
ERCIM NEWS 72 January 2008 47

As recently as several years ago, tech-
nology gurus predicted that the next big
trend in software system development
would be service-oriented architecture:
that is, a successful integration of
loosely coupled services belonging to
different organisations, sometimes
competing but on specific tasks collab-
orating, would storm the world. This
would create a myriad of new business
opportunities, enabling the formation of
virtual organisations in which small and
medium-sized enterprises would join
forces to thrive in an increasingly com-
petitive global market. The dream lives
on, and the industry is pouring resources
into developing and deploying Web
services. Yet the degree of integration
achieved between different organisa-
tions remains low. Collaboration pre-
sumes mutual trust, and wherever trust
is not considered sufficient, business
people turn to contracts as a mechanism
to reduce risk. In other words, for the
SOA to deliver its promised advantages,
developers need cost-effective contract
management solutions.

The main problems and open issues
identified for supporting Web services
development are the following:
1. Formal definition of generic con-

tracts: currently, no unified system of
syntax and semantics exists for con-
tracts (in particular for quality of ser-
vice (QoS) and security).

2. Negotiable and monitorable con-
tracts: a contract must be negotiated
until both parties agree on its final
form, and it must be monitorable in
the sense that there must be a way to
detect violations. Current program-
ming languages provide little sup-
port for negotiable and monitorable
contracts.

3. Combination of object-orientation
and concurrency models based on
asynchronous message-passing. The
shared-state concurrency model is

not suitable for Web service develop-
ment.

4. Integration of XML into a host
language, reducing the distance bet-
ween XML and object data models.

5. Harmonious coexistence at the
language level of real-time and inhe-
ritance mechanisms.

6. Verification of contract properties:
the integration of contracts in a pro-
gramming language should be
accompanied by the ability to guaran-
tee essential properties. Guaranteeing
the non-violation of contracts can be
done in (at least) four different ways:
(a) with runtime enforcement (eg
through monitors); (b) by constructi-
on (eg through low-level language
mechanisms); (c) with static program
analysis techniques; or (d) through
model checking.

None of the above can be used as a uni-
versal tool; they must be combined.

In addressing these issues and prob-
lems, we need to develop a model of
contracts in an SOA that is broad
enough to cater for at least QoS and
security contracts. A basic requirement
is the ability to seamlessly combine
real-time models (for QoS specifica-
tions) and behavioural models (essen-
tial to constrain protocol implementa-
tion and enforce security). Contract
models should also address discovery
and negotiation. However, the formal
definition of contracts should only be a
first step towards the more ambitious
task of providing language-based sup-
port for the programming and effective
usage of such contracts.

Some contracts may be seen as wrap-
pers that 'envelop' the code/object under
the scope of the contract. Firewalls, for
instance, may be seen as a kind of mon-
itor of the contract between a machine

CCoonnttrraacctt--OOrriieenntteedd SSooffttwwaarree DDeevveellooppmmeenntt
ffoorr IInntteerrnneett SSeerrvviicceess
by Pablo Giambiagi, Olaf Owe, Anders P. Ravn and Gerardo Schneider

The 'COSoDIS' project - Contract-Oriented Software Development for Internet Services - is developing
novel approaches to implementing and reasoning about contracts in service-oriented architectures
(SOA). The rationale is that system developers benefit from abstraction mechanisms in working with
these architectures. Therefore the goal is to design and test system modelling and programming
language tools to empower SOA developers to deploy highly dynamic, negotiable and monitorable
Internet services.

Figure 1: A contract (template) is generated in an electronic version (1); the contract is checked to
be free of contradictions (2); a negotiation starts (3); different versions of the contract are checked
(4); a final contract is signed (5); a runtime monitor guarantees the contract fulfilment (6) .

ERCIM NEWS 72 January 200848

and the external applications wanting to
run on that machine. It would be inter-
esting to investigate a language primi-
tive to create wrapped objects that are
correct by construction.

Contracts for QoS and security could
also be modelled as first-class entities
using a 'behavioural' approach, through
interfaces. In order to tackle time con-
straints (related to QoS), such interfaces
need also to incorporate time.

Finding languages or notations for
describing timing behaviour and
requirements is easy: the real challenges
are in analysis. Besides syntactic exten-
sions, the language needs to have time
semantic extensions in order to allow
extraction of a timed model, eg a timed

automaton. This model may be checked
with existing tools such as Kronos or
Uppaal, while other properties may
instead be proven correct by construc-
tion (eg wrappers).

In practice, many properties can only be
validated through runtime approaches.
A promising direction is to develop
techniques for constructing a runtime
monitor from a contract, which will be
used to enforce its non-violation (cf
ongoing work with Java Modeling Lan-
guage and Spec#).

In summary, our aim is to develop lan-
guage-based solutions to address the
above problems through the formaliza-
tion of contracts as enriched behavioural
interfaces, and the design of appropriate

abstraction mechanisms that guide the
developer in the production of contract-
aware applications.

The COSoDIS project is a Nordic proj-
ect funded by the Nordunet3 committee.
The partners involved are the University
of Oslo (Norway), Aalborg University
(Denmark) and SICS (Sweden).

Link:

http://www.ifi.uio.no/cosodis/

Please contact:

Gerardo Schneider
University of Oslo, Norway
Tel: +47 22 85 29 71
E-mail: gerardo@ifi.uio.no
http://folk.uio.no/gerardo/

The long-term journey towards the
e-science vision demands e-infrastruc-
tures that allow scientists to collaborate
on common research challenges. Such
infrastructures provide seamless access
to necessary resources regardless of
their physical location. These shared
resources can be of very different
natures and vary across application
domains. Usually they include content
resources, application services that
manipulate these content resources to
produce new knowledge, and computa-
tional resources, which physically store
the content and support the processing
of the services. Many e-infrastructures
already exist, at different levels of matu-
rity, and support the sharing of and
transparent access to resources of a sin-
gle type, eg SURFNet (information),
GriPhyN (services), EGEE (computing
and storage). However, they are still too
primitive to support a feasible realiza-
tion of VREs. The DILIGENT infra-
structure, released recently by the
homonymous project, will overcome

this limitation by supporting in a single
common framework the sharing of all
three types of resource.

The core technology supporting such
e-infrastructure is a service-oriented
application framework named gCube.
gCube enables scientists to declara-
tively and dynamically build transient
VREs by aggregating and deploying
on-demand content resources, applica-
tion services and computing resources.
It also monitors the shared resources
during the lifetime of the VRE, guaran-
teeing their optimal allocation and
exploitation. Finally, it provides mecha-
nisms to easily create dedicated Web
portals through which scientists can
access their content and services.

From the technological point of view,
gCube provides: (i) runtime and design
frameworks for the development of
services that can be outsourced to a
Grid-enabled infrastructure; (ii) a serv-
ice-oriented Grid middleware for

exploiting the Grid and hosting Web
Services on it; (iii) a set of application
services for distributed information
management and retrieval of structured
and unstructured data.

Runtime frameworks are distinguished
workflows that are partially pre-defined
within the system; they include Grid-
enabled services and application serv-
ices, where the former coordinate in a
pure distributed way the action of the
latter, while relying on a high-level
characterization of their semantics.
Design frameworks consist of patterned
blueprints, software libraries and partial
implementations of state-of-the-art
application functionality, which can be
configured, extended and instantiated
into bespoke application Grid services.

The service-oriented Grid middleware
provides all the required capabilities
necessary to manage Grid infrastruc-
tures. It eliminates manual service
deployment overheads, guarantees opti-

ggCCuubbee:: AA SSeerrvviiccee--OOrriieenntteedd
AApppplliiccaattiioonn FFrraammeewwoorrkk oonn tthhee GGrriidd
by Leonardo Candela, Donatella Castelli and Pasquale Pagano

gCube is a new service-oriented application framework that supports the on-demand sharing of
resources for computation, content and application services. gCube enables the realization of
e-infrastructures that support the notion of Virtual Research Environments (VREs), ie collaborative digital
environments through which scientists, addressing common research challenges, exchange information
and produce new knowledge. gCube is currently used to govern the e-infrastructure set up by the
European integrated project DILIGENT (A Digital Library Infrastructure on Grid-Enabled Technology).

R&D and Technology Transfer

