–16, 2005.

[15] M. Montgomery and K. Krishna. Secure object sharing in java card. In WOST’99, pages 14–14.
USENIX Association, 1999.

[16] W. Mostowski and E. Poll. Malicious code on Java Card smartcards: Attacks and countermeasures. In
CARDIS, volume 5189 of LNCS, pages 1–16. Springer, 2008.

[17] O. Owe, G. Schneider, and M. Steffen. Components, objects, and contracts. In SAVCBS’07, ACM
Digital Library, pages 91–94, 2007.

[18] C. Prisacariu and G. Schneider. A formal language for electronic contracts. In FMOODS’07, volume
4468 of LNCS, pages 174–189. Springer, June 2007.

[19] F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50, 2000.

[20] M. Witteman. Java card security. Information Security Bulletin, 8:291–298, October 2003.

16

	Introduction
	The Creol Language: Syntax
	The Creol Language: Semantics
	Syntactic Extensions to Creol
	Example: Readers and Writers
	Related work
	Final Remarks
	References

