
Memory consumption analysis of Java smart cards

Pablo Giambiagi

Swedish Institute of Computer Science, Box 1263, SE-164 28, Kista, Sweden.

E-mail: {pablo at sics.se}

and

Gerardo Schneider∗

Dept. of Informatics, University of Oslo - PO Box 1080 Blindern, N-0316 Oslo, Norway

E-mail: {gerardo at ifi.uio.no}

Abstract

Memory is a scarce resource in Java smart cards. Developers and card suppliers alike would want to make
sure, at compile- or load-time, that a Java Card applet will not overflow memory when performing dynamic
class instantiations. Although there are good solutions to the general problem, the challenge is still out
to produce a static analyser that is certified and could execute on-card. We provide a constraint-based
algorithm which determines potential loops and (mutually) recursive methods. The algorithm operates
on the bytecode of an applet and is written as a set of rules associating one or more constraints to each
bytecode instruction. The rules are designed so that a certified analyser could be extracted from their proof
of correctness. By keeping a clear separation between the rules dealing with the inter- and intra-procedural
aspects of the analysis we are able to reduce the space-complexity of a previous algorithm.

1 Introduction

Embedded systems, special-purpose computer systems built into larger devices, can be found almost every-
where: from a simple coffee machine, to a mobile phone and a car, all may contain at least one embedded
system, if not many. Programmable smart cards are small personal devices provided with a microprocessor
capable of manipulating confidential data, allowing the owner of the card to have secure access to chosen
applications. Applications, called applets, can be downloaded and executed in these small communicating
devices, raising major security issues. Indeed, without appropriate security measures, a malicious or sim-
ply buggy applet could be installed in smart cards and compromise sensitive data, perform unauthorised
transactions or even render the card useless by consuming all of its resources.

The multi-application model, i.e. the ability to load applets from possibly competing providers, puts
strong demands on the reliability of the software used to manipulate the data entrusted to the card. Hence,
it is essential that the platform, as well as the applets running on it, satisfy a minimum of safety and
security guarantees in order to preserve confidentiality, integrity and availability of information. To guarantee
availability of the services offered by small devices the management and control of resources (e.g. memory)
is crucial.

These days a top-notch smart card has about 64KB EEPROM, 200KB ROM, 4KB RAM and a 32-bits
data bus. The corresponding numbers for banking and other low-end cards are 16KB, 16KB, 1KB and 8
bits. In the smart card world, memory is a very precious resource which must be manipulated carefully.
Consequently the smart card industry has developed specific programming guidelines and procedures to keep
memory usage under control. We quote Chen: “Because memory in a smart card is very scarce, neither per-
sistent nor transient objects should be created willy-nilly” [7, Section 4.4]. The advice is extended to method
invocations: “You should also limit nested method invocations, which could easily lead to stack overflow. In

∗Partially supported by the RNTL French project, CASTLES (Conception d’Analyses Statiques et de Tests pour le Logiciel

Embarqué Sécurisé). Part of this work was done while the author was spending one year as a researcher at IRISA-INRIA.

particular, applets should not use recursive calls” [7, Section 13.3]; and object allocation: “An applet should
always check that an object is created only once” [7, Section 13.4]. Even though these recommendations
are generally respected by the industry, mistakes regarding memory usage –like the instantiation of a class
inside a loop– either accidental or intentional, may have dire consequences. In fact, nothing prevents a(n)
(intentionally) badly written applet to allocate all persistent memory on a card. Hence, the ability to detect
recursive methods and loops is imperative, both during the development process and at applet load-time.

As far as we know there is no on-card tool available for detecting the dynamic instantiation of classes
inside cycles and/or recursive functions for Java smart cards. Leroy [10, 11] describes a bytecode verifier that
could be made to run on-card, but it does not address properties related to memory usage. Previous work
presents a certified analyser to determine loops and mutually recursive methods but its memory footprint
prevents it from being deployed on-card [6].

This paper takes up the challenge of constructing a formally certified static analyser whose memory
requirements are low enough that it could be added, eventually, to an on-card bytecode verifier. This implies
making the right trade-off between the precision of the analysis and the practical viability of the formal
certification process. Regarding the latter requirement we have adopted the approach introduced in [6].
According to this approach, the analyser should be first described as a constraint-based algorithm, and then
formally extracted from the proof of correctness of the algorithm in the proof assistant Coq [4]. Whereas [6]
demonstrates the feasibility of the extraction process, the difficulty remains on how to describe more efficient
algorithms (in terms of memory consumption) without compromising the ability to perform code extraction.

The algorithms presented here improve those presented in [6], in terms of the auxiliary memory used
and because they also cover subroutines and exceptions, which were not addressed originally. Although the
memory consumption is not fully optimised, we have taken care to partition the tasks to reduce the amount
of data that needs to be kept simultaneously in memory.

One further feature of our algorithm is that it works directly on the bytecode and there is no need
to precede its execution with the construction of extra data structures (e.g., a control-flow graph). Our
approach includes both intra- and inter-procedural analyses. Both work on arbitrary bytecode, i.e. it is not
assumed that the bytecode is produced by a “well-behaved” compiler. For the intra-procedural analysis, the
construction of the graph of basic blocks –a prerequisite of many textbook algorithms– is done implicitly
without resorting to any auxiliary, pre-existent analysis.

The language being considered is the bytecode language JCVML (Java Card Virtual Machine Language),
although the techniques discussed in this paper are independent of this choice and can be applied to most
bytecode languages. JCVML manipulates (dynamic) objects and arrays and besides the usual stack and reg-
ister operations it accommodates interesting features like virtual method calls, (mutually) recursive methods,
(un)conditional jumps, exceptions and subroutines. We assume there is no garbage collector, which is the
case for Java Card up to version 2.11.

The paper is organised as follows. Section 2 briefly presents the language being considered while in
Section 3 we present the specification of the algorithm. We prove, in Section 4, termination of our algorithm
as well as its soundness and completeness with respect to an abstraction of the operational semantics of the
language. In Section 5 we show how we could treat subroutine calls and exceptions. In the last section we
discuss the complexity of our algorithm, related and future work.

2 The language

We consider in this paper the whole JCVML language. The instruction set, as well as an operational
semantics of a language that models JCVML is given in [16]. It comprises, among others, the following
instruction sets:

• Stack manipulation: push, pop, dup, dup2, swap, numop;

• Local variables manipulation: load, store;

• Jump instructions: if, goto;

• Heap manipulation: new, putfield, getfield;

1Starting with Java Card 2.2 the machine includes a garbage collector which may be activated invoking an API function at
the end of the execution of the applet.

2

• Array instructions: arraystore, arrayload;

• Method calls and return: invokevirtual, invokestatic, invokespecial, invokeinterface, return.

In Section 5 we sketch how to extend the analysis to cover subroutine calls and exception handling.
A JCVML program P (which will be called in what follows a bytecode program or simply, a program) is a

set of methods m ∈ MethodP consisting of a numbered sequence of instructions. We write InstrAt(m, pc) = i

to denote that the instruction at program line pc (usually called a pc-number) in method m is i. Let
ProgCounterP be the set of all the pc-numbers. We will usually omit the subscript P , being understood
that the analysis depends on a given program P .

3 Specification of the analysis

We present in this section a constraint-based specification of an analyser for detecting the occurrence of a
new instruction inside potential cycles, due to intra-method loops and/or (mutually) recursive method calls.
It consists in the computation of three functions Loop, Loop’ and Rec respectively providing information
about intra-method cycles, methods called from intra-method cycles and (mutually) recursive methods (as
well as the methods reachable from these). Using the above functions, the main algorithm checks whether
a new instruction occurs inside a potential cycle. The specification of the main algorithm and all the
above-mentioned functions are presented as a set of rules, each rule associating one or more constraints to
each instruction in the program. The solution of the set of constraints (which are of the form {F1(X) ⊑
X, . . . Fn(X) ⊑ X}) is the least fix-point of a function F obtained from F1, . . . Fn. By a corollary to Tarski’s
Fix-point Theorem, this element may be obtained as the limit of the stabilising sequence (Fn(⊥))n∈N.

We show next how to detect intra-method loops and (mutually) recursive methods.

3.1 Detection of loops

We will define two functions, Loop and Loop’, for detecting cycles in a given program P : Loop will be defined
intra-procedurally while Loop’ will propagate inter-procedurally the results given by Loop.

Intra-procedural analysis. The analysis works by identifying the basic blocks in each method, and by
associating to each program point the set of basic blocks that may be traversed on an execution path ending
in the point in question. With this information at hand, the analysis is able to mark the instructions involved
in a potential cycle. The concept of basic block is well-established in program analysis [14]. It refers to a
contiguous, single-entry code segment whose (conditional) branching instructions may only appear at the
end of the block. This implies that, with the exception of the very first block (which starts at pc = 1), all
other basic blocks start at the destination of some jump. Our analysis identifies each basic block by the
pc-number of its first instruction, which is found observing the targets of branching instructions.

We proceed to formalise this intuition. Given a program P , let Method and ProgCounter be respectively
the sets of method names and pc-numbers of P . Given a method m, its pc-numbers range from 1 to the
constant ENDm, which is equal to the number of lines of method m plus one. The analysis defines the
function

Loop : Method × ProgCounter → ℘(ProgCounter ⊎ {•}) ,

where Loop(m, pc) ∩ ProgCounter is the set of basic blocks (identified by their first location) that may be
traversed on an execution path to (m, pc). Moreover, if • ∈ Loop(m, pc), then we know that the location
(m, pc) lies in a cycle of the control flow graph of P .

We do not assume any structure on the bytecode program being considered, except that each goto is
intra-method – a property guaranteed by the bytecode verifier [10]. Table 1 shows the rules (one for each
instruction) used for computing Loop. That is, Loop is defined as the least element of the lattice

L = (Method × ProgCounter → ℘(ProgCounter ⊎ {•}), ⊑),

that satisfies all the constraints derived from the code using the rules in Table 1. The order relation of the
lattice is defined as f ⊑ f ′ iff f(m, pc) ⊑ f ′(m, pc), for all (m, pc). Notice that the co-domain of Loop is a
powerset. This is a lattice under subset inclusion; its least element, ⊥, is the empty set.

3

{1} ⊑ Loop(m, 1)
(1)

(m, pc) : goto pc′

F (Loop(m, pc), pc′) ⊑ Loop(m, pc ′)
(2)

(m, pc) : if t op goto pc′

F (Loop(m, pc), pc′) ⊑ Loop(m, pc′)
F (Loop(m, pc), pc + 1) ⊑ Loop(m, pc + 1)

(3)

(m, pc) : invokevirtual m′

Loop(m, pc) ⊑ Loop(m, pc + 1)
(4)

(m, pc) : return

⊥ ⊑ Loop(m, ENDm)
(5)

(m, pc) : instr

Loop(m, pc) ⊑ Loop(m, pc + 1)
(6)

Table 1: Rules for Loop

Rule (1) labels the first line of each method as a basic block. Although this rule is not needed for
detecting loops, it helps to identify which loops are actually reachable (see Example 1). Rule (2) serves two
simultaneous purposes: It records location (m, pc′) as the start of a basic block, and takes care of detecting
cycles. If the list of blocks possibly visited up to (m, pc) contains the destination of the goto instruction,
i.e. pc′ ∈ Loop(m, pc), the rule marks (m, pc′) as belonging to a cycle. These two tasks are achieved with
the help of the following auxiliary function:

F (Lm,pc, pc
′) =

{
Lm,pc ∪ {•} if pc′ ∈ Lm,pc

Lm,pc \ {•} ∪ {pc′} otherwise
(7)

where “\” is the usual set subtraction operator.
A conditional branch instruction determines the starting point of two basic blocks: (1) the destination

of the jump and (2) the location of the instruction immediately after the conditional jump. This is taken
care of by rule (3) again using function F .

Rule (4) concerns virtual method invocations. As we are considering here only intra-procedural cycles,
the content of Loop is not propagated to method m′. Similar rules for invokestatic, invokespecial and
invokeinterface may be considered. The return instruction –rule (5)– does not propagate anything, as
expected for an intra-procedural analysis. In rule (6), instr stands for any other instruction not defined by
rules (1)–(5); in this case the information is simply propagated to the next instruction.

For the sake of simplicity define a predicate Loopm,pc ≡ ({1, •} ⊆ Loop(m, pc)), so that InstrAt(m, pc)
is in a reachable loop iff Loopm,pc.

Example 1 In Fig. 1 we show part of three bytecode methods; the value of Loop appears to the right of
each program. We assume that the lines marked with ellipsis have no branching instructions. Program (a)
contains no cycles, which is reflected by the absence of • in the right column. Program (b) has a cycle
involving lines 20 through 70. Notice how the analysis discovers the basic blocks (with start in lines 1, 20,
31, 41, 50, 51 and 90). Observe as well that • is not propagated to line 90 by the branching instructions at
lines 40 and 50. The annotation is filtered by F (in rule 3) to reflect the fact that line 90 lies outside the
cycle. Finally, Program (c) illustrates the case of an unreachable cycle. Lines 2-3 are marked as belonging
to a cycle involving the basic block starting in line 2, but there is no path to this block from line 1. �

Inter-procedural analysis. Given a program P , we define the following lattice:

L = (Method × ProgCounter → {⊥,⊤}, ⊑),

where Method and ProgCounter are as before and {⊥,⊤} is the usual lattice with ⊥ ⊑ ⊤. The order for
the function lattice is defined as follows: f ⊑ f ′ if and only if f(m, pc) ⊑ f ′(m, pc), for all (m, pc). For
convenience and to be consistent with the notation used in the computation of Loop, we will write • for ⊤.

Loop′ captures all the instructions reachable from intra-procedural cycles through method calls. It is
defined by the rules shown in Table 2. To keep the presentation simple the first constraint for rule (8) has
been written • ⊑ Loop′(m′, 1), but it must be understood as: ∀mID ∈ implements(m′), • ⊑ Loop′(mID, 1),
and similarly for rule (9). The same remark holds for the invokevirtual rules of the function Rec defined
later. Function implements is a static over-approximation of the dynamic methodLookup function [16], which

4

1 ... {1}
30 if goto 50 {1}
31 goto 49 {1,31}

...
40 goto 60 {1,31,40,49,50}

...
49 if goto 60 {1,31,49}
50 goto 40 {1,31,49,50}

...
60 ... {1,31,40,49,50,60}

(a)

1 ... {1}
20 ... {1,20,31,41,50,51,•}
30 if goto 50 {1,20,31,41,50,51,•}
31 ... {1,20,31,41,50,51,•}

...
40 if goto 90 {1,20,31,41,50,51,•}
41 ... {1,20,31,41,50,51,•}

...
50 if goto 90 {1,20,31,41,50,51,•}
51 ... {1,20,31,41,50,51,•}

...

70 goto 20 {1,20,31,41,50,51,•}
... {}

90 ... {1,20,31,41,50,51,90}

(b)

1 goto 4 {1}
2 ... {2,•}
3 goto 2 {2,•}
4 return {1,4}

(c)

Figure 1: Example

(m, pc) : invokevirtual m′ Loopm,pc

• ⊑ Loop′(m′, 1)
Loop ′(m, pc) ⊑ Loop′(m, pc + 1)

(8)

(m, pc) : invokevirtual m′ ¬Loopm,pc

Loop ′(m, pc) ⊑ Loop′(m′, 1)
Loop ′(m, pc) ⊑ Loop′(m, pc + 1)

(9)

(m, pc) : instr

Loop′(m, pc) ⊑ Loop′(m, pc + 1)
(10)

(m, pc) : return

⊥ ⊑ Loop′(m, ENDm)
(11)

Table 2: Rules for Loop′

returns all possible implementations of a given method with name m′ relative to a program P . Notice that
on Java cards the information needed to compute such function is available at load-time. We do not specify
it in further detail.

3.2 Detection of (mutually) recursive methods

Given a program P , we define a lattice L as follows:

L = (Method × ProgCounter× → ℘(Method ⊎ {•}), ⊑),

where the order relation is inherited from the powerset lattice in the usual way, i.e. f ⊑ f ′ iff f(m, pc) ⊑
f ′(m, pc), for all (m, pc). Rec takes values over the above lattice. The definition of Rec is given by the
rules described in Table 3. The first rule corresponds to the case of a recursive method m; it annotates
the first instruction of the method with • and the method name. The application of the other rules will
then propagate these annotations to all the instructions in the method. Rule (13) shows the case of a non
self-invocation. The content of Rec is propagated unchanged to the next instruction inside the method, and
to InstrAt(m′, 1) as determined by function G : ℘(Method ⊎ {•})× Method −→ ℘(Method ⊎ {•}):

G(Rm,pc , m
′) =

{
Rm,pc ∪ {m, •} if m′ ∈ Rm,pc

Rm,pc ∪ {m} if m′ 6∈ Rm,pc

At each method call (m, pc) : invokevirtualm′, G adds to Rec(m, pc) the calling method name; if the
called method name is already in Rec(m, pc), then also • is added. Intuitively, G detects whether a given
method has been visited more than once following the same “path”. The other rules only propagate the
result defined by the rules corresponding to invokevirtual (as before, instr stands for any instruction not
already covered by rules (12)–(14)).

For a given method m and program counter pc, we define the predicate Recm,pc ≡ (• ∈ Rec(m, pc)).
Remark. Notice that we are interested in knowing which methods may be executed an unknown number

of times due to recursion. Thus, Rec detects not only all the (mutually) recursive methods but also all the
methods which are called from those: for any method m such that Recm,1, if m ∈ Rec(m, 1), m is (mutually)
recursive, otherwise m is reachable from a (mutually) recursive method. From now on we will say that a
method is recursive if it calls itself or if it belongs to a set of mutually recursive methods.

5

(m, pc) : invokevirtualm′ m = m′

Rec(m, pc) ∪ {m, •} ⊑ Rec(m′, 1)
Rec(m, pc) ⊑ Rec(m, pc + 1)

(12)

(m, pc) : invokevirtualm′ m 6= m′

G(Rec(m, pc), m′) ⊑ Rec(m′, 1)
Rec(m, pc) ⊑ Rec(m, pc + 1)

(13)

(m, pc) : return

Rec(m, pc) ⊑ Rec(m, ENDm)
(14)

(m, pc) : instr

Rec(m, pc) ⊑ Rec(m, pc + 1)
(15)

Table 3: Rules for Rec

3.3 Main algorithm

In this section we present the specification of the main algorithm, which uses the three analyses described
so far.

The only instructions sensitive to our analysis are the ones that enlarge the heap, namely instructions that
create array objects and class instances (see the operational semantics in [16]). For simplicity we consider
here only one instruction new, but we mean both new(cl) and new(array a), where a is an array type. We
write Cyclem,pc as a shortcut for Loopm,pc ∨ Loop′

m,pc ∨Recm,pc. The specification of the algorithm is given
by the following three-valued function Γ : Method × ProgCounter → {0, 1,∞}:

Γ(m, pc) =






∞ if (m, pc) : new(cl) ∧ Cyclem,pc

1 if (m, pc) : new(cl) ∧ ¬Cyclem,pc

0 otherwise

So Γ(m, pc) represents a bound on the number of object instances that may be created by the program
instruction at (m, pc). If there is no new instruction there, then Γ(m, pc) is clearly 0. When (m, pc) : new(cl)
and (m, pc) lies in no (potential) cycle, then we know that the instruction may be executed at most once and
therefore Γ(m, pc) = 1. Finally, Γ(m, pc) = ∞ if the current instruction is a new and lies inside a potential
cycle. Notice that the main algorithm is obtained without computing a fix-point, since all the information
is already in Cycle .

4 Properties of the analysis

4.1 Termination

One of the crucial properties for proving termination of our analyser is the ascending chain condition, i.e.
that the underlying lattices have no infinite, strictly increasing chains. The property is trivially satisfied by
all our lattices as their height are finite. The algorithm reduces to the problem of solving a set of constraints
over a lattice L, which can be transformed into the computation of a fix-point of a monotone function over
L. Termination follows from the proof of the termination of the fix-point computation for obtaining Loop,
Loop’, Rec and Γ.

We need the following auxiliary lemma about the functions F and G used in the definition of Loop and
Rec.

Lemma 1 The functions F and G are monotone. �

It is well known (see for instance [14]) that the solution of a set of constraints of the form {F1(X) ⊑
X, . . . Fn(X) ⊑ X}, where each Fi is monotone, is the least solution of a function F obtained from F1, . . . Fn.
Moreover, by a corollary of Tarski’s fix-point theorem, this element may be obtained as the limit of the
stabilising sequence (Fn(⊥))n∈N. As a corollary of the previous lemma we have the following result.

Corollary 1 The computations of the least fix-points corresponding to the set of constraints defining Loop,
Loop’ and Rec always terminate. �

Termination of the algorithm follows directly from termination of Loop, Loop’ and Rec, given that the
algorithm simply scan each method sequentially without iterating.

Theorem 1 The computation of the function Γ always terminates. �

6

4.2 Soundness and completeness

We consider here a maximal semantics. That is, the semantics of a program P , noted [[P]], is the set of
all its possible executions (traces). Such traces may be obtained symbolically by applying the rules of the
operational semantics [16]. We prove soundness and completeness of the functions introduced in Section 3
w.r.t. an appropriate abstraction of the operational semantics. For Rec we consider the usual method-call
graph, which is an abstraction of the control-flow graph G(P). For the intra-procedural case (Loop) we
consider Gm(P), which is a modified restriction of G(P) to the given method m. The trace obtained from
a traversal of the graph G(P), which does not take into consideration the tests in branching instructions, is

an abstract trace of P ; let [[P̂]] denote the set of all the abstract traces of program P . In what follows we will

use the fact that [[P]] ⊆ [[P̂]] (see [13, 15] and references therein).

4.2.1 Loop

Given a program P , its control-flow graph G(P), is a 4-tuple (S,→, s0, F), where

• S is a set of nodes (or program states), ranging over elements of Method × ProgCounter ;

• →⊆ S × S is a set of transitions, which models the flow of control;

• s0 is the initial state: s0 = (m0 , 1), where m0 is the main method;

• F = (m0 , ENDm0
) is the final state.

In what follows we will write G instead of G(P). More formally, → is defined as follows:

(m, pc) : goto pc′

(m, pc) → (m, pc′)

(m, pc) : if c goto pc′

(m, pc) → (m, pc′) (m, pc) → (m, pc + 1)

(m, pc) : return

(m, pc) → (m, ENDm)

(m, pc) : invokevirtual m′

(m, pc) → (m′, 1) (m′, ENDm′) → (m, pc + 1)

(m, pc) : instr

(m, pc) → (m, pc + 1)

where instr is any instruction different from invokevirtual, goto, if, and return. As usual, →+ denotes
the transitive closure of →; we say that a state s′ is reachable from s iff s →+ s′ and write s′ ∈ Reach(s).
We also introduce a satisfaction relation: G |= φ iff G satisfies the property φ.

For our purposes it is convenient to define the control-flow graph of each method independently, which
may be obtained from the graph G by defining a transition relationship →m which agrees with → except for
the invokevirtual instruction:

(m, pc) : invokevirtual m′

(m, pc) →m (m, pc + 1)
.

For each method m, we denote the graph obtained using the new transition →m by Gm, and call it the
m-control-flow graph. We say that pc’ is reachable from pc in Gm, written pc′ ∈ Reachm(pc), if and only if
(m, pc) →+

m (m, pc′). We will omit the subindex m and we will simply write Reach and → instead of Reachm

and →m respectively whenever understood from the context. We define the following predicate:

Gm |= SynC (m, pc) iff Gm |= pc ∈ Reach(pc).

Thus, the predicate SynC determines whether a given instruction is in a syntactic cycle. Notice that this
predicate only characterises intra-method cycles.

The following theorem establishes that the function Loop characterises exactly all the syntactic cycles of
a method.

Theorem 2 (Soundness and Completness of Loop) Loopm,pc if and only if Gm |= SynC (m, pc). �

7

4.2.2 Loop’

The following predicate, SynCReach, determines whether a given instruction is reachable from a method
invocation inside a syntactic cycle:

G |= SynCReach(m, pc)
iff

(∃m′) Gm′ |= SynC (m′, pc′) and G |= (m, pc) ∈ Reach(m′, pc′).

Loop’ characterises exactly all instructions reachable from a cycle:

Theorem 3 (Soundness and Completeness of Loop’) Loop′
m,pc if and only if G |= SynCReach(m, pc).

�

4.2.3 Rec

Given a program P , its method-call graph M(P), is a 3-tuple (N ,→, m0), where

• N is a set of nodes ranging over Method names;

• → ⊆ N ×N is a set of transitions;

• m0 is the initial state.

Notice that the transitions of this graph are not labelled and that there are no final states. Indeed,
M(P) models the method call relationship: m → m′ if and only if ∃pc · InstrAt(m, pc) = invokevirtual m′.
Whenever understood from the context we will write M instead of M(P). Given the method-call graph, we
say that a method m′ is reachable from m if and only if there is a path in the graph from m to m′. More
formally, Reach(m) = {m′ | m →+ m′}. Given the graph of method calls, we define the following predicate
which determines whether a given method m is recursive:

MutRec(m) ≡ m ∈ Reach(m).

The following predicate characterises not only the mutually reachable methods but also the methods
reachable from those:

MutRecReach(m) ≡ ∃m′ · MutRec(m′) ∧ m ∈ Reach(m′).

We introduce a satisfaction relation: M |= φ iff M satisfies the property φ. We state now soundness and
completeness of Rec.

Theorem 4 (Soundness and Completeness of Rec) Recm,pc if and only if M |= MutRecReach(m). �

4.2.4 Main algorithm

We state now the soundness and completeness of our algorithm with respect to our abstraction, which follow
directly from the definition of Γ and the soundness and completeness of Loop, Loop’ and Rec.

Theorem 5 (Soundness of the algorithm) If Γ(m, pc) = ∞, for some (m, pc), then InstrAt(m, pc) =
new(cl) and such instruction occurs in a syntactic cycle and/or in a recursive method. Furthermore, if
Γ(m, pc) = 1, for some (m, pc), then InstrAt(m, pc) = new(cl) and InstrAt(m, pc) is not in a syntactic cycle
nor in a recursive method.

Theorem 6 (Completeness of the algorithm) If InstrAt(m, pc) occurs in a syntactic cycle and/or in a
recursive method and InstrAt(m, pc) = new(cl), then Γ(m, pc) = ∞. On the other hand, if InstrAt(m, pc) =
new(cl) does not occur in a syntactic cycle nor in a recursive method then Γ(m, pc) = 1.

Notice that the above soundness and completeness result are with respect to an abstraction, which is the
identification of new instructions inside syntactic cycles. However, the real interesting conclusion is:

Corollary 2 If Γ(m, pc) = 1 then for any real execution of the applet, InstrAt(m, pc) will be executed a
finite number of times. �

Our algorithm may be easily refined to give an upper bound for the memory used by an applet if no
new instruction occurs inside a loop. This may be done by simply counting their occurrences and considering
the memory allocated by each new, as done in [6].

8

(m, pc) : throw e (m, pc′) ∈ findHandler (m, pc, e)

F (Loop(m, pc)) ⊑ Loop(m, pc′)
(16)

(m, pc) : throw e (m′, pc′) ∈ findHandler(m, pc, e) m′ 6= m

G(Rec(m, pc), m′) ⊑ Rec(m′, pc′)
(17)

Table 4: Added rules for throw

(m, pc) : jsr pc ′

F (Loop(m, pc)) ⊑ Loop(m, pc′)
F (Loop(m, pc)) ⊑ Loop(m, pc + 1)

(18) (m, pc) : ret i

⊥ ⊑ Loop(m, ENDret)
(19)

Table 5: Added rules for jsr

5 Handling exceptions and subroutines

One advantage of the rule-based approach presented in the previous section is its ease of extension. We
sketch how to extend the rules for Loop and Rec in order to cover particular cases of exception handling and
subroutine calls.

5.1 Exceptions

According to the operational semantics of the JCVM, an exception is raised either when a program instruction
violates its semantic constraints, or when the current instruction is a throw. To illustrate the flexibility and
modularity of the approach, we extend the algorithm of the previous section to handle exceptions raised by
the throw instruction. Exceptions are slightly difficult to treat statically because finding the right exception
handler may require searching through the frame stack. Obviously, this is not possible at compile time,
hence we use a function findHandler (m, pc, e) [16] that over-approximates the set of possible handlers that
could possibly catch exception e when raised from location (m, pc).

The rules in Table 4 extend the constraints on Loop and Rec to handle explicit exceptions. Rule (16)
takes care of the case when there is a handler for the exception in the current method. When there is a
handler outside the current method, a throw is treated like a method invocation –rule (17).

5.2 Subroutines

The finally block of a try . . .finally Java construct is usually compiled into a subroutine, a fragment
of code called with the jsr bytecode instruction. We treat subroutines as in Leroy’s bytecode verifier [11],
i.e. “as a regular branch that also pushes a value of type ’return address’ on the stack; and ret is treated
as a branch that can go to any instruction that follows a jsr in the current method”. We assume that the
applet being analysed has passed bytecode verification, guaranteeing the above property. Notice that the
treatment of ret represents a considerable loss of precision since the analysis should take into account all
the pc-numbers after the jsr instruction as possible return addresses of the subroutine. To simplify the
presentation, in Table 5 we consider that the return address is always the instruction immediately after
the jsr instruction (like in method calls); ENDret may be defined similarly as ENDm. The more general
case described by Leroy could easily be represented with the help of an auxiliary set function, analogous to
findHandler (cf. Section 5.1).

6 Final discussion

This work is a first step in the construction of a certified, on-card analyser for estimating memory usage on
Java cards. We have given a constraint-based algorithm which detects all the potential loops and recursive
methods in order to determine the presence of dynamic class instantiations inside cycles. We have proved
its soundness and completeness w.r.t. an abstraction of the operational semantics. Our abstraction is con-
servative and correct w.r.t. a run-time execution of the program, in the sense that if a run-time cycle exists,

9

then such cycle is detected by our algorithm, and if our analysis gives as an answer that no new instruction
is inside a cycle, then it is indeed the case. Besides the advantages mentioned in the introduction, the
modularity of our algorithm allows the analyser, as well as the functions Loop, Loop’ and Rec, to be reused
by other constraint-based analysers as programs which have been proved correct.

We have defined two functions, Loop and Loop’ for detecting cycles. Notice that we could have defined
only Loop just changing the rule of invokevirtual to:

(m, pc) : invokevirtualm′

Loop(m, pc) ⊑ Loop(m′, 1)
Loop(m, pc) ⊑ Loop(m, pc + 1)

In this case we would not need the definition of Loop’. Our choice is, however, not arbitrary and it is
motivated by modularity and memory usage concerns. Computing the intra-procedural cycles first yields a
local reasoning which may be done once and for all, also minimising the auxiliary memory used.

Complexity of the analysis. Let N be the number of bytecode instructions, NU the number of uncondi-
tional instructions (including throw) and NC the number of conditional jump instructions in a given method
m. If B is the number of bits used for representing a pc-number, then the memory needed to compute Loop
using the algorithm in Section 3.1 is bounded by N × ((NU + 2NC + 1) × B + 1). The second factor is a
bound on the size of Loop(m, pc) for a fixed pc, where (NU + 2NC +1) estimates the number of basic blocks
in method m: besides the first basic block, each unconditional jump instruction may determine one basic
block, and each conditional jump may determine two basic blocks. An instruction found to be in a potential
cycle needs one further bit (corresponding to •). This information is propagated along the method, and in
the worst case to all of its instructions. For Rec the auxiliary memory used is definitely less, since we only
propagate method’s names, which might be associated to each method without needing to propagate them
to every method line, although the specification presented here does it. The time efficiency of our algorithm
strongly depends on the efficiency of the constraint solver, but we believe that in principle each fix-point
computation converges in at most three iterations. Moreover, the order in which the different predicates are
applied may drastically improve the performance and space-complexity of the analyser. By computing Rec
first, for instance, we would not need to compute Loop for the methods already marked as recursive.

A moderately complex Java Card method may have around 50 basic blocks (see [11, Section 2.3]).
Considering a method with up to 200 instructions and 50 basic blocks the computation of Loop would
require approximately 10KB of memory in the worst case. This still exceeds the 4 KB of RAM available in
top-quality smart cards, so it is not yet feasible to deploy the analyser on-card. There is possibly enough
transient memory (EEPROM) to store the data structures used by the analyser, but its latency (1-10 ms per
write operation) would make the analysis extremely slow. On the other hand, the analysis could certainly
fit in, for instance, Java-enabled mobile phones.

Related Work. Ad-hoc type systems are probably the most successful tools for guaranteeing that well-
typed programs run within stated space-bounds. Previous work along these lines can be found in the context
of typed assembly [2, 17] and functional languages [3, 8, 9]. In [2], the authors present a first-order linearly
typed assembly language which allows the safe reuse of heap space for elements of different types. The idea
is to design a family of assembly languages which have high-level typing features (e.g. the use of a special
diamond resource type) which are used to express resource bound constraints. Vanderwaart et al. [17]
describe a type theory for certified code, with the aim of guaranteeing bounds on CPU usage, by using an
instruction-counting mechanism, or “virtual clock”. The approach may be extended to ensure bounds on
other resources as well. Another recent work is [1] where the resource bounds problem is studied on a simple
stack machine. The authors show how to perform type, size and termination verifications at the level of the
bytecode. In [13] it is shown how to import ideas from data flow analysis, using abstract interpretation, into
inter-procedural control flow analysis. Even though the motivations and the techniques are not the same,
it is worth mentioning the work done by the Mobile Resource Guarantees project [12], which applies ideas
from proof-carrying code for solving the problem of resource certification for mobile code.

We took inspiration from [5] where a similar technique is applied with success to extract a data flow
analyser for Java card bytecode programs. More recently, a Coq-certified constrained-based memory usage
analyser has been presented in [6], also based on the formalism introduced in [5]. The analyser has been
automatically obtained from its correctness proof using Coq’s extraction mechanism. Although such algo-
rithm has simpler rules for computing Loop, the space complexity is higher than the one presented here.

10

To compute Loop we have chosen to keep the pc-numbers of the target of any jump whereas [6] keeps the
pc-numbers of all the instructions already visited. Given an applet of 200 lines with 50 basic blocks (includ-
ing exception handlers) the auxiliary memory for computing Loop (in the worst case) using the algorithm
defined in [6] would reach about 40 KB, contrasting with the 10 KB of our algorithm.

Future Work. Due to the inter-procedural dependencies the analysis is not compositional: if two applets
are “loop-safe” (i.e., no new occurs inside a cycle), their composition is not necessarily loop-safe. We should,
in principle, compute Rec again for the composite applet in order to guarantee the non-existence of new
instructions inside newly created recursive methods. However, it is possible to minimise the computation of
a global fix-point (for detecting recursive methods) by keeping relevant information regarding the methods
of one applet called by methods of the other (and vice-versa). Our analyser may be easily extended in that
direction.

In Section 5 we have given an idea of how to extend our rules in order to handle exceptions and subrou-
tines. We intend to extend our approach to cover the remaining cases of exception handling and to improve
the precision of the subroutine analysis.

The space complexity of the intra-procedural analysis may be improved by propagating the pc-numbers
only to the beginning of a basic block instead of to all the internal instructions. In this case the memory
required would be bounded by ((NU + 2NC + 1)2 ×B) + (NU + 2NC + 1); on an applet with 50 basic blocks
(and at most 256 instructions), it would need only 2.5 KB, leaving on-card verification at reach.

Acknowledgements. The second author is indebted to Thomas Jensen and David Pichardie for insightful
discussions in an early stage of this work. Patrick Bernard, Eduardo Giménez, Arnaud Gotlieb and Jean–
Louis Lanet have provided us with useful information on the Java card technology.

References

[1] R.M. Amadio, S. Coupet-Grimal, S. Dal Zilio, and L. Jakubiec. A Functional Scenario for Bytecode
Verification of Resource Bounds. Research report 17-2004, LIF, Marseille, France, 2004.

[2] D. Aspinall and A. Compagnoni. Heap-bounded assembly language. J. Autom. Reason., 31(3-4):261–
302, 2003.

[3] D. Aspinall and M. Hofmann. Another type system for in-place update. In ESOP, volume 2305 of
LNCS, pages 36–52, 2002.

[4] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development. Coq’Art : the
Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer Verlag, 2004.

[5] D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a data flow analyser in constructive
logic. In ESOP, LNCS, pages 385–400, 2004.

[6] D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified memory usage analysis. In Formal
Methods, volume 3582 of LNCS, pages 91–106, 2005. To appear.

[7] Zhiqun Chen. Java Card technology for Smart Cards: architecture and programmer’s guide. Java series.
Addison Wesley, 2000.

[8] M. Hofmann. A type system for bounded space and functional in-place update. Nordic Journal of
Computing, 7(4):258–289, 2000.

[9] J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space: Towards embedded
ML programming. In International Conference on Functional Programming, pages 70–81, 1999.

[10] X. Leroy. Java bytecode verification: an overview. In CAV’01, volume 2102 of LNCS, pages 265–285.
Springer-Verlag, 2001.

[11] X. Leroy. Bytecode verification on java smart cards. Softw. Pract. Exper., 32(4):319–340, 2002.

[12] MRG. Mobile Resource Guarantees project. See http://groups.inf.ed .ac.uk/mrg/.

11

[13] F. Nielson and H.R. Nielson. Interprocedural control flow analysis. In European Symposium on Pro-
gramming, pages 20–39, 1999.

[14] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag New York,
Inc., 1999.

[15] D.A. Schmidt and B. Steffen. Program analysis as model checking of abstract interpretations. In SAS,
LNCS, pages 351–380, 1998.

[16] I. Siveroni. Operational semantics of the Java Card Virtual Machine. J. Logic and Algebraic Program-
ming, 58(1-2), 2004.

[17] J.C. Vanderwaart and K. Crary. Foundational typed assembly language for grid computing. Technical
Report CMU-CS-04-104, CMU, February 2004.

12

