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Chapter �

Introduction

��� Motivation

In the last decades daily life has been dominated by technological devices using computers or
digital controllers� One source of complexity in such systems arises because these computers
perform discrete operations while interacting with a physical environment which� in turn�
has continuous dynamics�

These systems can be rather simple� a co�ee machine� a thermostat� an elevator or a digital
alarm� while others can be extremely complicated� air tra c management systems $���%�
robotic systems $�%� manufacturing plants $��%� automobiles $��%� automated highway sys�
tems $���% and chemical plants $��� ��%� Critical systems are ones in which errors can have
more serious consequences� errors in the behavior of a co�ee machine are not comparable to
ones on airplanes� for instance� In general� we would like to satisfy a number of properties
depending on what the system �device� was built for� The problem of building complex
systems with a certain degree of con
dence in their correctness under any circumstance gave
rise to the techniques of simulation and testing� These techniques are widely used and are
very useful� However� they have the drawback of not being exhaustive� in the sense that
whenever the number of cases to validate is high then it is not possible to test or simulate all
the possible cases� Thus� these two techniques explore just some of the possible behaviors of
the system and can only partially guarantee its correctness�

In the past few decades an alternative approach to simulation and testing has been developed�
formal veri�cation� that makes an exhaustive exploration of the system possible behaviors�

There are two approaches to formal veri
cation� deductive and algorithmic�


 The deductive approach �or theorem proving� is based on the use of axioms and proof
rules of a certain theory in order to prove that a certain property holds� The speci�

cation of the system as well as the property are written in an axiomatizable theory
and then the idea is to prove that the property can be inferred from the system speci�

cation using the inference rules� The advantage of this method is that in principle it

��
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can handle very complex systems �even in
nite�state ones� but the drawback is that
it is not fully automatic� Another disadvantage is that a highly quali
ed and trained
user is needed in order to encode the system and to manipulate and guide the proofs�
Some well�known theorem provers are Coq $��� !!%� Isabelle $���% and PVS $��!%�


 The algorithmic approach �ormodel checking� $��% is a technique for verifying 
nite state
concurrent systems that can be made fully automatic� In general� a model of the system
is written in a mathematical formalism �usually transition systems or automata are
used� and the properties to be checked are expressed in a temporal logic $�� ��� ���� ���%�
Then� verifying that the system satis
es a given property is reduced to verifying that
the model of the system is a model �in the logical meaning� of the temporal logic
formula expressing the property� Temporal logic model checking was introduced in
the early eighties $��� ��� ���% but the 
rst use of temporal logic as a formalism to
reason about concurrency was in $���%� Many model checkers have been built in these
past years based on di�erent techniques and methods� For applications without timing
constraints� SMV $���% and SPIN $!�� !�% are two such tools� For real�time systems $���%
some of the tools are� COSPAN $��%� KRONOS $���%� RT�SPIN $���% and Uppaal $��%�

Some e�ort has been done in order to combine these two approaches� InVeSt $��� ��% and
STeP $���% are two veri
cation tools that do so�

Many mathematical and real problems can be modeled using transition systems� that is a
basic model for veri
cation� The above techniques and tools are then applied with success�
whenever no technological restrictions limit their use� Other problems are better modeled as
equations and in certain cases solving them involves 
nding isolated points � numbers � that
satisfy the equation� In many other applications it is often the case that the unknown is
itself a function� the equations obtained from this kind of problems are more complex and are
known as functional equations� One important class of functional equations are di�erential
equations $�� !�� !�% in which not only the unknown function appears but also its di�erent
order derivatives� The importance of di�erential equations is that solving various physical
and technological problems can be reduced to 
nding solutions of such equations� which are
usually curves in the plane or in space�

One important part of the general theory of di�erential equations is its qualitative theory�
In some cases it is necessary to characterize the solution and the properties of a di�erential
equation without solving it� In fact� for only a few simple equations a general solution can
be explicitly given� So that gives rise to the problem of investigating the properties of the
solutions of di�erential equations from the equation itself� The kind of properties that are
usually interesting are convergence or stability of the curves around some singular points or
closed curves� For example� do they lie in a bounded part of the plane� are there lines that
separates the plane into regions that are not �connected�� are some of them closed curves�
etc�& Such singular points� closed curves� separatrix lines� etc�� are important objects giving
qualitative information about the di�erential equation� The set of all such objects constitute
what is called the phase portrait of the di�erential equation�

Sometimes it is useful and even desirable to model systems with uncertainties and distur�
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bances and when building controllers it is important to explicitly specify the control variables�
One can model such systems using di�erential equations with additional variables that rep�
resent control or disturbance� Other solution is to use di�erential inclusions $��%� Roughly
speaking� di�erential inclusions are similar to di�erential equations but its right�hand side
is a set instead of a single value� Thus� a di�erential equation is a particular case of a dif�
ferential inclusion� In some other cases a problem is modeled not only by one di�erential
equation �inclusion� but by a set of such equations �inclusions� that are somehow related via
discrete variables�

A hybrid system is a system where both continuous and discrete behaviors interact with
each other� A typical example is given by a discrete program that interacts with �controls�
monitor� supervises� a continuous physical environment� Traditionally� the main preoccupa�
tion of computer scientists has been the study of discrete systems� using logic and discrete
mathematics as a basis for reasoning� On the other hand� continuous models have been the
subject of study of mathematicians and physicists� even though di�erential equations with
discontinuous right hand side has also been considered in these communities �see $��� ��% and
reference therein�� Later on� control theoreticians developed theories and methods to solve
problems on Control Theory about �switching systems�� in which digital control is applied
to switch between continuous laws� Hybrid systems are nowadays studied� from di�erent
points of view and using di�erent approaches and methods� in Computer Science� Control
Theory and Mathematics�

One widely used formalization for hybrid systems are hybrid automata $!�%� 
nite�state ma�
chines enriched with di�erential inclusions� Hybrid automata allow to model the discrete
part of a hybrid system as transitions between the states of the machine and its continuous
part with di�erential inclusions�

Some existing veri
cation tools for hybrid systems are� CheckMate $��� ��%� d�dt $��� ��%�
Hytech $!� !�% and VeriShift $��� ��%�

��� Contributions

Problem� One of the main research areas in veri
cation in general and in particular in
hybrid systems is reachability analysis which comprises two closely related issues� namely�
the study of decidability and the development of algorithms� It is important to realize
that for many problems there is no algorithm which solves them� Such problems are called
undecidable and are studied in computability theory $!�� ���� ���� ���%� that talk about limits
of what can be decided by an algorithm� Much e�ort has been spent in identifying classes
of decidable and undecidable problems and in drawing the separating border�

In this thesis we are concerned with the formal veri
cation of hybrid systems following the
algorithmic approach� In particular� we concentrate on two dimensional non�deterministic
hybrid systems� namely polygonal di�erential inclusion systems �SPDIs�� SPDIs are a class of
nondeterministic systems that correspond to piecewise constant di�erential inclusions on the
plane� for which we study the reachability problem as well as their qualitative behavior via
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the construction of their phase portrait� We also study some other classes of ��dimensional
hybrid systems for which we present some undecidability results�

Reachability� The 
rst contribution of this thesis is the development of an algorithm for
solving exactly the reachability problem of SPDIs� The approach is based on the combination
of two techniques� the representation of the two�dimensional continuous�time dynamics as a
one�dimensional discrete�time system �due to Poincar�e�� and the characterization of the set
of qualitative behaviors of the latter as a 
nite set of types of signatures� As far as we know�
this is the 
rst application of geometric methods to non�deterministic systems�

The practical contribution of this thesis is the implementation of the reachability algorithm
for SPDIs into a prototype of a tool called SPeeDI� that is a collection of utilities to manip�
ulate and reason mechanically about SPDIs�

Phase Portrait� As a second contribution� we study phase portraits of SPDIs� It is not a
priori clear what the phase portraits of such systems exactly are� mainly due to their intrinsic
non�determinism� The viability kernel $��� ��% of a simple cycle is the set of starting points
of trajectories which can keep rotating in the cycle forever� A controllability kernel is the
set of all the points such that any point is reachable from any other� We give a non�iterative
algorithm for computing the viability and controllability kernels of simple cycles and we
study convergence properties of such objects� We conclude that controllability kernels yield
an analog of Poincar�e�Bendixson theorem for simple SPDI trajectories�

Undecidability� The third main contribution of this work is the study of the decidabil�
ity of the reachability problem for other ��dimensional hybrid systems� Piecewise constant
derivative systems �PCDs� are hybrid systems for which the dynamics are de
ned by con�
stant derivatives and such that the trajectories are continuous� A hierarchical PCD �HPCD�
is a PCD with a 
nite number of discontinuities�

We show that the reachability problem for ��dimensional HPCDs is as hard as the reachability
problem for one dimensional piecewise a	ne maps �PAMs�� which is still an open problem�
On the same lines we prove that subclasses of two dimensional hybrid automata and PCDs
de
ned on ��dimensional manifolds are also equivalent to PAMs�

On the negative side we prove that adding a counter or �in
nite patterns� makes the reach�
ability problem undecidable for HPCDs� Two kinds of �in
nite patterns� are considered�
the 
rst is the possibility of having in
nite number of regions and the second one is the
permission of having dynamics that determine periodic behaviors�

��� Related Work

Reachability� Hybrid systems have been widely studied in the last decade $��� ��� ��� ���
��� ��� ���� ���� ���� ���%� In particular� for planar hybrid systems� $��% presents many
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examples and a general theory for modeling hybrid systems but no decidability issues are
discussed� Most of the decidability results on algorithmic veri
cation of hybrid systems
proved in the literature are based on the existence of a 
nite and computable partition of
the state space into classes of states which are equivalent with respect to reachability� This
is the case for timed automata $�%� certain classes of rectangular automata $!�% and hybrid
automata with linear vector 
elds $�!%� Except for timed automata� these results rely on
stringent hypothesis such as the resetting of variables along transitions�

Although analysis techniques based on the construction of a 
nite partition have been pro�
posed $��%� mainly all implemented computational procedures resort to �forward or backward�
propagation of constraints� typically �unions of convex� polyhedra or ellipsoids $�� ��� ��� ���
��� ��%� In general� these techniques provide semi�decision procedures� if the given 
nal set
of states is reachable� they will eventually terminate� otherwise they may fail to do so� This
is a property of the techniques� not of the problem� In other words� these algorithms may
not terminate for certain systems for which the reachability problem is indeed decidable�
Nevertheless� they provide tools for computing �approximations of� the reach�set for large
classes of hybrid systems with linear and non�linear vector 
elds�

Maybe the major drawback of set�propagation� reach�set approximation procedures is that
little attention is paid to the geometric properties of the speci
c �class of� systems under
analysis� To our knowledge� in the context of hybrid systems there are two lines of work in
the direction of developing more �geometric� approaches� One is based on the existence of
�enough� integrals and the ability to compute them all $��� �!%� These methods� however�
do not necessarily result in decision procedures� The other� applicable to two�dimensional
hybrid dynamical systems� relies on the topological properties of the plane� and explicitly
focuses on decidability issues� This approach has been 
rst proposed in $���%� where� it is
shown that the reachability problem for two�dimensional PCDs is decidable� This result has
been extended in $���% for planar piecewise Hamiltonian systems�

In this thesis we follow an approach similar to the one proposed in $���%� Our reachability
algorithm is not based on the computation of the reach�set but rather on the computation of
the limit of individual trajectories� A key idea is the use of one�dimensional a ne Poincar�e
maps $!�� ���% for which we can easily compute the 
xpoints� The decidability result of $���%
fundamentally relies on the determinism of PCDs which implies that planar trajectories do
not intersect themselves� This property is no longer true for di�erential inclusions� What is
interesting� both for PCDs as well as for SPDIs� is that in both cases simple cycles can be
accelerated in most cases� Acceleration is a well�known technique in veri
cation that consists
in computing� in one step� all the possible �maybe in
nite� states that would be reachable in
an unbounded number of steps� clearly saving computation time and space� This technique
was applied for automata with counters $��% and for automata with queues $�� ��� ��%�

SPeeDI is� as far as we know� the only veri
cation tool that implements a �geometric�
method for ��dimensional hybrid systems� Tools exist that� in theory� can handle the same
kind of systems as SPeeDI� like d�dt $��� ��% and HyTech $!� !�%� Even though these are
�semi�algorithmic� hybrid system veri
cation tools it is interesting to compare SPeeDI� which
implements a decision algorithm� with HyTech� for instance� HyTech is a tool capable of
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treating hybrid linear systems of any dimension� making it much more general than SPeeDI�
which is limited to two�dimensional systems without resets� On the other hand� SPeeDI im�
plements acceleration techniques �based on the resolution of 
xpoint equations� which yield
a complete decision procedure for SPDIs� Also� SPeeDI does not handle arbitrary polyhedra�
but only polygons and line segments� For these reasons� comparing the performance of the
two tools is meaningless and no fair benchmarking is really possible�

Di�erential Inclusions and Viability Theory� The use of di�erential inclusions as a
tool for modeling uncertainties has been known for more than �� years� The 
rst works have
been published by Marchaud $��!% and Zaremba $���% in the early thirties� An extended
survey can be found in $���% where a di�erential inclusion solver is presented� A more
complete treatment is given in the book of Aubin and Cellina $��%�

One of the reasons for a renewed interest in di�erential inclusions was the development of
viability theory $��� ��%� To quote $��%� viability theory can be characterized as follows�

�The main purpose of viability theory is to explain possible viable evolutions of
a system� determined by given nondeterministic dynamics and state constraints�
to reveal the concealed feedbacks which allow the system to be regulated and
provide selection mechanisms for implementing them��

Viability theory has applications in biology� economics� cognitive sciences� games� control
theory� etc�� and more recently in hybrid systems $��%�

Phase Portrait� Real analysis $�� ��% was the tool used for studying dynamical problems
for many years� until the French mathematician H� Poincar�e $���� ���� ���% and the Rus�
sian mathematician A�M� Lyapunov $���% started doing a qualitative analysis of di�erential
equations $��� ��� !�%� more than ��� years ago� from the requirements of mechanics and
astronomy�

There have been very few results on the qualitative properties of trajectories of hybrid
systems $��� ��� ��� ��� ��� ���� ���%� In particular� the question of de
ning and constructing
phase portraits of hybrid systems has not been directly addressed except in $���%� where
phase portraits of deterministic systems with piecewise constant derivatives are explored
and more recently in $�!� ��% where a characterization of viability and invariance kernels
were given for impulsive di�erential inclusions�

Undecidability� Although there has been intense research activity in the last years in the
domain of hybrid systems� there is no clear boundary between what is decidable and what
is not on such systems� It is well known that for particular cases the reachability question
is decidable� In $�% it was shown that reachability is decidable for timed automata �TA�
that is a particular case of hybrid automata �all the variables have slope �� and in $���%
the decidability of the same problem for ��dimensional PCDs was proved� In $�� ���% the
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decidability of the reachability problem for multi�rate automata �a hybrid automata such
that the variables run at any constant slope� was proven and in $!�� ���% the same holds
for rectangular automata under a number of restrictions� More decidability results were
given in $��% for timed graph with duration variables and in $��% for ��dimensional extended
integrator graphs�

On the other hand and not surprisingly� many undecidability results were given� In $!�%
it was shown that relaxing some restrictions the reachability problem for some classes of
rectangular automata become undecidable� In $�� �� �� ��� ��� ��!% it was shown that the
reachability question for many di�erent extensions of TA with some non�clock variables is
undecidable under some restrictions� Some other undecidability results were given for low
�three or less� dimensional spaces� In $��% it was shown that the reachability problem for
��dimensional PCDs is undecidable whereas in $���% it was proved that Turing machines
�TMs� can be simulated by dynamical systems with piecewise a ne functions �in three
dimensional spaces�� In $��%� two elementary functions were constructed that simulates TMs�
See reference therein for other undecidability results� Among other results� in $��% it was
shown that smooth ODEs in R � can simulate arbitrary TMs and in $��% it was proved that
TMs can be simulated by ��dimensional PAMs and by other variations of PAMs� In $��% the
algorithmic complexity of hybrid and dynamical systems was analyzed� in particular it was
studied the frontier between decidability and undecidability for low dimensional systems for
some problems like the controllability of commuted linear systems in dimension two that
are related to the mortality problem for two dimensional matrices and to the reachability
problem for one dimensional PAMs� Finally� in $�!% the decidability of other problems of
hybrid systems di�erent from reachability� like stability and controllability� were analyzed�

��� Thesis Outline

This thesis is divided in �� chapters� including this introductory chapter and a concluding
one�

In Chapter � we concentrate on hybrid systems and in particular on two dimensional ones�
We 
rst recall the de
nition of hybrid automata as well as the de
nition of two other ��
dimensional hybrid systems� piecewise constant derivative systems and planar multi
polynomial
systems �PMP�� We de
ne next the class of systems we are going to deal with� namely polyg

onal di�erential inclusion systems �SPDIs��

In Chapter � we present a useful class of functions called truncated a	ne multi
valued oper

ators �TAMF� that serves as a technical basis for characterizing successors and predecessors
operators that are used in the reachability algorithm for SPDIs presented in the 
fth Chapter�

In Chapter � we present the di culties that arise when trying to solve the reachability
problem for SPDIs and we show how to overcome these di culties doing a qualitative analysis
of trajectory segments� We abstract trajectories into types of signatures and we show that
the abstraction preserves reachability�

Chapter � is concerned with the decision procedure for the reachability problem of SPDIs�
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Given� for instance� two points in an SPDI� the reachability question is� Is one point reachable
from the other& We show how a case analysis simpli
es the treatment of cycles and how to
take advantage of the fact that successors are TAMF in order to accelerate cycles� We 
nally
present our reachability algorithm and we prove its soundness and completeness together
with some examples�

In Chapter � we study the problem of de
ning and constructing the phase portrait of SPDIs�
We recall the de
nition of viability kernel of a simple cycle and we introduce the notion of
controllability kernel� We give a non�iterative algorithm for computing them both� Moreover�
we prove that any in
nite trajectory performing forever the same cyclic pattern converges
to the controllability kernel of the cycle� The phase portrait of SPDIs is obtained computing
all the viability and controllability kernels�

Chapter � is dedicated to the study of the �un�decidability of other classes of ��dimensional
hybrid systems� small variations of PCDs� We show that the reachability problem for ��
dimensional HPCDs is as hard as the reachability problem for piecewise a	ne maps �PAMs�
for which the question is still open� We also prove that other similar classes� subclasses of
two dimensional hybrid automata and PCDs de
ned on ��dimensional manifolds� are also
equivalent to PAMs� Besides that� we prove that the reachability problem for HPCDs is
undecidable when adding a counter or allowing some kind of �in
nite pattern��

In Chapter ! we present SPeeDI� a tool that implements the reachability algorithm given in
the 
fth Chapter�

Chapter � is concerned with general SPDIs �GSPDIs� that are extensions of SPDIs allowing
more general trajectory segments� We prove that reachability is decidable for GSPDIs�

Finally� in Chapter �� we present the conclusions and we discuss about future work�



Chapter �

Hybrid Systems

In this chapter we introduce the formal background for the rest of the thesis� We recall the
de
nition of hybrid automata as a formalism for representing hybrid systems and of linear
hybrid and rectangular automata� We also recall the de
nition and decidability results of
two other planar hybrid systems for which the geometric method has already been applied�
namely piecewise constant derivative systems �PCDs� and planar multi
polynomial systems
�PMPs� and we de
ne polygonal di�erential inclusion systems �SPDIs�� a class of nondeter�
ministic systems that correspond to piecewise constant di�erential inclusions on the plane�

Organization of the chapter� In the 
rst section we de
ne some basic concepts and in section
two we recall the de
nition of hybrid automata and of two subclasses� linear hybrid automata
and rectangular automata� In section three we present PCDs and PMPs and in the fourth
section we de
ne our class of hybrid systems� SPDI� In the last section we conclude and we
point out some related work�

��� Preliminaries

Let a " �a�� a���x " �x�� x�� � R � and � � R � We de
ne�

De�nition � The inner product of two vectors a " �a�� a�� and x " �x�� x�� is de�ned as
a x " a�x�#a�x�� �x " ��x�� �x�� is the product of a vector by an scalar � and jxj " p

x x
is the ��norm�

We denote by �x the vector �x���x�� obtained from x by rotating clockwise by the angle
���� Notice that x �x " ��

De�nition � The distance between two points x and y is de�ned to be jx� yj� For � � ��
the �
neighborhood of x is B��x� " fy j jx � yj � �g� The interior of X � R � � denoted by
int�X�� is the set of x � X for which there exists � � � such that B��x� � X�

��
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For x�� � � �xn � R � a linear combination is a vector x "
Pn

i	� �ixi for some �i � R � A
positive combination is a linear combination with �i � � for every i� The positive hull of a
set X � R � is the set of all positive combinations of points in X� A �closed� half
spaceis the
set of all points x satisfying a x � b� A convex closed polygonal set P is the intersection of

nitely many half�spaces� An edge e is a segment of line in R � �

Let S be a 
nite index set and P " fPsgs�S be a 
nite set of convex closed polygonal sets�
called regions� such that�

�� For all s � S� int�Ps� 
" ��
�� For all s 
" r � S� int�Ps � Pr� " ��
��
S
s�S Ps " R � �

Condition � states that regions are full dimensional� Condition � says that the intersection
between two regions is either empty� an edge� or a point� whereas the third condition states
that the regions covers the whole space� Thus� P is a partition of the plane��

Remark� All the above de
nitions were given in two dimensions since� all the hybrid
systems we are working with in this thesis will be � dimensional� with the exception of
hybrid automata that are de
ned for n dimensions�

We denote by E�P � the set of edges of the form e " P � P � with P 
" P � and by V �P � the
set of vertices of the form v " e � e� with e� e� � E�P �� Let int�E�P �� " fint�e� j e � Pg
be the set of all the open edges of P � then let EV �P � " int�E�P �� � V �P � be the set of all
the vertex and open edges of P �

��� Hybrid Automata

A hybrid system is a dynamical system that combines discrete and continuous components�
A natural model for hybrid systems is hybrid automata $!�% that are automata such that
at each discrete location the dynamics is governed by di�erential equations �over continu�
ous variables� and whose transitions �between locations� are enabled by conditions on the
values of the variables� There are many �more or less� equivalent de
nitions of hybrid
systems
automata �see for example $�� !�� ���%�� We adopt in this chapter the following
de
nition�

De�nition � An n�dimensional hybrid automaton is a sextuple H " �X � Q� f� I�� Inv� 	�
where


 X � R n is the continuous state space�Elements of X are written as x " �x�� x�� � � � � xn��


 Q is a �nite set of discrete locations�

�Condition ��� can be relaxed� and then we can consider partition of a subset of the plane�
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 f � Q � �X � R n� assigns a continuous vector �eld on X to each discrete location�
While in discrete location 
 � Q� the evolution of the continuous variables is governed
by the di�erential equation 'x " f��x�� We say that the di�erential equation de�nes the
dynamics of location 
�


 The initial condition I� � Q � �X is a function that for each state de�nes the initial
values of the variables of X �


 The invariant Inv � Q � �X � Inv�
� is the condition that must be satis�ed by the
continuous variables in order to stay in location 
 � Q�


 	 is a set of transitions of the form tr " �
� g� �� 
�� with 
� 
� � Q� Such a quadruple
means that a transition from 
 to 
� can be taken whenever the guard g is satis�ed and
then the reset � is applied� The guard is a predicate g � �X and the reset is a function
� � X � �X �

Remark� In the above de
nition the evolution of the continuous variables are governed by
di�erential equations� The dynamics can be de
ned in a more general way using di�erential
inclusions instead of di�erential equations� We have chosen this de
nition in order to make
it simpler� but we will see that for the particular case of SPDIs� di�erential inclusions will
be used �see section �����

We will denote by V " fx�� x�� � � � � xng the set of the elements x � X �x " x�� x�� � � � � xn��

A hybrid automaton H is said to be deterministic if for every location 
 and any initial
condition x� � I� there exists at most one solution to the equation 'x " f��x��

A state is a pair �
�x� consisting of a location 
 � Q and x � X � We write ( for the set of
states� At any time� the state of a hybrid automaton is given by a location and the values for
all variables� A state can change in two ways� ��� by discrete and instantaneous transition
that changes both the location and the values of the variables according to the transition
relation� and ��� by a time delay that changes only the values of the variables according to
the dynamics of the current location�

The system may stay at a location only if the invariant is true� and a transition must be
taken before the invariant becomes false�

Hybrid automata can be seen as directed graphs whose arcs represent transitions and whose
vertices represent discrete locations�

x " m

x "M

x � M

'x " �� x

On

x � m

O�

'x " �x

Figure ���� A model for the thermostat�
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Example � Let us consider a thermostat as a simple example of hybrid automata� The
thermostat controls the temperature of a room� sensing continuously �via a thermometer�
the temperature and turning a heater on and o�� The goal is to maintain the temperature
of the room between m and M degrees and in order to do that the heater is kept on as
long the temperature is below M and it is switched o� whenever the temperature is above
M � The room temperature and the thermostat can be seen as a hybrid system and can be
modeled as a hybrid automata� The temperature is governed by di�erential equations� The
hybrid automaton consists then in two locations On and O�� In location On the heater is
on and the temperature rises according to the dynamics 'x " � � x while in location O�
the temperature goes down following the dynamics 'x " �x� Figure ��� shows the above
automaton�

We introduce now the notion of trajectory segment on each location of a hybrid automaton�

De�nition � Given a location 
� an 
�trajectory segment on some interval $�� T % � R � is
a continuous and derivable function ���� on ��� T � such that for all t � ��� T �� ��t� � Inv�
�
and '��t� " f����t���

We can de
ne the notion of trajectory segment as a sequence of 
�trajectory segments that
are �connected� via the reset functions�

De�nition � A trajectory segment of a hybrid automaton H is a function ) � $�� T % �
Q � X � )�t� " �
�t�� ��t�� such that there exists a sequence of times values t� " � � t� �
� � � � tn " T for which the following holds for each � � i � n


�� 
 is constant on �ti� ti
�� �we describe its value there by 
i� and � is derivable on
�ti� ti
��� it is right continuous and with left limits �cadlag� everywhere�

�� There is a transition �
i� g� �� 
i
��� � 	 such that ���ti
�� � g�
i� 
i
�� and ��ti
�� "
�����ti
���� where �

��t� is the left limit of ��t��

�� For any � � i � n� for any t � �ti� ti
��� '��t� " f��t����t���

If T "�� a trajectory segment is called a trajectory�

Given ���� " x� and ��t� " xf � we say that � is a trajectory segment from x� to xf �

Remark� In the literature sometimes the notion of a run of a hybrid automata is introduced
instead of that of trajectory�

Example � Let us consider again the thermostat presented on Example �� In this example�
for a given initial condition x��� " K� the solution of the di�erential equations for the On
and O� locations can be analytically solved� x�t� " Ke�t # ��� � e�t� and x�t� " Ke�t

respectively�
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t�t�t��

On OnO� O�

t

M

m

K�

x

Figure ���� A typical trajectory of the room temperature�

Thus a typical trajectory� from an initial condition x��� " K� is depicted in Figure ����
where starting with a temperature m � K� � M �with the heater on�� it evolves following
the equation x�t� " K�e

�t # ���� e�t�� After t� time� the temperature reaches M and the
heater is then turned o� making the heater change its mode to O�� Then the temperature
evolves following the equation x�t� " Me�t� until it reaches m at time t� and so on and so
forth�

We recall now two particular subclasses of hybrid automata� linear hybrid automata and
rectangular automata�

����� Linear hybrid automata

A linear term over the set V of variables is a linear combination of the variables in V with
integer coe cients� If t� and t� are linear terms� then t� � t� is a linear inequality�

De�nition 	 A hybrid automaton H is linear $�� !�% if the following restrictions are met�

�� The initial and invariant conditions as well as the guard are boolean combinations of
linear inequalities�

�� The dynamics are de�ned by di�erential equations of the form 'x " kx� one for each
variable x � V� where kx � Z is an integer constant� We say that kx is the slope �or
rate� of the variable x at a given location�

There are some interesting cases of linear hybrid automata�


 We say that a variable x is a memory cell �or a discrete variable� if it has slope �
in every location of H� A discrete system is a linear hybrid automaton all of whose
variables are discrete�
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 A discrete variable x is a a proposition if it can take values on f�� �g and x is a clock
if it has slope � in every location� A timed automaton $�% is a linear hybrid automaton
whose variables are just clocks or propositions and the linear expressions are boolean
combinations of inequalities of the form x*c or x � y*c where c is a nonnegative
integer and * � f����"� ���g�


 A variable x is a skewed clock if there is a rational k � Q nf�� �g such that x has slope k
in each location� A multi
rate timed system is a linear hybrid automaton all of whose
variables are propositions and skewed clocks� A n
rate timed system is a multi�rate
timed system whose skewed clocks proceed at n di�erent rates�


 The variable x is a two
slope clock if there is a rational k such that for each location
'x " k or 'x " �� A stopwatch� is a two�slope clock with k " ��

Two other special cases of linear hybrid automata are Rectangular automata and PCDs�

����� Rectangular automata

A rectangle of dimension n R "
Q

��i�n Ii is the product of n intervals Ii � R of the real line
with rational or in
nite extremities� We say that the rectangle is bounded if each interval Ii�
for � � i � n is bounded�

De�nition � A hybrid automaton is a rectangular automaton $!�� !�� ���% if the following
holds�

�� For each location 
� the initial condition I� has the form
V

��i�n xi � Ii for each variable
xi � V and Ii an interval of a rectangle RI�

�

�� Idem for the invariant condition Inv �for eventually di�erent intervals Ii of a rectangle
RInv�

�� For each location 
� the dynamics has the form 'xi � Ii for each variable xi � V and Ii
an interval of a rectangle RA�

�� For each transition tr " �
� g� �� 
��� the guard g has the form
V

��i�n xi � Ii for each
variable xi � V and Ii an interval of a rectangle Rg�

��� Some Planar Hybrid Systems

����� Piecewise constant derivative systems

We recall now a class of hybrid systems called piecewise constant derivative systems �PCDs��
that are hybrid systems for which the dynamics is de
ned by constant derivatives and such

�Stopwatches are also known in the literature as integrators�
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that the trajectories are continuous� PCDs are interesting since even though their dynamics
is rather simple� their behavior is quite rich�

Let F " f
sgs�S be a family of constant vectors� i�e� 
s " cs and P be a partition of the
plane� We have then the following de
nition�

De�nition 
 A piecewise constant derivative system �PCD� $��� ���% is a pair H " �P� F ��
Each region Ps has dynamics 'x " cs for x � Ps �given a generic region P we also use the
notation 
�P ���

Whenever P is a partition of a proper subspace of the plane� then we said that the PCD is
bounded�

Consider a region P and an edge e � E�P �� We say that e is an entry of P if for all x � int�e�
and for c " 
�P �� x # c� � P for some � � �� We say that e is an exit of P if the same
condition holds for some � � �� We denote by In�P � � E�P � the set of all entries of P and
by Out�P � � E�P � the set of all exits of P �

Let x � V �P � be a common vertex of two edges e and e�� x is an entry point to P if both e
and e� are entry edges� it is an exit point if both e and e� are exit edges� In fact� vertices can
be seen as a particular kind of edges� with exactly one point and in what follows we consider
them as edges� hence the term edge should be understood as belonging to the set EV �P � for
some P � If needed� the di�erence between edges in V and E will be explicitly speci
ed�

As for hybrid automata� we de
ne now the notion of trajectory�

De�nition 
 A trajectory segment in some interval $�� T % � R � with initial condition
x " x�� is a continuous and almost
everywhere �everywhere except on �nitely many points�
derivable function ���� such that ���� " x� and for all t � ��� T �


�� if ��t� � int�P � then '��t� is de�ned and '��t� " 
�P ��

�� if ��t� � e and e � In�P � then '�
�t� is de�ned and '�
�t� " 
�P �� where '�
�t� " d��
dt

is the right derivative of ��

If T "�� a trajectory segment is called a trajectory�

Let V " fx� yg� Notice that PCDs can be viewed as linear hybrid automata without reset�
such that the locations are the regions Ps� the invariant condition Inv is given by the polygon
de
ned by the region P � for each variable x � V� f��x� " 'x " c� where c is a rational
constant� and the guards are the edges�

Example � In Figure ��� a simple PCD and its corresponding hybrid automata are shown�

PCDs are more general than timed automata since each variable has a uniform slope that
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Figure ���� �a� A simple PCD� �b� Its corresponding hybrid automata�

can change in each location� and is more restrictive in the sense that no discrete jumps
�reset� are allowed� The trajectories of the system are then continuous but not smooth�
This requirement makes PCDs to be closer to continuous dynamical systems and then more
suitable for a topological and geometrical analysis�

The point�to�point reachability problem for PCDs is the following� Given a PCD H and two
points x� and xf � is there a trajectory segment starting on x� and �nishing on xf�

It is well known that the above problem �and its edge�to�edge and region�to�region variants�
is decidable in two dimensions $��� ���% and undecidable for higher dimensions $��� �!%�

����� Planar multi�polynomial systems

Other interesting class of planar hybrid systems are planar multi
polynomial systems $���%
�PMPs�� that are systems de
ned in a polygonal partition of the plane �as for PCDs� for
which the dynamics is given by a vector 
eld whose solutions can be described by polynomials
of arbitrary degree�

The trajectory segments within the regions here can be described by polynomials of arbitrary
degree �without singularities in each region P of the polygonal partition�� i�e� for some
polynomial H�x� y� all trajectory segments satisfy equation H�x� y� " C for some constant
C � R and such that all trajectories that enter the region P also leave it and vice�versa� It
can be shown $���% that those trajectories correspond to the following equations��

'x " �H�x�y�
�y

'y " ��H�x�y�
�x

The reachability problem for PMPs is decidable $���%�

Remark� Notice that a ��dim PCD is a particular case of a PMP� withHi�x� y� " �bix#aiy�
that is� the dynamics on each region Ri is de
ned by�
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Figure ���� Positive hull of fa�bg with �a b � ��

�
'x " �Hi�x�y�

�y
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�x
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��� Polygonal Di�erential Inclusions 	SPDIs


In control theory it is useful to model systems where the control variable appears explic�
itly� Systems with uncertainties and disturbances are also interesting� One can model such
systems using di�erential equations of the form 'x " f�x� u� where u � U is a control or a
disturbance� Other solution is to use di�erential inclusions� A di�erential inclusion has the
form 'x � f�x�� where f is a set�valued function �f � R n �� ��Rn��� Hence� a di�erential
equation 'x " f�x� u� where u � U is a control or a disturbance can be represented as a dif�
ferential inclusion 'x � g�x� where g�x� " ff�x� u� j u � Ug $��!%� The di�erential inclusion
'x � g�x� captures every possible behavior of f �

In this section we de
ne SPDIs� a class of nondeterministic systems that correspond to
piecewise constant di�erential inclusions on the plane� Before de
ning SPDI we need the
following de
nition�

De�nition �� An angle �ba on the plane� de�ned by two non
zero vectors a�b is the set of
all positive linear combinations x " � a#� b� with �� � � �� and �#� � �� We can always
assume that b is situated in the counter
clockwise direction from a�

That is� given A " fa�bg� with �a b � �� �ba is the positive hull of A �Fig� �����

Let F " f
sgs�S be such that 
s is the positive hull of two vectors as and bs with �as bs � �
and P be a partition of the plane�

A polygonal di�erential inclusion system �SPDI� consists of a partition of the plane into
convex polygonal regions� together with a di�erential inclusion associated with each region�
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More formally�

De�nition �� A polygonal di�erential inclusion system �SPDI� is a pair H " �P� F �� Each
region Ps has dynamics 'x � 
s for x � Ps �given a generic region P we also use the notation

�P ���

As an example consider the problem of a swimmer trying to escape from a whirlpool in a
river�

Example � The dynamics 'x of the swimmer around the whirlpool is approximated by the
piecewise di�erential inclusion de
ned as follows� The zone of the river nearby the whirlpool
is divided into ! regions R�� � � � � R�� To each region Ri we associate a pair of vectors �ai�bi�
meaning that 'x belongs to their positive hull�


 a� " b� " ��� ���


 a� " b� " ���� ����

 a� " ���� ��
�� and b� " ������

���


 a� " b� " ��������

 a� " b� " �������

 a
 " b
 " �������

 a� " b� " ��� ���


 a� " b� " ��� ���

The corresponding SPDI is illustrated in Fig� �����a��

De�nition �� A trajectory segment in some interval $�� T % � R � with initial condition
x " x�� is a continuous and almost
everywhere �everywhere except on �nitely many points�
derivable function ���� such that ���� " x� and for all t � ��� T �


�� if ��t� � int�P � then '��t� is de�ned and '��t� � 
�P ��

�� if ��t� � e and e � In�P � then '�
�t� is de�ned and '�
�t� " 
�P �� where '�
�t� " d��
dt

is the right derivative of ��

If T "�� a trajectory segment is called a trajectory�

Example � Figure �����b� shows a typical trajectory of the SPDI presented in Example �
from point x� to xf �



��� Polygonal Di�erential Inclusions �SPDIs� ��

�a� �b�

R�

R	

R�R


R�

R�

e� R�

R�

e�

e�e�

e�

e�

e�e�

R�

R	

R�R


e�R�

R�

e�

e�

e� R�

e� e� R�

e�

e�

x�

xf

Figure ���� �a� The SPDI of the swimmer� �b� A typical trajectory segment�

Edges� vertices� entry edges� exit edges and the corresponding sets are de
ned as for PCDs�

The set of all edges of an SPDI will be denoted by E � i�e��
E "

�
s�S

EV �Ps�

In general� E�P � 
" In�P ��Out�P �� We say that P is a good region i� all the edges in E�P �
are entries or exits� that is�

De�nition �� A region P of an SPDI is good if and only if

E�P � " In�P � �Out�P ��

Notice that� if P is a good region� then for all e � E�P �� e 
� 
�P �� We say that the SPDI
has the goodness property� Hereinafter� we assume that all regions are good�

Example 	 In Figure �����a�� region P �with 
�P � " �
b
a� is good� since all are entry or

exit edges� Figure �����b� shows a region that is not good� edges e� and e� are not in
In�P � �Out�P ��

The reachability problem for an SPDI H can be de
ned as a predicate

Reach�H�x��xf � � �� �t � � � ����� " x� � ��t� " xf �

If such a predicate holds� we say that xf is reachable from x�� Let REACHSPDI be the
following problem�
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Figure ���� a� A good region� b� A bad region�

Problem � Given an SPDI H and two points x� and xf � is xf reachable from x�� �

The edge�to�edge reachability problem is the following� Given two edges e and e� of H� is
there x� � e and xf � e� such that xf is reachable from x�& The region�to�region reachability
problem is de
ned straightforwardly�

Remark� Notice that a ��dim PCD �see section ������ is an SPDI for which at each region
Ps� vectors as and bs are equal� that is 'x " cs for a given vector cs�

��� Summary and Related Work

In this chapter we have recalled the de
nition of hybrid automata� that has been introduced
in $�% as well as the de
nitions of PCDs and PMPs� In $���% it was shown that the reachability
problem is decidable for � dimensional PCDs and in $���% that the same holds for PMPs�
We have presented these two planar hybrid systems since it was precisely in $���% that the
�geometric� decision method for reachability was introduced and then it was extended for
PMPs $���%�

We have also de
ned SPDIs that are planar nondeterministic systems with piecewise con�
stant di�erential inclusions and which can be seen as non�deterministic PCDs� Di�erential
inclusions $��% were introduced in $��!% and $���% as a tool for modeling uncertainties� They
can also be used to model systems with control and disturbances�



Chapter �

A�ne Multivalued Operators

In this chapter we introduce a class of functions called truncated a	ne multi
valued functions
�TAMFs� and we study some of its properties� This chapter is rather technical and its main
contribution is to serve as a theoretical basis for the notion of successors de
ned in chapter ��
For those interested just in having the basic elements for understanding next chapters� a quick
reading of the 
rst section will be enough� Whenever more detailed results of this section be
needed in the following chapters� references to those will be given�

Organization of the chapter� We divide the chapter into three sections� In the 
rst one the
TAMF class of functions is introduced and some important properties are stated without
proving them� In the second section we prove the results presented in the 
rst section as
well as many others while in the last section we conclude with a summary and related work�

��� A�ne Operators 	de
nitions and main results


In this section we introduce the class of functions we are going to work with and we state
some important properties� Let us introduce some useful notions�

De�nition �� An a ne function f � R � R is de�ned by a formula f�x� " ax # b with
a � ��

A ne functions can be extended to multi
valued functions�

De�nition �� An a ne multi�valued operator �AMF�F � R � �R is determined by two
a	ne functions fl�x� and fu�x� and maps x to the interval hfl�x�� fu�x�i� where ha� bi means
�a� b�� $a� b%� �a� b% or $a� b� 


F �x� " hfl�x�� fu�x�i

with Dom�F � " fx j fl�x� � fu�x�g�

��
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We use the notation F " hfl� fui� Such an operator can be naturally extended to subsets of
R �

F �S� "
�
x�S

F �x�

In particular� if S " hl� ui is interval� then�
F �hl� ui� " hfl�l�� fu�u�i

where the domain of F is given by Dom�F � " fhl� ui j fl�l� � fu�u�g �we consider just
well�formed intervals hl� ui� i�e� with l � u��

We are interested in considering some kind of restricted a ne functions with respect to some
intervals� We introduce then the following class of functions�

De�nition �	 A truncated a ne multi�valued operator �TAMF� F � R � �R is determined
by an a	ne multi
valued operator F and intervals S � R
 and J � R
 as follows


FF�S�J�x� "

�
F �x� � J if x � S
� otherwise

A TAMF can also be expressed as FF�S�J�x� " F �fxg � S� � J � We use cal style to denote
TAMFs operators and in general we will write F instead of FF�S�J �

De�nition �� The intersection h�a�� b�i� � h�a�� b�i� " h�a�� b�i� is de�ned as follows


a� " maxfa�� a�g
b� " minfb�� b�g

h�"
��
�

h� if a� � a�
h� if a� � a�
maxfh�� h�g if a� " a�

i� "
��
�

i� if b� � b�
i� if b� � b�
minfi�� i�g if b� " b�

where �$��� �� and ��� ��%��

Truncated a ne multi�valued functions can be also extended to sets and in particular to
intervals� as shown in what follows�

F�I� "
S
x�I F�x� �by de
nition�

"
S
x�I F �fxg � S� � J �by de
nition of F�

" F ��x�Ifxg � S� � J
" F �I � S� � J
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nitions and main results� ��

We de
ne the inverse of an AMF�

De�nition �
 The inverse of F is de�ned by F���x� " fy j x � F �y�g�

It is not di cult to show that F�� " hf��u � f��l i and the inverse of a TAMF F is given by
the following Lemma�

Lemma � Given a F�I� " F �I � S� � J � then F���I� " F���I � J� � S� �

De�nition �
 A TAMF F is normalized if S " Dom�F� " fx j F �x� � J 
" �g and
J " Im�F��

Notice that we have that for normalized TAMFs� S � F���J� and J " F�S�� In fact� any
TAMF can be normalized as stated in the following lemma�

Lemma � Every TAMF F can be represented in normal form� �

In what follows� we consider just TAMFs in normal form� The following result shows an
important property of a ne operators� that is the closure under composition�

Lemma � �composition of a�ne operations�

A	ne functions� a	ne multi
valued operators� and truncated a	ne multi
valued operators
are closed under composition� �

Example � Let x � J� �where J� " $�� �%�� and

F��x� " ��x� �
�
� �x# �%

and
F��x� " $�x# �� �x# �%

be two �non�truncated� a ne multi�valued functions� F� " F� � J� �with J� " ��� �%�� and
F� " F� � J� �with J� " $�� ���� their truncated versions� We have that

F��
� �hy�� y�i� " hy� � �

�
�
�y� # �

��
i

and

F��
� �hy�� y�i� " hy� � �

�
�
y� � �
�

i

To obtain F� �F��x� we need to compute F
�� S� and J � as in Lemma � but 
rst we compute

S� and S��



�� A ne Multivalued Operators

S� " F��
� �J�� � J�

" F��
� ���� �%� � $�� �%

" ���
�
�
��

��
� � $�� �%

" $�� �%

S� " F��
� �J�� � J�

" F��
� �$�� ���� � ��� �%

" $��
!

�
� � ��� �%

" ���
!

�
�

S� " S� � F��
� �J� � S��

" $�� �% � F��
� ���� �% � ��� !

�
��

" $�� �% � F��
� ����

!

�
��

" $�� �% � ���
�
�
��

��
�

" $�� �%

J � " J� � F��J� � S��

" $�� ��� � F����� �% � ��� !
�
��

" $�� ��� � F�����
!

�
��

" $�� ��� � ��� ���
" ��� ���

F ��x� " F� � F��x�
" ����x� �

�
� # �� ���x# �� # �%

" ���x� �� ��x# ��%
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Hence� the truncated a ne multi�valued operator F� � F��x� is

F� � F��x� "

�
���x� �� ��x# ��% � ��� ��� if x � $�� �%
� otherwise

Notice that the result can be extended to any interval hl� ui�

We use the notation �F for truncated a ne multi�valued operators with S " J � i�e� the image
and the domain coincide and then �F�I� " F �I �H��H� The following TAMF property will
have a key role in the acceleration of cycles when computing successors for the reachability
algorithm in section ����

Lemma �� �Fundamental lemma�Let �F be a truncated a ne multi�valued operator�
Then �Fn�I� " Fn�I �H� � H� �

Intuitively� what the above lemma says is that in order to obtain the iterated truncated
a ne multi�valued function truncated with an interval H �both the argument and the 
nal
result�� we only need to iterate the non�truncated function intersecting the argument just
once at the beginning and once at the end�

We presented in this section the main de
nitions and properties to be used in chapter ��

��� A�ne Operators 	properties


We will prove in this section the lemmas introduced in the previous section as well as other
interesting properties of iterations of a ne operations�

����� Truncated a	ne multi�valued operators

To start with� we prove that to obtain the inverse of a truncated a ne multi�valued function
F we need just to inverse the corresponding non�truncated a ne function and truncate it
with the domain and co�domain of F interchanged�

Lemma � Given a F�I� " F �I � S� � J � then F���I� " F���I � J� � S�

Proof� We prove 
rst that F���I� � F���I � J� � S� Let y � F���I�� then it exists x � I
such that x � F�y�� We have to prove that y � S and y � F���fxg � J��� Since x � F�y��
then x � F �fyg � S� and x � J � that implies y � F���x� and since x � J we have that
y � F���fxg � J�� On the other hand� from x � F �fyg � S� we deduce that y � S� Hence�
y � F���fxg � J� � S� Given y � S and y � F���I � J� we prove now that y � F���x��
From y � F���I � J� we have that y � S and y � F���I � J�� Thus� it exists x � I � J s�t�
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y � y � F���x� that implies x � F �y�� From the above results we have then that x � J �
x � F �y� and y � S and hence y � F���I�� �

We prove now that every TAMF can be normalized�

Lemma � Every TAMF F can be represented in normal form�

Proof� Let F�I� " F �I � S� � J be a TAMF� We show that there exists a TAMF F ��I� "
F ��I � S�� � J � such that F " F � and F � is in normal form� Let F � be the above function
with F � " F � S� " S � F���J� and J � " F�S�� Clearly S� " Dom�F �� and J � " Im�F ��� It
remains to show that F " F �� If I � S " � then the result follows� since F " � and F � " ��
Suppose that I � S 
" �� we separate the proof into the following cases�
�� �I � S� � F���J� " �� Clearly� F � " �� On the other hand� we have that for any

x � I � S �I � S 
" ��� x 
� F���J�� Thus� F �x� � J " � and F " �� Hence� F " F ��

�� �I � S� � F���J� 
" �� Remember that F � " F � S� " S � F���J� and J � " F �S� � J �
we have then�

F ��I� " F ��I � S�� � J �

" F �I � S � F���J�� � F �S� � J �by def� of F ��
" F �I� � F �S� � F �F���J��� � F �S� � J �by Lemma ��
" F �I� � F �S� � F �F���J��� � J �by property of ��
" F �I � S� � F �F���J��� � J �by Lemma ��
" F �I � S� � J �because J � F �F���J���
" F�I�

From all the cases above we have then that F can be represented in normal form� �

Before showing that the class of functions above de
ned are closed under composition we
prove the following lemma�

Lemma � Let F " hfl� fui be a multi
valued a	ne operator� If I � H 
" � or I " � or
H " � then F �I �H� " F �I� � F �H��

Proof� Let I " hlI � uIi and H " hlH � uHi� Clearly if I " � or H " � then F �I �H� " � "
F �I� � F �H��
Suppose now that I �H 
" �� then

F �I �H� " F �hmaxflI � lHg�minfuI � uHgi� �by def� of ��
" hfl�maxflI � lHg�� fu�minfuI � uHg�i �by def� of F �
" hmaxffl�lI�� fl�lH�g�minffu�uI�� fu�uH�gi �by monotonicity of F �
" hfl�lI�� fu�uI�i � hfl�lH�� fu�uH�i �by def� of intersection�
" F �hlI � uIi� � F �hlH � uHi� �by def� of F �
" F �I� � F �H�
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�

Now we can prove the closure of composition for the three classes of functions introduced
before�

Lemma � �composition of a�ne operations� A	ne functions� a	ne multi
valued op

erators� and truncated a	ne multi
valued operators are closed under composition�

Proof�

A�ne functions� For f�x� " ax# b and g�x� " cx# d the composition g � f�x� " c�ax#
b�#d " �ca�x#�cb#d� has the required form� Notice� that the coe cient ca is positive
since c and a are positive�

A�ne multi�valued operators For F " hfl� fui and H " hlH � uHi� the compositionH�F
is nothing other than hlH � fl� uH � fui�

Truncated a�ne multi�valued operators For

F��x� " F��fxg � S�� � J�

and
F��x� " F��fxg � S�� � J�

we have that
F� � F��x� " FF ��S��J ��x�

with F � " F� � F�� J � " J� � F��J� � S�� and S
� " S� � F��

� �J� � S���

F� � F��x� " F��F��fxg � S�� � J��
" F���F��fxg � S�� � J�� � S�� � J��

�����

we split the proof into two cases

�� x � S�� in this case F��fxg � S�� " F��x� and then expression ����� is equal to
F���F��x� � J�� � S�� � J� that is equal to

F���F��x� � �J� � S��� � J� �����

We consider two cases

�a� F��x�� �J��S�� 
" �� In this case the distributivity holds �see Lemma �� and
expression ����� is equal to F��F��x���F��J��S���J�� But F��x���J��S�� 
"
� is equivalent to x � F��

� �J� � S��� Hence�

F��F��x�� " F� � F��x� � F��J� � S�� � J�

under the condition x � S� � x � F��
� �J� � S��� i�e� x � S� � F��

� �J� � S���

�b� F��x���J��S�� " �� here ����� is equal to the empty set and then F��F� " �
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�� x 
� S�� that is� fxg�S� " � and then F��fxg�S�� " �� that implies F� �F� " ��
From the cases above we have

F� � F��x� " FF ��S��J ��x� "

�
F ��x� � J � if x � S�

� otherwise

with F � " F� � F�� J � " J� � F��J� � S�� and S
� " S� � F��

� �J� � S��� �

We show next that normalization is preserved by composition�

Lemma � If F� and F� are normalized� then F� � F� is also normalized�

Proof� By Lemma ��

F� � F��x� " FF ��S��J ��x�

with
F � " F� � F��
J � " J� � F��J� � S��� and

S� " S� � F��
� �J� � S���

Thus� we have to prove that

S� � F��
� �S� � J�� � $F� � F�%���J� � F��J� � S����

Suppose that x � S� and x � F��
� �S� � J��� i�e�

x � S� and F��x� � �S� � J�� 
" ��
then there exists

y � F��x� � �S� � J���

and by normalization of F� we have that

F��F��x� � �S� � J��� � J� 
" ��

By Lemma � we have that

F��F��x�� � F��S� � J�� � J� 
" ��

with x � S�� Hence

x � $F� � F�%���J� � F��J� � S����

�

The following result shows how to compute 
xpoints of a ne functions $���%�
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(b)

(d)(c)

(a)

x�

y 	 x

x�x�

y 	 x

x� 	 �� x�

y 	 ax
 b

y 	 x

x� x� 	 
�

x� x� x�

y 	 x

y 	 ax
 b

y 	 ax
 b

y 	 ax
 b

Figure ���� �a�� a � �� x� " b��� � a�� �b��a � �� x� " �� if x� � x��x
� " x� if x� " x��

x� " #� if x� � x�� �c�� a " � and b � �� x
� " #�� �d�� a " � and b � �� x� " ��

Lemma 	 Let f be an a	ne function� x� be any initial point and xn " fn�x��� The
following properties hold

�� The sequence xn is monotonous�

�� It converges to a limit x� ��nite or in�nite�� which can be e�ectively computed knowing
a� b and x��

Proof� Monotonicity of xn follows from the identity xn
� � xn " an�x� � x���

xn " fn�x�� "� fn�x�� " anx� # an��b# � � �# ab# b

"� xn
� � xn " �a
n
�x� # anb# � � �# ab# b�� �anx� # an��b# � � �# ab# b�

"� xn
� � xn " �a
n
�x� # anb� anx��

"� xn
� � xn " an�ax� # b� x��

"� xn
� � xn " an�x� � x��
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Existence of limit is immediate from the monotonicity� To calculate the limit several cases
should be considered �see Fig� �����

a � �� In this case the limit is 
nite and it is the unique 
xpoint of the function f � ax�#b "
x�� and hence x� " b���� a��

a " �� In this case

x� "

��
�

�� if b � �
x� if b " �
� if b � �

a � �� In this case we should calculate 
rst the �unstable� 
xpoint x� " b���� a�� However
in this case the limit is not necessary equal to x� � Namely�

x� "

��
�

�� if x� � x�
x� if x� " x�
� if x� � x�

�

This result can be easily extended to intervals and a ne multi�valued operators�

Lemma � Let hl�� u�i be any initial interval and hln� uni " Fn�hl�� u�i�� The following
properties hold

�� The sequences ln and un are monotonous�

�� They converge to limits l� and u� ��nite or in�nite�� which can be e�ectively computed�

Proof� Direct consequence of Lemma � considering ln and un� �

����� Some special properties

In this section we prove some other auxiliary results and the main result of this chapter that
is the Fundamental Lemma �Lemma ��� and a corollary �Corollary ��� stating that in order
to compute the iteration of a TAMF we need to compute the function once at the beginning
and once at the end and compose them with the result given by the Fundamental Lemma�
We start proving some basic facts about a ne functions�

Lemma 
 Let f�x� " ax # b be an a	ne function �a � ��� Then� the following holds �for
n � ��


�� If x � y then fn�x� � fn�y��

�� If x � f�x� then f�x� � fn�x��
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�� If f�y� � y then f�y�n � f�y��

�� If f�x� � x and f�x� � fn�y� then x � y�

�� If x � f�x� and x � y then f�x� � fn�y��

�� If f�y� � y and x � y then fn�x� � f�y��

�� If y � f�y� and fn�x� � f�y� then x � y�

Proof� The result follows directly from simple algebraic properties of partial order and
monotonicity� �

The following two lemmas show that AMFs and TAMFs are monotone and continuous�

Lemma 
 Let I " hlI � uIi and H " hlH � uHi be two intervals and F �I� " hfl�lI�� fu�uI�i
an AMF� Then�

�� F is monotone�

�� F is continuous�

Proof�

�� We have to prove that if I � H then F �I� � F �H�� If I " � or H " � the result
holds trivially� hence we will consider I 
" � and H 
" �� Suppose that I � H �i�e�
lH � lI � uI � uH�� then

x � F �I� "� x � hfl�lI�� fu�uI�i �by def� of F �
"� x � hfl�lH�� fu�uH�i �by hypothesis and monotonicity of fl and fu�
"� x � F �H� �by def� of F �

Thus� F �I� � F �H�� i�e� F is monotone�

�� We have to prove that F ��iIi� "
S
i�F �Ii��� Let A " �iIi�

� � Suppose that y � F �A�� then y � Sx�A F �x� �by def� of F applied to sets��
Thus� for some x � A� there exist an interval Ij s�t� x � Ij and then y � F �x��
By de
nition and monotonicity of F we have that F �x� � F �Ij�� that implies
y � F �Ij� and then y � Si F �Ii�� Hence� F ��iIi� �

S
i�F �Ii���

� � Suppose that y � S
i�F �Ii��� then exist an interval Ij s�t� y � F �Ij� and by

monotonicity of F � y � F ��iIi�� Hence
S
i�F �Ii�� � F ��iIi��

From both results we have that F ��iIi� "
S
i�F �Ii��� i�e� F is continuous�

�

We have the same result for TAMFs�
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Lemma �� Let I and H be two intervals and F�I� " F �I � S� � J a TAMF� Then�

�� F is monotone�

�� F is continuous�

Proof�

�� We have to prove that if I � H then F�I� � F�H�� If I " � or H " � the result holds
trivially� Suppose that I and H are non�empty and that I � H� Then�

x � F�I� "� x � F �I � S� � J �by def� of F�
"� x � F �I � S� � x � J
"� x � F �H � S� � x � J �by hypothesis and monotonicity of F �
"� x � F �H � S� � J �by def� of F�
"� x � F�H�

Hence� F�I� � F�H� and F is monotone�

�� We prove that F��iIi� "
S
i�F�Ii���

F��iIi� " F ��iIi � S� � J �by def� of F�
" F ��i�Ii � S�� � J �by distrib��
"
S
i F �Ii � S� � J �by monotonicity of F �

"
S
iF�Ii� �by de
nition of F�

We conclude that F is continuous�

�

In what follows we will use the following notation� given I " hl� ui� x � I is equivalent to
x � l if I is a �left� closed interval or to x � l if I is an �left� open interval� dually for x � I
�w�r�t� u�� Given two intervals hl�� u�i and hl�� u�i� l� � l� it means l� � l� if hl�� u�i is a
�left� closed interval and hl�� u�i is an �left� open interval and it means l� � l� otherwise�
Similarly for the right extremes of the intervals�

Remember that �F�I� " F �I � H� � H� Let H " hlH � uHi and I � H " hlI�H � uI�Hi� For
this kind of functions we have the following result�

Lemma �� �Fundamental lemma� Let �F be a truncated a	ne multi
valued operator�
Then �Fn�I� " Fn�I �H� � H�

Proof�

Base case �n " ��� By de
nition �F�I� " F �I �H� �H�
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Inductive step �n � ��� We have to prove that �Fn
� " Fn
��I � H� � H�

�Fn
��I� " �F� �Fn�I��

" �F�Fn�I �H� � H� �By inductive hypothesis�

" F �Fn�I �H� � H� � H �By de
nition of �F� �����

We consider two cases�

�� Fn�I �H� � H� In this case ����� is equal to F �Fn�I �H�� � H that is the same
as Fn
��I �H� � H�

�� Fn�I �H� 
� H� We split the proof into two sub�cases

�a� Fn�I �H� �H " �� By inductive hypothesis� �Fn�I� " � and then �Fn
��I� "
�� On the other hand� that Fn
��I�H��H " � follows from the supposition
by monotonicity�

�b� Fn�I �H� �H 
" �� In this case the distributivity holds �by Lemma �� and
expression ����� is equal to Fn
��I �H� � F �H� � H� that can be written
as

$maxfFn
��lI�H�� F �lH�� lHg� minfFn
��uI�H�� F �uH�� uHg%
We analyze the following cases depending on the relationship between F �H�
and H as shown in Figure ���

i� F �lH� � lH � F �uH� � uH � The 
rst condition �F �lH� � lH� im�
plies maxfFn
��lI�H�� F �lH�� lHg " maxfFn
��lI�H�� lHg� On the other
hand� F �uH� � uH implies F

n
��uI�H� � F �uH� �from uI�H � uH and
Lemma �� and then minfFn
��uI�H�� F �uH�� uHg " minfFn
��uI�H�� uHg�

ii� F �lH� � lH � uH � F �uH�� The analysis of the 
rst condition is as before�
whereas the second one implies that minfFn
��uI�H�� F �uH�� uHg "
minfFn
��uI�H�� uHg�

iii� lH � F �lH� � uH � F �uH�� By Lemma � and from lH � lI�H we have
that lH � F �lH� implies F �lH� � Fn
��lI�H�� The second condition is
analyzed as the above case�

iv� lH � F �lH� � F �uH� � uH � Both cases were already treated before�

From all the cases above� we have that Fn
��I � H� � F �H� � H "
$maxfFn
��lI�H�� lHg� minfFn
��uI�H�� uHg% " Fn
��I �H� � H�

Thus� from cases � and � we 
nally obtain that �Fn
��I� " Fn
��I �H� � H� �

Let F be a TAMF and �F be equal to F �I � H� � H with H " S � J � then the following
result holds�

Lemma �� �Fn�I� " Fn�I � J� � S�
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(a) (b)

(d)(c)

F �H	

H H

F �H	

H H

F �H	F �H	

Figure ���� Relationship between F �H� and H �case �b of Lemma ����

Proof� The proof is done by induction over n�

Base case �n " ���

�F�I� " F �I � J � S� � J � S �by def� of �F�
" �F ��I � J� � S� � J� � S �by associativity�
" F�I � J� � S �by def� of F�

Inductive Step �n � ���

�Fn
��I� " �Fn� �F�I��
" Fn� �F�I� � J � S� � J � S �by Lemma ���

" Fn��F �I � J � S� � J � S� � J � S� � J � S �by def� of �F�
" Fn�F �I � J � S� � J � S� � J � S

" �Fn�F �I � J � S�� �by Lemma ���
" Fn�F �I � J � S� � J� � S �by H�I��
" Fn�F�I � J�� � S �by def� of F�
" Fn
��I � J� � S

�

As a consequence we have the following corollary that shows that in order to compute the
iteration of a TAMF we need to compute the function once at the beginning and once at the
end and compose them with the result given by the Fundamental Lemma�

Corollary �� Fn
� " F � �Fn � F�I��
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Proof�
Fn
��I� " F�Fn�F�I���

" F�Fn�F�I� � J��
" F�Fn�F�I� � J� � S�

" F� �Fn�F�I��� �by Lemma ���

" F � �Fn � F�I��
�

��� Summary and Related Work

We have presented in this chapter a class of functions called truncated a	ne multi
valued
functions �TAMFs� and we have studied some of its properties� TAMFs operates on sets in
general and in particular on intervals� This class is rather important since it is the base for
the de
nition of the successor operators on chapter � �see section ����� There we will show
that successors are TAMFs that operates on intervals �edges of some polygons�� In particular�
the Fundamental Lemma �Lemma ��� guarantees that when considering iterations we only
need to intersect the argument of the function with one special interval just once at the
beginning and once at the end and not in each iteration�

As far as we know� there is not formal de
nition of TAMFs in the literature� There are
many interval�based temporal logics where intervals have an important role� Duration Cal�
culus $��%� Interval Temporal Logic $���% and the Interval�based Temporal Logic introduced
in $�%� In the last work mentioned� a formal axiomatization of �interval�based� time is given�
The TAMF class can be formalized in an algebraic way using a simpler axiomatization of
intervals than the one de
ned in $�%�
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Chapter �

SPDI � Qualitative Analysis of
Trajectory Segments

In this chapter we present the di culties that arise when trying to solve the reachability
problem for polygonal di�erential inclusion systems �SPDIs� and we show how to overcome
these di culties doing a qualitative analysis of trajectory segments� As a 
rst step� we show
that between any two points linked by an arbitrary trajectory segment there always exists a
trajectory segment without self�crossings� Even considering trajectory segments of this type�
there are in
nitely many of them to treat� We 
nd a good abstraction of such trajectory
segments considering some kind of �symbolic� trajectories and we show that there exists just

nitely many of them and that the abstraction preserves reachability�

Organization of the chapter� In the 
rst section we describe the di culties of the reachability
problem of SPDIs� In the second section we present our 
rst step in order to overcome the
di culties shown in the 
rst section� that is the simpli
cation of trajectory segments� The
second step of our approach� that is the abstraction of trajectory segments into signatures
is presented in section three� In the same section we present the fourth step that is the
representation of signatures in a convenient way� Section four is dedicated to the abstraction
of signatures into type of signatures� In section 
ve we study some properties of types of
signatures and we present the main results of this chapter namely that there exists 
nitely
many types of signatures and that our abstraction procedure preserves reachability� Finally�
we conclude with a summary�

��� Reachability Di�culties

In this section we present some of the main di culties that arise when trying to answer to
the reachability question stated in Problem �� Indeed� there is only one main di culty which
is that� given two points� there are in
nitely many trajectory segments from one point to
the other� and this is mainly due to the following three reasons�

��
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�� Even locally �restricted to one region� there are in
nitely many trajectory segments�
due to the di�erential inclusion�

�� Self�crossings introduce also the possibility of having in
nite number of trajectory
segments�

�� Suppose that we consider a kind of �symbolic� trajectory segments� taking into account
just the sequence of traversed edges �we call them signatures and will be de
ned later
on section ������� Let us consider a simple cycle of traversed edges that is repeated
k times� Even in this case we obtain an in
nite number of trajectory segments since
each k gives a di�erent trajectory segment �and k can be eventually in
nite��

The following example shows all the three cases above�

e� e�R�

R�

x

e	

e�

e� e


e�

e�

Figure ���� Locally in
nitely many trajectory segments�

Example 
 Let us consider again the swimmer of Example ��

�� In Figure ��� is shown that in region R� there are in
nitely many trajectory segments
from point x�

�� The second di culty is due to self�crossing trajectory segments as shown in Figure ����

�� Let us consider the sequence of traversed edges e�� e�� � � � � e�� e� as shown in Figure ���
and let k be the number of times this sequence is repeated� It is not di cult to see that
for k " � we have e�� e�� � � � � e�� e�� e�� � � � � e�� e�� for k " �� e�� e�� � � �� e�� e�� e�� � � �� e��
e�� e�� � � �� e�� e� and so on� i�e�� there is a potentially unbounded number of iterations�
Moreover� we have other trajectory segments with di�erent sequence of traversed edges
as the one shown in the 
gure with signature e�� e�� e�� e��� e��� e��� e�� � � � � e��� � � ��

Our solution to overcome this problem consists in performing the following four steps�
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e�

e��

e�
e��

e��
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e
 e�

e�

e�

e�

e�

Figure ���� A self�crossing trajectory�

�� Simpli
cation of trajectory segments� straightening them and removing self�crossings�
Given an arbitrary trajectory segment from one point to another� we show how to get
a piecewise constant derivative trajectory segment without self�crossing�

�� Abstraction of trajectory segments into signatures� considering the sequence of tra�
versed edges�

�� Factorization of signatures in a convenient way� having only sequences of edges and
simple cycles�

�� Abstraction of factorized signatures into types of signatures� that are signatures without
taking into account the number of times each simple cycle is iterated�

In next section we will show how to simplify trajectory segments�

��� Simpli
cation of Trajectory Segments

As explained in the last section� here we are going to perform the 
rst step of our solution
that consists in two parts� straightening trajectory segments and removing self�crossings� In
other words� we will perform an abstraction� from trajectory segments to piecewise constant
derivative trajectory segments without self�crossings�


���� Straightening of trajectory segments

We show here how to transform trajectory segments into rectilinear ones straightening them�
We also de
ne the notion of signature� W�l�o�g� we consider in what follows that ���� � e
for some edge e � E � We have the following de
nition�
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e�
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Figure ���� In
nitely many signatures�

De�nition �� The trace of a trajectory � is the sequence trace��� " x�x� � � � of the inter

section points of � with the set of edges� that is� xi � � � E�

Example 
 Let us consider the trajectory segment � from point x� to point x� shown in
Figure �����a�� The trace of such a trajectory segment is the sequence of points trace��� "
x�x� � � �x
x��

Given a trajectory �segment� on an SPDI� we can consider the sequence of the edges traversed
by it�

De�nition �� An edge signature �or simply a signature� of an SPDI is a sequence of edges�
The edge signature of a trajectory �� Sig���� is the ordered sequence of traversed edges by
the trajectory segment� that is� Sig��� " e�e� � � �� with trace��� " x�x� � � � and xi � ei�
The region signatureof � is the sequence RSig��� " P�P� � � � of traversed regions� that is�
ei � In�Pi��

De�nition �� A signature Sig��� " e�e� � � � en is a cyclic signature �or a signature cycle�
i� e� " en and Sig��� is a simple edge�cycle �or a simple cycle� if additionally for all
� � i 
" j � n� ei 
" ej� A region signature RSig��� " P�P� � � � Pn is a cyclic�region �or a
region cycle� i� P� " Pn and it is a simple region�cycle if in addition for all � � i 
" j � n�
Pi 
" Pj�

We will say that Sig��� " � if � is the edge signature of the trajectory ��
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Example �� Let us consider again the trajectory segment � from point x� to point x� of
Figure �����a�� Its edge signature is the sequence of edges Sig��� " e�e�e�e��e��e�e�e� and
its region signature is RSig��� " R�R�R�R
R�R�R��
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Figure ���� �a� A trajectory segment with its trace� �b� The straightened trajectory segment

The following result expresses that any segment of trajectory in a given region can be straight�
ened� preserving its initial and 
nal points �see Fig� �����

Proposition � For every trajectory segment � there exists a trajectory segment �� with the
same initial and �nal points� and edge and region signatures� such that for each Pi in the
region signature� there exists ci � 
�Pi�� such that '���t� " ci for all t � �ti� ti
��� Moreover�
trace��� " trace����

Proof� Let � be a trajectory segment whose trace is trace��� " x� � � �xk� Let � " t� �
t� � � � � � tk be such that ��ti� " xi� Since � is continuous and derivable in the interval
�ti� ti
��� there exists a unique trajectory segment �

� with ���ti� " ��ti� for all i � $�� k � �%�
such that the derivative '�� is constant in the interval �ti� ti
��� That is� for each Pi in the
region signature� there exists ci � 
i� such that '���t� " ci for all t � �ti� ti
��� �

Example �� In Figure �����b� it is shown the straightened trajectory segment of the one
given in Figure �����a��

Hence� in order to solve the reachability problem it is enough to consider trajectory segments
having piecewise constant slopes� Notice that� however� such slopes need not be the same
for each occurrence of the same region in the region signature� Hereinafter� we only consider
trajectory segments whose derivatives are piecewise constants�
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���� Removing self�crossings

Before proceeding to the removing of self�crossing trajectory segments we need to introduce
an order relation which will be intensively used in the sequel�

Consider a region P and let c � 
�P �� The mapping + � R � � R � de
ned as +�x� " x �c�
assigns to every x � R � a value proportional to the length of the projection of the vector x
on the right rotation of c� Indeed� the ordering is given by the direction of �c and one can
easily see that the relation �� de
ned as x� � x� if +�x�� � +�x��� is a dense linear order
on In�P � and Out�P � �Fig� ����� We use � to denote the strict variant of � and say that
e� � e� i� e� 
" e� and x� � x� for every x� � e��x� � e�� For example� in Fig� ��� we have
e� � e� � e� � e�� Notice that the order does not depend on the choice of c � 
�P ��

We say that a trajectory � crosses itself if there exist t 
" t� such that ��t� " ��t��� If a
trajectory does not cross itself� the sequence of consecutive intersection points with In�P �
or Out�P � is monotone with respect to �� That is� for every three points x�� x� and x�
�visited in this order�� if x� � x� � x� the trajectory is a �counterclockwise expanding
spiral��Fig� ����a�� or a �clockwise contracting spiral� �Fig� ����b�� and if x� � x� � x�� the
trajectory is a �counterclockwise contracting spiral� �Fig� ����c�� or a �clockwise expanding
spiral� �Fig� ����d���

Lemma �� For every trajectory �� if � does not cross itself� then for every edge e� the
sequence trace��� � e is monotone �with respect to ���
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Figure ���� �a� x� � x� � x�� counterclockwise expanding spiral� �b� x� � x� � x��
clockwise contracting spiral� �c� x� � x� � x�� counterclockwise contracting spiral� �d�
x� � x� � x�� clockwise expanding spiral�

Proof� The proof follows directly form Jordan�s curve theorem $�!%� �

We prove now that self�crossings can be removed from trajectory segments� preserving the
reachability problem� but 
rst we prove that we can always diminish the number of self�
crossings�

Lemma �� For every trajectory segment � that crosses itself at least once� there exists a
trajectory segment �� with the same initial and �nal points of � having a number of self

crossings strictly smaller�

Proof� Suppose that the trajectory segment � with trace trace��� " x� � � �xf crosses itself
once inside the region P � Let e�� e� � In�P � be the input edges and e��� e

�
� � Out�P � be

the output ones� Let x " xi � e� and y " xj � e�� with i � j� be the points in trace���
the 
rst and the second times � enters P � and let x� " xi
� � e�� and y

� " xj
� � e��
be the corresponding output points� Let cx� cy � 
�P � " �

b
a be the derivatives of �

in the time intervals �ti� ti
�� and �tj� tj
��� respectively� Indeed� cx and cy are the di�
rector vectors of the segments xx� and yy�� respectively �Fig� ��!�a��� Consider now the
segment xy�� Notice that the director vector c�x of this segment can be obtained as a
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Figure ��!� A trajectory that crosses itself�

positive combination of the vectors cx and cy� That is� there exist ��� �� � � such that
c�x " ��cx # ��cy �see Fig� ��!�b��� Since cx� cy � 
�P � " �ba � there exist ��� ��� 	�� 	� � �
such that c�x " �����a # ��b� # ���	�a # 	�b� " ����� # ��	��a # ����� # ��	��b� Thus�
c�x � 
�P �� Similarly we can prove that c�y is a positive combination of a and b� Hence� there
exists a trajectory �� that does not cross itself in P having a trace trace���� " x� � � �xy

� � � �xf
�Fig� ����� Notice that the result also works for the degenerate case when the trajectory seg�
ment crosses itself at an edge �or vertex� �see Fig� ������a��� If the trajectory segment �
crosses itself more than once in region P � then the number of times the trajectory segment
��� obtained by cutting away the loop �Fig� ����c��� crosses itself in P is strictly smaller than
the number of times � does it �see Fig� ������ After replacing xx� and yy� by xy�� the inter�
section q of xx� and yy� disappears� If the new segment of line xy� crosses another segment
zz� �say at a point t�� then zz� necessarily crosses either xx� �at r� or yy� �at s� �or both��
before the transformation� The above is due to the fact that if zz� crosses one side of the
triangle xy�q then it must also cross one of the other sides of the triangle� say at r� Thus�
no new crossing can appear and the number of crossings in the new con
guration is always
less than in the old one� �
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Figure ���� Obtaining a non�crossing trajectory

Remark� In the above proof notice that we consider that the trajectory segment may cross
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itself just in a 
nite number of points� In fact there is a degenerate case shown in Figure �����
�b�� where there are in
nitely many crossing points� The above result continue to holds� it
su ces to consider induction over crossing points and intervals�
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Figure ����� �Degenerate� self crossings�

We have then the following proposition�

Proposition � �Existence of a non�crossing trajectory� If there exists an arbitrary tra

jectory segment from points x� � e� to xf � ef then there always exists a non
crossing
trajectory segment between them�

Proof� By induction on the number n of times the trajectory segment crosses itself using
Lemma �� in the induction step� �

x�y�

x y

s

z

z�

�a	

r

q

x�y�

x y
z

z�

�b	

t

Figure ����� The number of crossings decrease after eliminating self�crossings� �a� Before ��
crossings�� �b� After �� crossing��

Example �� Given the trajectory segment of Figure �����b�� after eliminating the self�
crossing we obtain the trajectory segment of Figure �����

Hence� in order to solve the reachability problem we only need to consider non�crossing
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trajectory segments with piecewise constant derivatives� In what follows� we only deal with
trajectory segments of this kind�
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Figure ����� A trajectory segment without self�crossing�

��� From Simpli
ed Trajectory Segments to Factorized Sig�

natures

In this section we present the second and third steps of our solution� We show now how
to abstract trajectory segments into signatures� Given a trajectory segment of an SPDI
considering its trace over the sequence of traversed edges �signature� gives a good abstraction
that preserves reachability� We have then the following fact�

Fact �	 If there exists a trajectory segment from points x� � e� to xf � ef � then there exists
a sequence of points x�� � � � �xi� � � � �xf with edge signature e�� � � � � ei� � � � � ef � �

In what follows we present a representation theorem that allows to express signatures in a
factorized way�

Given a sequence w� � denotes the empty sequence whereas first�w� and last�w� are the

rst and last elements of the sequence respectively� An edge signature � can be expressed
as a sequence of edges and cycles of the form r�s

k�
� r�s

k�
� � � � rns

kn
n rn
�� where

�� For all � � i � n# �� ri is a sequence of pairwise di�erent edges�

�� For all � � i � n� si is a simple cycle �i�e�� without repetition of edges� repeated ki
times�

This representation can be obtained as follows�
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Algorithm ALet � " e� � � � ep��ep be an edge signature� Starting from ep�� and traversing
backwards� take the 
rst edge that occurs the second time� If there is no such edge� then
trivially the signature can be expressed as a sequence of di�erent edges� Otherwise� suppose
that the edge ej occurs again at position i �i�e� ei " ej with i � j�� thus �A " wsr� where
w� s and r are obtained as follows� depending on the repeated edge�

w " e� � � � ei
s " ei
� � � � ej
r " ej
� � � � ep��

Clearly r is not a cycle and s is a simple cycle with no repeated edges� We continue the
analysis with w� Let km " maxfl j sl is a su x of wg� Thus� �A " w�skr with w� " e� � � � eh
�a pre
x of w� and k " km#�� We repeat recursively the procedure above with w

�� Adding
the edge ep to the last r �at the end� we obtain �A " r�s

k�
� � � � rns

kn
n rn
� that is a represen�

tation of signature �� �

Notice that the �preprocessing� �taking away the last edge ep� is done in order to di�erentiate
edge signatures that end with a cycle from those that do not� There exists many other
�maybe easier� ways of decomposing a signature � �in particular� traversing forward instead
of backwards�� but the one chosen here permits a clearer and simpler presentation of the
reachability algorithm� In fact� using the above representation� the last visited edge in a cycle
e� � � � ek is always the last one �ek�� The representation obtained by the above algorithm give
rises to the following theorem�

Theorem �� �Representation Theorem� Let � " e� � � � ep be an edge signature� then it

can always be written as �A " r�s
k�
� � � � rns

kn
n rn
�� where for any � � i � n # �� ri is a

sequence of pairwise di�erent edges and for all � � i � n� si is a simple cycle �i�e�� without
repetition of edges�� �

Each edge signature can then be represented as a sequence of edges and simple cycles� In
what follows �cyclic signatures� will mean �simple cycles� unless the contrary be said�

Example �� Let us consider the following examples� Suppose that

� " abcdbcefgefgefgefhi�

Then� after applying once the above procedure of the algorithm we obtain that

�A " w�s��
�r��

with w " abcdbcef � s� " gef � r� " h� Applying the procedure once more to w we obtain

w " w��s��
�r�
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Figure ����� A trajectory segment from x to x��

with w� " r� " abc� s� " dbc� r� " ef � Putting all together and adding the last edge �i�
gives

�A " abc�dbc��ef�gef��hi

Suppose now� that the signature ends with a cycle�

� " abcdbcefgefgefgefgef�

In this case we apply the preprocessing obtaining

�A " w�s��
�r�

with w " abcdbce� s� " fge� r� " �� Applying the procedure to w we 
nally obtain

w " w��s��
�r�

with w� " r� " abc� s� " dbc� r� " e and that gives �adding f to the end�

�A " abc�dbc��e�fge��f�

Example �� Let us consider an SPDI and the trajectory segment shown in Figure ���� from
a point x � e� to a point x

� � e��� where for simplicity we do not show the formal de
nition of
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the SPDI� The edge signature of the trajectory segment is � " e�e�e� � � � e
e� � � � e��e
e��e���
Applying algorithm A above we obtain the following representation�

�A " e�e�e��e�e�e�e��
�e�e
�e� � � � e��e
��e��e���

Notice that even though the number of trajectory segments from one point to another has
been considerably reduced after the simpli
cation of section ���� there are still an in
nite
number of them� Even when considering signatures� the number is still in
nite� Our rep�
resentation theorem simpli
es the analysis but does not decrease the number of signatures
to be considered� The problem is that in principle all the simple cycles can be iterated
an unbounded number of times� Hence� the following natural step is to abstract away the
number of times each simple cycle is iterated� that is the subject of next section�

��� From Factorized Signatures to Types of Signatures

In this section we show how to abstract the signatures obtained in the previous section via
the representation theorem to type of signatures�

Given a representation of a signature� obtained as before� we have the following de
nition�

De�nition �� Let � " e� � � � ep be an edge signature and �A " r�s
k�
� � � � rns

kn
n rn
� be its

representation �obtained by Algorithm A�� Then we de�ne the type of a signature � as
type��� " r�� s�� � � � � rn� sn� rn
��

Moreover� from Theorem �� we conclude that we can obtain an abstraction of a signature
as shown in the following corollary�

Corollary �
 For each edge signature � " e� � � � ei � � � ep there exists a type of signature of
the form type��� " r�� s�� � � � � rn� sn� rn
��

Proof � The result follows from Theorem �� constructing �A " r�s
k�
� � � � rns

kn
n rn
� and then

abstracting away the number of times each cycle is iterated� �

Notice that the above corollary really gives an abstraction in the sense of abstract interpre

tation $�!� ��% but we consider that our abstraction is quite straightforward and de
ning the
equivalence classes� a quotient set� the abstraction function� etc� would obscure the presen�
tation�

When referring to the type of a signature� we will always mean the type being generated as
in Theorem �� �i�e�� by Algorithm A��
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De�nition �� The set of all the types of signatures of an SPDI will be denoted by T � that
is�

T " f� j �� � E� � type��� " �g
where E is the set of all the edges of the SPDI�

The set of types of signatures from one edge e� to other edge ef will be denoted by T �e�� ef ��

Example �� The type of the signature �A " abc�dbc��ef�gef��hi of Example �� is

type��� " abc� �dbc�� ef� �gef�� hi�

And the type of �A " abc�dbc��e�fge��f is

type��A� " abc� �dbc�� e� �fge�� f�

Example �	 The type of the signature of Example �� is

type��� " e�e�e�� �e�e�e�e��� e�e
� �e� � � � e��e
�� e��e���

We have de
ned signatures as being a sequence of edges but we are particularly interested on
signatures that corresponds to trajectory segments� We have then the following de
nition�

De�nition �� We say that a signature � is feasible if and only if there exists a trajectory
segment � with signature �� i�e�� Sig��� " ��

Let Tfeasi denote the set of all the types of feasible signatures� i�e��
Tfeasi " f� j �� � E� � � is feasible and type��� " �g

Given a type of signature we want to characterize the set of all the signatures with such
type� that is the set of signatures that concretize the type� This notion is de
ned in what
follows�

De�nition �	 Given a type of signature � " r�� s�� � � � � sn� rn
�� the concretization �or
realization� of � is the set of all the edges signatures with type � � i�e��

Concr��� " fr�sk�� � � � sknn rn
� j ki � N
 � for � � i � ng
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��� Properties of Types of Feasible Signatures

We present now some properties of the types of signatures obtained in the previous section
and we show the main results of the chapter� namely that the set of type of signatures is

nite and that all feasible signatures belongs to a type�

Let � be a trajectory segment with edge signature Sig��� " e� � � � ep� and region signature
RSig��� " P� � � � Pp� We have the following de
nition�

De�nition �� An edge e is said to be abandoned by � after position i� if ei " e and for
some j� k� i � j � k� Pj � � � Pk forms a region cycle and e 
� fei
�� � � � � ekg� Since trajectory
segments are 
nite we should add the trivial case when e 
" ej for all j� j � i�

An important result concerning abandonment is the following�

Lemma �
 �Abandonment is Irreversible� For every trajectory segment � and edge e�
if e is abandoned by � after position i� e will not appear in Sig��� at any position j � i�

Proof � It follows from Lemma ��� See Claim � in $��%� �

Intuitively� the abandonment lemma above guarantees that any edge that occurs in a pre
x of
an edge signature but does not appear in a cycle following this pre
x cannot occur anymore
in any post
x �starting with the cycle� of the edge signature�

Edge Abandonment
position

e� �

e� ��

e� ��

e� !

e� ��

Table ���� Abandonment of edges of Example ���

Example �� Let us consider the trajectory segment from x to x� of Figure ����� with
signature �A " e�e�e��e�e�e�e��

�e�e
�e� � � � e��e
��e��e��� In order to visualize the position�
we unfold the above signature and we write the occurrence position of each edge as a supra�
index��

�A " e��e
�
�e

�
��e

�
�e

�
�e



�e

�
���e

�
�e

�
�e

��
� e

��
� �e

��
� e

��

 �e

��
� � � � e����e��
 ��e��� � � � e����e��
 �e����e����

�We have kept the parenthesis in order to visualize the cycles�
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Notice that R
R� � � � R��R��R� forms a region cycle with positions ��� ��� � � �� �� and ��
respectively� Edge e�� for instance� is abandoned after position �� since it does not belong to
the set of edges fe
� e�� � � � e��g �that have positions ��� ��� � � �� �� respectively�� Moreover�
e� cannot appear in any extension of the above trajectory segment from x�� Moreover� edges
e� to e� are also abandoned at positions shown in Table ����

We have that the types of feasible signatures obtained by Corollary �! have the following
properties�

Lemma �� Let � " e� � � � ep be a feasible signature� then its type� type��� " r�� s�� � � � � rn�
sn� rn
� satis�es the following properties�

P� For every � � i 
" j � n# �� ri and rj are disjoint�

P� For every � � i 
" j � n� si and sj are di�erent�

Proof �

P� Let e � ri� we consider two cases�

�� e 
� si� The result follows immediately from Lemma �� �e cannot occur in any rj �
j � i��

�� e � si� Suppose that e � ri
�� Then we have si " e� � � � ei � � � ek and ri
� "
ek
� � � � ej � � � el� with ei " ej� but this is not possible� the construction of � was
doing backwards� and in this case we should have a cycle s " ei
� � � � ekek
� � � � ej �
If e � rj �for any j � i # �� then again we have two cases� e � sj�� or e 
� sj���
the 
rst case is not possible by construction and the latter contradicts Lemma ���

P� Let si " e�� � � � � ek be a simple cycle� After cycling ki times the cycle is abandoned by
edge ek �by construction of �A�� Let P be a region s�t� ek � In�P � and consider the
unfolding of the last iteration and its continuation�

� � � � e�� e�� � � � � ek� e� � � �

where� by feasibility� e " first�ri
��� ek � In�P � and e�� e � Out�P � �e� 
" e�� By the
ordering between edges we have that either e � e� or e� � e� By the monotonicity of
the trajectory� in both cases e� cannot occur after e in �� Thus� any other cycle sj �
with i � j� di�ers from si at least on e�� Hence� all the cycles are di�erent� �

Notice that by Lemma �� any type of signature in Tfeasi satis
es properties P� and P�� As
a direct consequence of Lemma �� we have the following proposition�

Proposition � The set of types of feasible signatures Tfeasi is �nite� �

Moreover� any feasible signature belongs to a type as shown in the following lemma�
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Lemma �� For any signature �� if � is feasible then there exists a type of signature � � T
such that � � Concr����

Proof� The result follows from Theorem �� � Corollary �!� Lemma �� and de
nition of
Concr� �

Remember that the point�to�point reachability for SPDIs can be stated as�

Reach�H�x��xf � � �� �t � � � ����� " x� � ��t� " xf �

and for a given �� we have the following predicate�

Reach��H�x��xf � � �t � � � ����� " x� � ��t� " xf �

Let us de
ne the reachability following a given signature as�

Reach��H�x��xf � � �� � �Sig��� " � �Reach��H�x��xf ��

Finally� the following predicate de
nes the point�to�point reachability for a given type of
signature � �

Reach� �H�x��xf � � �� � Concr��� � Reach��H�x��xf ��

We prove now that following the steps presented in this chapter� transforming a given arbi�
trary trajectory segment into its type of signature� reachability is preserved�

Theorem �� Given an SPDI H and two points x� and xf � then the following holds


Reach�H�x��xf � i� Reach� �H�x��xf �

for some � � Tfeasi�

Proof�

�� We prove 
rst that if Reach�H�x��xf � then �� � Reach� �H�x��xf ��

Reach�H�x��xf � �� �� � Reach��H�x��xf � �by def� of Reach�
"� �� � Sig��� " � �Reach��H�x��xf � �by def� of Reach��
"� � is feasible �by def� of feasibility�
"� �� � Tfeasi � � � Concr��� �by Lemma ���
"� �� � Concr��� � Reach��H�x��xf �
�� Reach� �H�x��xf � �by def� of Reach� �
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�� We prove now that if for some � � Reach� �H�x��xf � then Reach�H�x��xf ��

Reach� �H�x��xf � �� �� � Concr��� � Reach��H�x��xf � �by def� of Reach� �
"� �� � Sig��� " � �Reach��H�x��xf � �by def� of Reach��
"� ���t � � � ���� " x� � ��t� " xf �by def� of Reach��
�� Reach�H�x��xf �

From the two cases above we have that Reach�H�x��xf � i� �� � Reach� �H�x��xf �� �

Thus� by Proposition �� to solve the reachability problem we can proceed by examining one
by one the types of signatures that guarantee to preserve reachability by the above theorem�

��� Summary

In this chapter we have described the main di culties that arise when considering the reach�
ability problem for SPDIs as well as a solution to overcome them� We have shown that to
any arbitrary trajectory segment between two points corresponds a type of signature� The
intermediate results are�

�� For any arbitrary trajectory segment� there exists a piecewise constant derivative tra�
jectory segment without self�crossing �Proposition ���

�� For any trajectory segment without self�crossing and with piecewise constant deriva�
tives� there exists a signature �Fact ����

�� For each signature there exists a factorized signature �Theorem ����

�� For each factorized signature there exists a type of signature �Corollary �!��

We have also proved that the set of types of feasible signatures is 
nite �Proposition ��
and that any feasible signature belongs to a type� Moreover� and as a main result we have
proved that the above procedure� from arbitrary trajectory segments to types of signatures�
preserves reachability �Theorem ����



Chapter �

SPDI � Reachability Analysis

In the previous chapter we have shown how to make an abstraction of trajectories into types
of signatures and we have proved that in order to solve the reachability problem we only
need to consider the set of types of signatures� This set is indeed 
nite� The last step of our
method consists in giving a decision procedure for each type of signature� In this chapter
we develop an algorithm for solving the reachability problem for SPDIs� Our procedure is
based on the computation of the limit of individual trajectories� A key idea is the use of
one�dimensional a ne Poincar�e maps for which we can easily compute the 
xpoints�

A preliminary version of the results presented in the previous and in this chapter has been
published in $��%�

Organization of the chapter� In the 
rst section we introduce our basic �tool�� successor
functions� In the following section we present our main result� that is a decision procedure
for the reachability problem of SPDIs �with the restriction of goodness� and we show its
soundness and termination� Finally� we conclude with a summary and related work�

��� Successor Operators

We de
ne in this section our main technical tool for computing reachability� that is the
successor operators and for that we need an e�ective representation of �rational� points and
intervals on edges�

Let us introduce a one�dimensional coordinate system on each edge� For each edge e we
chose a point on it �the origin� with radius�vector v� and a director vector e going in the
positive direction in the sense of the order ��
To characterize e we need the coordinates of its extreme points� two more numbers el� eu �
Q � f����g such that e " fv # xe j el � x � eug� Clearly� having 
xed v and e for
every edge we can represent every point x � e by a pair �e� x� identifying the edge e and
the coordinate x �see Fig�����a��� Every interval hx��x�i contained in e is represented as
�e� hx�� x�i�� where x� " �e� x�� and x� " �e� x�� �see Fig�����b��� Notice that if e is a vertex�

��
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(b)(a) (c)
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�e� x�v
�
x�
e

v
� x�

e

x

v � xe
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x�

x

ct

�e�� x��

Figure ���� �a� Representation of edges� �b� Representation of an interval� �c� One�step
successor�

then e " fvg� where v is the only vector that characterizes e� Moreover� all the vertices have
local coordinates x � $�� �%� i�e� a vertex v is represented by a pair �v� ��� hence� whenever e
is a vertex� e " hel� eui must be understood as e " $el� eu% whereas if e is a �true� edge then
e " �el� eu��

We de
ne the edge
to
edge successor Succcee� following a given vector c�

De�nition �
 Let e " hel� eui � In�P � and e� " he�l� e�ui � Out�P �� be two edges� x " �e� x�
and x� " �e�� x�� be two points and c � 
�P � a given vector� The edge�to�edge successor
following a given vector c is de�ned as

Succcee��x� " x�

such that x� " x# ct for some t � ��

Notice that x� is unique� We say that the point �e�� x�� is the successor of �e� x� in the
direction c �see Fig�����c��� We prove now that successors are TAMFs�

Lemma �� The function Succcee� is truncated a	ne�

Proof � Expanding x� " x# ct� we obtain

v� # x�e� " v # xe# tc�

Multiplying both expressions by �c �the right rotation of c� we obtain that

�v� # x�e���c " v�c# xe�c

�We will use both e and hel� eui to denote an edge�
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i�e� x��e��c� " x�e�c� # �v � v���c� Thus

x� "
e�c

e��c
x#

v � v�

e��c
�c

and
x� � he�l� e�ui�

Thus putting ��c� " e�c
e��c � ��c� "

v�v�

e��c �c we have that

Succcee��x� " ��c�x# ��c�

with � � � �which follows from the region�s goodness property�� Notice that we have
x� " Succcee��x� i� x � e� x� � e� and x� " F �x�� Thus�

x� " F �fxg � S� � J

with F �x� " ��c�x# ��c�� S " hel� eui and J " he�l� e�ui� i�e�

x� " FF�hel�eui�he�l�e�ui�

�

The notion of successor can be extended on all possible directions c � 
�P �� Given P � P�
e � In�P � and e� � Out�P �� for x " �e� x�� Succee��x� is the set of all points in e

� reachable
from x by a trajectory segment � � $�� t%� R � in P �

De�nition �
 Let P � P� e � In�P � and e� � Out�P �� For x " �e� x�� the edge�to�edge
successor Succee��x� is de�ned as

Succee��x� " fx� j x� " �e�� x�� � ���� " x � ��t� " x� � Sig��� " ee�g

F c
ee��x� will denote the non
truncated function ��c�x# ��c�� The above notion of successor
can be applied to any subset A � hel� eui and in particular to intervals hl� ui�

Lemma �� Let 
�P � " �ba � x " �e� x� and hl� ui � hel� eui� Then


�� Succee��x� "
S
c�	�P � Succ

c
ee��x� " hFb

ee��x�� F
a
ee��x�i � he�l� e�ui�

�� Succee��hl� ui� " hFb
ee��l�� F

a
ee��u�i � he�l� e�ui�

Proof � It follows from the results given in chapter �� �

Therefore� Succee� is truncated a ne multivalued�

Succee��hl� ui� " Fee��hl� ui � hel� eui� � he�l� e�ui
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(a) (b)

l�

u�

u� u�l�

u�

l�
l�

e�
e�

Figure ���� �a� Non�truncated operator� Succe��l�� u�� " hl�� u�i� with l� � el� � u� � eu� �
�b� Truncated successor� Succe��l�� u�� " hl�� u�i � hel�� eu�i�

This lemma shows that in order to 
nd a successor of an interval in an edge e� we should
apply the smallest dynamics �a� to its right end and the greatest �b� to its left end� and
intersect the result with the target edge� Fig� ��� shows the di�erence between non�truncated
and truncated successors�

The successor operator will be used as a building block in the reachability algorithm� It can
be naturally extended on edge signatures� for �� " e�e� � � � en let

Succ���I� " Succen��en � � � � � Succe�e� � Succe�e��I�

that by Lemma � is truncated a ne�

Notice that since we use edge signatures the semi�group property takes the following form�

Lemma �� For any edge signatures �� and �� and an edge e

Succe�� � Succ��e " Succ��e��

�

It is convenient to de
ne a �trivial� successor Succe where e is a single edge� The only way
to do it preserving the semi�group property is to put Succe�x� " x�

In order to manipulate successor operators we should investigate their algebraic properties�
Since one�step successors Succe�e� are truncated a ne� Lemma �� guarantees that all the
multi�step Succu are truncated a ne as well� In the sequel we will apply the iteration analysis
to their non�truncated versions Fu�
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Figure ���� Statement of Lemma ���

Lemma �	 Let P be a region� e � In�P �� e�� e� � Out�P �� hli� uii be any subinterval of
heli� eui i and fi�x� " F c

eei
�x� �for any c � �ba�� If e� � e� and l� � f��x� then u� � f��x��

Proof� �See Fig� ����� By de
nition� from e� � e�� we have that e�u� # v� � e�l� # v� and
by de
nition of � between points

�c�e�u� # v�� � �c�e�l� # v���
Distributing we obtain that

�ce�u� # �cv� � �ce�l� # �cv��
On the other hand� from the hypothesis we have that

l� �
�ce

�ce�
x#

�c�v � v��

�ce�

and doing some algebraic manipulation we obtain

�ce�l� # �cv� � �cv # �cex�

From both results we obtain �by transitivity� that

�ce�u� # �cv� � �cv # �cex�

By rearranging we have that

u� �
�ce

�ce�
x#

�c�v � v��

�ce�
�
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i�e� u� � f��x�� �

As a consequence we have the following result�

Corollary �� Let P be a region� e � In�P �� e�� e� � Out�P �� fi�x� " F c
eei
�x� be an a	ne

function and Fi�hx� yi� " Fi�hx� yi�Si��Ji be a truncated a	ne multi
valued function �with
Fi " $f

l
i � f

u
i % and Ji " hLi� Uii�� Given that e� � e� we have that

�� If L� � f l��x� then F��hx� yi� " ��
�� If fu� �y� � U� then F��hx� yi� " ��

Proof� Direct from lemma �� and de
nition of Fi�hx� yi�� �

Example �
 Let us come back to the example of the swimmer trying to escape from a
whirlpool in a river �see Fig� ����� Suppose that the swimmer is following a trajectory with
edge signature �e� � � � e��

�� It is not di cult to 
nd a representation of the edges such that
for each edge ei� �e

l
i� e

u
i � " ��� ��� Besides� the �non�truncated� a ne successor functions are�

Fe�e��x� "
�
x
� �

x
�

	
Fe�e��x� "

�
x� �

� � x#
��

�

	
Feiei���x� " $x� x%� for all i � $�� �%
Fe�e��x� "

�
x# �

� � x#
�
�

	
The truncated a ne version of the functions above �normalized� are

Succe�e��x� "

� �
x
� �

x
�

	 � ��� �� if x � ��� ��
� otherwise

Succe�e��x� "

� �
x� �

� � x#
��

�

	 � ��� �� if x � ��� ��
� otherwise

Succeiei���x� "

�
$x� x% � ��� �� if x � ��� ��
� otherwise

Succe�e��x� "

� �
x# �

� � x#
�
�

	 � ��� �� if x � ��� ���
� otherwise

The successor function for the loop s " e� � � � e� is obtained by composition of the above
functions as follows� Let us 
rst compute

Succe�e�e��l� u� " F �hl� ui � S� � J

where

F " Fe�e� � Fe�e�
S " S� � F��

e�e�
�J� � S��

J " J� � Fe�e��J� � S��
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with

J� " e� " ��� ��
J� " e� " ��� ��
J� " e� " ��� ��
S� " F��

e�e�
�J�� � J�

S� " F��
e�e�
�J�� � J�

and

F��
e�e�
�l� u� " $�l� �u%

F��
e�e�
�l� u� " $l � ��


� � u#
�
� %

We compute now all the parameters above in order to obtain F� S and J

S� " F��
e�e�
���� ��� � ��� �� " ��� �� � ��� �� " ��� ��

S� " F��
e�e�
���� ��� � ��� �� " ����


� �
�
�� � ��� �� " ��� ��

F �l� u� " $ l� � �
� �

u
� #

��

� %

S " ��� �� � F��
e�e�
���� �� � ��� ��� " ��� �� � ��� �� " ��� ��

J " ��� �� � Fe�e����� �� � ��� ��� " ��� �� � ���
� �

��

�� " ��� ��

We have then that

Succe�e�e��l� u� "

�
$ l� � �

� �
u
� #

��

� % � ��� �� if hl� ui � ��� ��

� otherwise

Since Feiei�� for i � $�� �% are the identity functions� we have that

Succe�


e��l� u� "

� hl� ui � ��� �� if hl� ui � ��� ��
� otherwise

and composing the functions above we obtain that Succe�


e� " Succe�e�e� � We compute now

Succe�


e�e��l� u� " F ��hl� ui � S�� � J �

where

F � " Fe�e� � Fe�


e�
S� " S� � F��

e�


e�
�J� � S��

J � " J� � Fe�e��J� � S��

with
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J� " e� " ��� ��
J� " J " ��� ��
J� " e� " ��� ��
S� " F��

e�


e�
�J�� � J�

S� " F��
e�e�
�J�� � J�

and
F��
e�


e�

�l� u� " $�l � ��
�� � �u#

�
� %

F��
e�e�
�l� u� " $l � �

� � u� �
� %

We compute the parameters above to obtain F �� S� and J ��

S� " F��
e�


e�

���� ��� � ��� �� " ����
�� �

�
�� � ��� �� " ��� ��

S� " F��
e�e�
���� ��� � ��� �� " ���

� �
�
�� � ��� �� " ��� ���

F ��l� u� " $ l� � �
�� �

u
� #

��

� %

S� " ��� �� � F��
e�


e�

���� �� � ��� ���� " ��� �� � ����
�� �

��
��� " ��� ��

J � " ��� �� � Fe�e����� �� � ��� ���� " ��� �� � ��� � �� " ��� � ��
Hence�

Succe�


e�e��l� u� "

�
$ l� � �

�� �
u
� #

��

� % � ��� � �� if hl� ui � ��� ��

� otherwise

Finally� by Lemma � we obtain the limits� l� "
� �

��

�� �

�

" � �
�� � and u

� "
��

��

�� �

�

" ��
�� �

The notion of edge signature introduced in the previous chapter allows to consider one di�
mensional discrete systems instead of the two dimensional continuous systems we are leading
with� and hence use the Poincar�e map� Indeed� the following lemma shows that a successor
function computes the Poincar�e map of a trajectory segment�

Lemma �
 Given an SPDI H and two points x� " �e�� x�� and xf " �ef � xf �� Reach��H�x��xf �
i� xf � Succ��x���

Proof� The result follows directly from de
nitions of Reach� and Succ� �

We have introduced till now all the basic elements needed in order to attack the reachability
problem and just remain the last step that is the analysis of each type of signature�

��� Reachability Analysis

In this section we present our main result� namely a decision procedure to solve the reacha�
bility problem for SPDIs� After showing that there are just 
ve di�erent possible behaviors
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of cycles analysing the limit trajectories we give then an algorithm that compute the exit
set of each sequential part and each cycle and that test whether a given point is reachable
or not�

����� Main algorithm

Given an SPDI H� we are interested in the reachability analysis between two points�
From the previous chapter we know that there exists a 
nite number of type signatures of
the form r�� s�� � � � � rn� sn� rn
�� Moreover� the type signatures are restricted to those with
e� " first�r�� and ef � rn
�� Given such a set of type signatures T �e�� ef �� the following
algorithm is guaranteed to terminate� answering YES if xf is reachable from x� or NO
otherwise�

function Reach�H�x��xf �
R " false
for each � � T �e�� ef �

R " R � Reachtype�x�� xf � ��
�� R

Reachability from x� to xf with 
xed type of signature � is tested by the function

Reachtype�x�� xf � ���

Let the type � have the form � " r�� s�� � � � � rn� sn� rn
�� Put fi " first�si� and exi "
first�ri
�� if ri
� is non�empty and fi
� otherwise �i�e� exi is the edge to which the tra�
jectory exits from the loop si�� Let us say that a type signature � has a loopend property if
first�rn
�� " first�sn�� i�e� signatures of type � terminate by several repetitions of the last
loop�

function Reachtype�x�� xf � �� �
Z " Succr�f��x��
for i " � to n� �

Z " Succri��fi���Exit�Z� si� exi��
if loopend���

then �� Test�Z� sn� xf �
else �� xf � Succrn���Exit�Z� sn� exn��&

This algorithm uses two functions�

�� Test�Z� s� x� that answers whether x is reachable from a set Z �represented as a 
nite
union of intervals� in the loop s� Formally� it checks whether x � Succs�first�s��I�� i�e��

�k � � � x � Succskfirst�s��I�&
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�� The function Exit�Z� s� e� that for an initial set Z� a loop s� and an edge e �not in this
loop� 
nds all the points on e reachable by making s several times and then exiting to
e� Formally� it computes

Succs�e�I� "
�
k	�

Succske�I�

which is always a 
nite union of intervals�

Since we know how to calculate the successor of a given interval in one and in several steps
�Succee���� and Succr����� in order to implement Test��� and Exit��� it remains to show how
to analyze the �simple� cycles si and eventually their continuation�

Both algorithms Test��� and Exit��� start by doing qualitative analysis of the cycle� This
analysis proceeds as follows�

Let s be a simple cycle� f " first�s� its 
rst edge� and I " hl� ui � f an initial interval
and Succsf �x� " Fsf �fxg � S� � J � Notice that the above formula is correct �by de
nition
of truncated successor� but if we want to iterate the successor �apply it again� we must
guarantee that we can really do it� Thus� the result should be in S and hence we obtain that
to be able to iterate� Succsf �x� must be included in S � J � that is then the precondition for
cycling� In what follows hL�Ui will denote S � J �

The 
rst thing to do is to determine the qualitative behavior of the leftmost and rightmost
trajectories of the interval endpoints in the cycle� This can be done without iterating Succsf �
Indeed� by Lemma �� we can compute the limits �l�� u�� " limn
� Fn

sf �hl� ui� �notice that
those are limits only for the non
truncated operator F �� not taking into account that the
edges are possible bounded �we use Lemma ��� and compare these limit points corresponding
to unrestricted dynamics with L and U � There are 
ve possibilities�

�� STAY The cycle is not abandoned by any of the two trajectories�� L � l� � u� � U �

�� DIE The right trajectory exits the cycle through the left �consequently the left one also
exits� or the left trajectory exits the cycle through the right �consequently the right
one also exits�� In symbols� u� � L � l� � U � see Fig� ����

�� EXIT�BOTH Both trajectories exit the cycle �the left one through the left and the
right one through the right�� l� � L � u� � U � see Fig� ����

�� EXIT�LEFT The leftmost trajectory exits the cycle but not the other� l� � L � u� �
U � see Fig� ����

�� EXIT�RIGHT The rightmost trajectory exits the cycle but not the other� L � l� �
U � u��

�See Appendix A for some properties of STAY signatures�
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Figure ���� $DIE% �a� Both trajectories leave the cycle �e�� e�� e�� e��
� through the left� �b�

Reachable points on the cycle �in bold�� �c� Possible continuation after leaving the cycle �in
bold��
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Figure ���� $EXIT�BOTH%% �a� Both trajectories leave the cycle �e�� e�� e�� e��
�� �b� Reachable

points on the cycle �in bold�� �c� Possible continuation after leaving the cycle �in bold��
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Figure ���� $EXIT�LEFT% �a� The left trajectory leave the cycle �e�� e�� e�� e��
� through the

left� whereas the right one tends to the limit u�� �b� Reachable points on the cycle �in bold��
�c� Possible continuation after leaving the cycle �in bold��

This qualitative analysis is implemented in the function Analyze�I� s� which returns the kind
of qualitative behavior of the interval I " hl� ui under the loop s�

function Analyze�I� s�
cases

L � l� � u� � U � �� STAY
u� � L � l� � U � �� DIE
l� � L � u� � U � �� EXIT�BOTH
L � l� � U � u� � �� EXIT�RIGHT
l� � L � u� � U � �� EXIT�LEFT

endcases

Notice that one �or both� of the successor functions can be the identity� In this case we have
an in
nite number of 
xpoints but the analysis above continue to apply�

����� Exit

In this section we describe the EXIT algorithm and show its soundness and termination�
The exit set on a given edge ex after cycling on s� for a given initial interval I� is
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Ex "
�
m��

Succsex � Succmsf �I��

The function Exit�Z� s� ex� should return Succs�ex�Z�� Both the argument Z and the result
are 
nite collections of intervals� The exploration is made for each initial interval separately�

function Exit�Z� s� ex�
E " �
for each I � Z

if Succsf �I� � S 
" �
then E " E �ExitAnalyze�Succsf �I� � S� s� ex�
else E " E � Succsex�Succsf �I��

�� E

Notice that the call Succsf �I� ensures that I � hL�Ui� All the work for each initial inter�
val I is done by the function ExitAnalyze�I� s� ex� which launches the Analyze��� procedure
described above and last� according to the result of this analysis launches one of 
ve special�
ized procedures ExitSTAY � ExitLEFT � ExitRIGHT � ExitBOTH � ExitDIE which calculates
the exit set�

We consider separately all these 
ve algorithms and state their termination and soundness�
This will imply termination and soundness of the Exit function itself�

Notation� We recall the notations introduced before and we introduce others to simplify
the proofs� As before� let s be a simple cycle� f " first�s� its 
rst edge and I " hl� ui � f
be the initial interval� Notice that the functions Exit� are always called with I � hL�Ui �in
fact this is the precondition for iterating� see Lemma ���� Let Ii " hli� uii " Succisf �I� and
�Ii " h�li� �uii " F i

sf �I�� The Fundamental Lemma �Lemma ��� guarantees that Ii "
�Ii�hL�Ui�

Remember that F�I� " Succsf �I� " Fsf �I � S� � J and �F�I� " Fsf �I � S � J� � S � J �

Exit�STAY

function ExitSTAY �I� s� ex�
�� �

Soundness By hypothesis� L � l� � u� � U � Hence� for all i� �Ii " h�li� �uii � hL�Ui� hence
Ii " �Ii and by Corollary �� we have that Succ

i
sex
�I� " ��

Termination Trivial� �
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Exit�DIE

function ExitDIE�I� s� ex�
Z " �
repeat

I " Succsf �I�
Z " Z

S
Succsex�I�

until I " �
�� Z

Soundness Trivial�

Termination From the hypothesis we know that there exists an n s�t� �In � hL�Ui " �
�either because �un � L if u� � L or because U � �ln if U � l��� Both cases imply that
Succnsf �I� " �� �

Exit�BOTH

function ExitBOTH�I� s� ex�
�� Succsex�Succsf �hL�Ui��

Soundness Notice that we call ExitBOTH with Succsf �I� � S " F�I�� On the other hand�
because the limits are out of hL�Ui� we know that there exists an n such that hL�Ui �
�In and by the Fundamental Lemma �Lemma ���� �Fn�I� " In " hL�Ui �i�e� �Fn�F�I� "
hL�Ui�� By Corollary �� we have that Fn�I� " F � �Fn�� � F�I� " F�hL�Ui� "
Succsf �hL�Ui��
�� We prove 
rst that the algorithm produces just �exits� �i�e�� Succsex�Succsf �hL�Ui�� �

Ex�� This follows directly from the fact that Succsf �hL�Ui� " Succnsf �I� �
�m��Succ

m
sf �I��

�� We prove now that all the �exits� are computed �Ex � Succsex�Succsf �hL�Ui����
By de
nition� Ex " �m��Succsex �Fm�I�� that can be written as Ex " Succsex �
F�I� � Succsex � F � F��m	�Fm���I��� Let A be the set �m	�Fm���I�� thus
F � F�A� " F�S � F�A�� � F�S � J� " F�hL�Ui�� On the other hand�
Succsex � F�I� � Succsex � F�hL�Ui�� since I � hL�Ui and by monotonicity of
both functions� Hence� Ex � Succsex � F�hL�Ui��

Termination Trivial� �

Exit�LEFT

function ExitLEFT �I� s� ex�
�� Succsex�Succsf �hL�maxfu� u�gi��
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Soundness By hypothesis� l� � L � u� � U � Thus� there exists a natural number n s�t�
�ln � L and for all i� ui " �ui � U � Let�s consider the following two cases�

�� If f � ex then Ex " � �by de
nition of Exit�LEFT� and Succsex�Ii� " � for any
i �by Corollary ������ so Succsex�Succsf �hL�maxfu� u�gi�� " ��

�� If ex � f � we consider two cases�

�a� If u � u� then for all i� ui " �ui � u� and then �m��Succ
m
sf �I� " Succsf �L� u

���
thus Ex " Succsex�Succsf �L� u

����

�b� If u� � u then for all i� ui " �ui � u and �m��Succ
m
sf �I� " Succsf �L� u��

Consequently� Ex " Succsex�Succsf �L� u���

From both cases we have that Ex " Succsex�Succsf �hL�maxfu� u�gi���
Termination Trivial� �

In fact� it can be shown that ExitLEFT " Succsex�Succsf �hL�Ui���

Exit�RIGHT

Similar to the previous case�

����� Test

In this section we describe the Test function and show its soundness and termination� In
what follows� l 	 means that the sequence l� l�� l�� � � � of successive successors of l is increasing
whereas l � means that the sequence is decreasing� Similarly for u 	 and u �� Notice that
detecting whether the sequences ln and un are increasing or decreasing can be easily done
at the stage of the preliminary analysis of the loop�

The upper�level structure is the same as for EXIT� each initial interval is treated sepa�
rately by TestAnalyze� which makes one turn of the loop� calls Analyze and delegates all
the remaining to one of the 
ve specialized functions TestSTAY � TestLEFT � TestRIGHT �
TestBOTH � TestDIE �

function Test�Z� s� x�
R " false
for each I � Z such that Succsf �I� � S 
" �

R " R � TestAnalyze�Succsf �I�� s� x�
�� R

The 
ve specialized Test functions use the following two procedures� The function Found�I� x�
determines� if the current interval I contains x �YES�� does not contain x and moves in the
opposite direction �NO�� or none of both these cases �NOTYET�� The function Search�I� x�
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iterates the loop s until the previous function Found gives a de
nite answer YES or NO�
Special measures will be taken to guarantee termination�

function Found�I� x�
cases

x � I � �� YES
I " � � �� NO
x � I � l 	 � �� NO
x � I � u � ��� NO
else � �� NOTYET

endcases

function Search�I� x�
while Found�I� x� " NOTYET

I " Succsf �I�
�� Found�I� x�

Test�STAY

function TestSTAY �I� s� x�
cases

l� � x � u� � �� YES
x � l� � l � � �� NO
x � u� � u 	 ��� NO
else � �� Search�I� x�

endcases

Soundness We prove the soundness considering each case separately�

�� We have to prove that if l� � x � u� then x � Reach�I�� By hypothesis l� �
xf � u�� then there exists a positive real number � such that l�# � � xf � u�� ��
It�s not di cult to see that exists two real numbers N� and N� such that for all n
greater �or equal� than N�� un � u� � � and for all n greater �or equal� than N��
ln � l� # �� Let N be equal to the maximum between N� and N�� then it follows
that lN � l� # � and u� � � � uN � Thus� lN � xf � uN and xf is reachable�

�� We have to prove that if x � l� � l � then x 
� Reach�I�� Trivial� by de
nition of
limit and monotonicity of the sequence�

�� We have to prove that if u� � x � u 	 then x 
� Reach�I�� Trivial� by de
nition
of limit and monotonicity of the sequence�

�� We have to prove that if �x � l� � l 	� � �u� � x� u �� then Search�I� x� � �x �
Reach�I�&�� Computing Search�I� x� gives a sequence of intervals I� I�� � � � � In
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s�t� Reach�I� "
S
i Ii� If Search�I� x� terminates then �i � �Found�Ii� x� " YES

�Found�Ii� x� " NO� and �j � i � Found�Ii� x� " NOTYET� We analyze then
each of the cases of Found�I� x��

�a� If x � I then Found�Ii� x� " YES and x � Ii� i�e� x � Reach�I��

�b� If I " � then Found�Ii� x� " NO and �k � i � Ik " � and x 
� Ij � Thus
x 
� Reach�I��

�c� If x � I � l 	 then Found�Ii� x� " NO and �k � i � x � li � lk and because
x 
� Ij then x 
� Ik and hence x 
� Reach�I��

�d� If I � x � u � then Found�Ii� x� " NO and �k � i � uk � ui � x and because
x 
� Ij then x 
� Ik and hence x 
� Reach�I��

Termination We have to show termination just when �x � l� � l 	� � �u� � x � u ��� If
x � l�� l 	 then �i ��x � li � l� � Found�Ii� x� " NO�� Thus� it terminates� Similarly
for the other case� �

Test�DIE

function TestDIE�I� s� x�
�� Search�I� x�

Soundness Trivial�

Termination Eventually I becomes empty� Hence� at this stage Found�I� x� " NO and
Search terminates� �

Test�BOTH

function TestBOTH�I� s� x�
�� x � Succsf �hL�Ui�&

Soundness Immediate from the proof of soundness of the Exit algorithm for EXIT�BOTH�

Termination Trivial� �
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Test�LEFT

function TestLEFT �I� s� x�
cases

x � Succsf �hL� u�i� � �� YES
x � Succsf �hL� u�i� � �� NO
Succsf �hL� u�i� � x � u 	 ��� NO
else � �� Search�I� x�

endcases

Soundness The proof is similar to the STAY case�

Termination We have to consider just the case when u � and Succsf �hL� u�i� � x� In
this case we know that �i � u� � ui � x � Found�Ii� x� " NO� Thus the algorithm
terminates� �

Test�RIGHT

The algorithm and its correctness proof are similar to the previous case� �

����
 Examples

In this section we present two examples of the application of the reachability algorithm for
SPDIs�

Example �
 Consider again the swimmer of Figure ��� de
ned in section ���� Let x� "
�e��

�
�� be her initial position� We want to decide whether she is able to escape from the

whirlpool and reach the 
nal position xf " �e��
�
��� Recall that �L�U� " S � J " ��� � �� and

l� "
� �

��

�� �
�

" � �
��

and

u� "
��

�

�� �
�

"
��

��

Thus� by the Analyze function we know that the cycle behaves as an Exit�LEFT and applying
the function TestLEFT we obtain that xf " �e��

�
�� is reachable from x� " �e��

�
�� because

we have that

Succe�e����e���L� u
��� " Succe�e����e���

�

�
�
��

��
�� " �

�

��
�
��

��
�

and
�

�
� � �
��
�
��

��
�
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See Figure ����

Example �� Let�s change the above example in order to show another behavior� For sim�
plicity we consider the same partition of the swimmer but with the following di�erential
inclusion dynamics�


 R� � a " ���
��
� ��b " ��� ���


 R� � a " b " ���� ���

 R� � a " b " ���� ���

 R� � a " b " ��������

 R� � a " b " �������

 R
 � a " b " �������

 R� � a " b " ��� ���


 R� � a " b " ��� ���

We are interested in the edge signature e��e� � � � e��
�e�� and what matters for computing

the reachable points of e� starting from x� � e� are the following edge�to�edge successor
functions�

Succe�e��x� "

� �
�
�x�

�
��x
	 � ��� �� if x � ��� ��

� otherwise

Succeiei���x� "

�
$x� x% � ��� �� if x � ��� ��
� otherwise

Succe�e��x� "

� �
x# �

� � x#
�
��

	 � ��� �� if x � ��� ���
� otherwise

Succe�e
�x� "

� �
�x� �� ��� x� �

�

	 � ��� �� if x � � ��� � ��
� otherwise

Let x� be equal to
�
� on edge e� and xf be

�
�� on e�� deciding whether exists a trajectory

from �e��
�
�� to �e��

�
��� can be done following the steps�

�� Compute the �enter interval� to the loop� Succe�e��
�
�� " $

�
�� �

�
�� %�

�� Compute the successor function of the loop �e� � � � e��
���

Succe�


e�e� $l� u% "

� �
l # �

� � u#
�
��

	 � ��� � �� if $l� u% � ��� ���
� otherwise

�Notice that in fact this function is the same as Succe�e� since the other functions are the identity�
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Iteration I Z

� $ ��� �
�
�� % �

� $ ��� �
�
�� % �

� $�� �
�
� % f$�� �
 %g

� $ ��� � �% f$�� �%g
� $ ��� � �% f$�� �%g

Table ���� Execution trace of the cycle e� � � � e� starting from $���� ����% � e�� I represents
the current interval �in e�� and Z is the set of exit intervals �in e���

�� Compute the limits of the loop signature� By Lemma � we have that u� " l� "� for
both a ne functions� We can then conclude that the trajectories will be counterclock�
wise expanding spirals and the Analyze function gives that the loop will behave as a
DIE �see section �������

�� Execute the function ExitDIE�$
�
�� �

�
�� %� e� � � � e�� e�� " f$�� �%g�

The execution trace is given in Table ���� where in the Z column we can see the set of
�truncated� exit intervals over the edge e�� in the third iteration the exit interval is the
whole edge e�� From the above we conclude that �e��

�
��� is reachable from �e��

�
���

As an example of a non reachable point� consider the edge signature �e� � � � e��
� with $ ��� �

��
�� % �

e� as initial interval and xf "
�
�� in e� as before� After computing the corresponding functions

we obtain that in the 
rst iteration the loop is left and the exit interval on edge e� is $
�
� �

�

 %�

from where we can conclude that �e��
�
��� is not reachable from �e�� $

�
�� �

��
�� %��

����� Main result

Notice that the functionReachtype�x�� xf � �� of the previous section computesReach� �H�x��xf �
and hence the algorithm Reach�H�x��xf � computes the following�

Reach�H�x��xf � � �� � Tfeasi � Reach� �H�x��xf ��

From the previous section and the main result of chapter � we have the following theorem�

Theorem �
 The algorithm Reach�H�x��xf � is sound and complete�

Proof� Soundness follows from the soundness of all the functions used in the algorithm that
has already been proved� We have to prove that Reach�H�x��xf � computes the good result
for all the existing trajectory segments from x� to xf � but this follows from Theorem �� and
the fact that all the types of feasible signatures are considered� �
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Figure ���� Example� xf " �e��
�
�� is reachable from x� " �e��

�
�� �

�
� � Succe�e����e��L� u

����

From all the above we have the main result of this chapter that is a positive answer to the
reachability problem REACHSPDI �Problem ���

Theorem �� �Point�to�Point Reachability� The problem REACHSPDI is decidable� �

It is not di cult to see that the result also holds for edge�to�edge and region�to�region
reachability�

��� Summary and Related Work

In this chapter we have presented an algorithm for solving the reachability problem for
SPDIs� The novelty of the approach for the domain of Hybrid System is the combination
of two techniques� namely� the representation of the two�dimensional continuous dynamics
as a one�dimensional discrete system �due to Poincar�e� see for example $!�� ���%�� and the
characterization of the set of qualitative behaviors of the latter as a 
nite set of types of
signatures�

Most of the proved decidability results in the literature are based on the existence of a 
nite
and computable partition of the state space into classes of states which are equivalent with
respect to reachability� Even though analysis techniques based on the construction of a

nite partition have been proposed $��%� mainly all implemented computational procedures
resort to �forward or backward� propagation of constraints� typically �unions of convex�
polyhedra or ellipsoids $�� ��� ��� ��� ��� ��%� The geometric approach used for our decision
procedure has been presented in $���% where it is shown that the reachability problem for
two�dimensional systems with piece�wise constant derivatives �PCD� is decidable� This result
has been extended in $���% for planar piecewise Hamiltonian systems� In $��% it has been
shown that the reachability problem for PCD is undecidable for dimensions higher than two
�see chapter �� what is really bad news� since no extension of the method can be thinkable
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beyond two dimension� at least as an exact decision procedure for reachability�



Chapter �

SPDI � Phase Portrait

In this chapter we study phase portraits of SPDIs� It is not a priori clear what the phase
portraits of such systems exactly are� mainly due to the inherent non�determinism� To begin
with� we concentrate on the qualitative behavior of sets of trajectories having the same cyclic
pattern� based on the classi
cation of cyclic behaviors given in section ���� We compute the
controllability and viability kernels of SPDI and we show that they can be seen as limit cycles
and their basins of attraction respectively� We also prove some convergence properties of
SPDI trajectories without self�crossings� The phase portrait of an SPDI is then obtained
computing all the viability and controllability kernels�

This chapter is an extended version of the results presented in $��%�

The chapter is organized as follows� In the 
rst section we recall some de
nitions and
we explicit some assumptions we need� In the second section we introduce the notion of
viability kernel for a simple cycle and we show how to compute it� Controllability kernels
are introduced in section � and a non�iterating algorithm for computing them for simple
cycles is presented� In the fourth section we study some properties of controllability kernels�
In section �� using the result of the previous sections� we give an algorithm to build the phase
portrait of SPDI and in section � we mention some work of how to compute limit cycles for
PCDs� We 
nish with a last section that summarizes the results presented in this chapter
and that revises the related work�

��� Preliminaries

In this section we recall some de
nitions through examples from the previous chapter and
we explicit some assumptions we need in order to built the phase portrait of SPDI�

Let F � R � �R be an a ne multi�valued function F " hfl� fui and F�� " hf��u � f��l i its
inverse function� Remember that for an interval I� a truncated a ne multi�valued function
F � R � �R is de
ned as F�I� " F �I � S� � J � Let H " �P� F � be a SPDI� Given a
trajectory segment � of an SPDI we denote its signature by Sig���� For each region P � P�

��
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Figure ���� An SPDI and its trajectory segment�

let In�P � � E�P � be the set of all entries of P and Out�P � � E�P � be the set of all exits of
P �

We have the following assumption�

Assumption � All the edges in E�P � are either entries or exits� that is� E�P � " In�P � �
Out�P ��

That is� we are going to consider just good regions�

Example �� Consider the SPDI illustrated in Fig� ���� For each region Ri� � � i � !� there
is a pair of vectors that are the same as the swimmer example on section ��� but where the
regions are slightly di�erent�

In order to built the phase portrait� we assume the following�

Assumption � We will only consider trajectories with in�nite signatures�

Given an SPDI� we 
x a one�dimensional coordinate system on each edge to represent points
laying on edges �see section ����� For notational convenience� we indistinctly use letter e to
denote the edge or its one�dimensional representation� Accordingly� we write x � e or x � e�
to mean �point x in edge e with coordinate x in the one�dimensional coordinate system of
e�� The same convention is applied to sets of points of e represented as intervals �e�g�� x � I
or x � I� where I � e� and to trajectories �e�g�� �� starting in x� or �� starting in x���

Now� let P � P� e � In�P � and e� � Out�P �� For I � e� remember that Succee��I� is the set
of all points in e� reachable from some point in I by a trajectory segment � � $�� t% � R � in
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P � We have shown �see Lemma ��� that Succee� is a TAMF�

Example �� Let e�� � � � � e� be as in Fig� ��� and I " $l� u%� We assume a one�dimensional
coordinate system such that ei " Si " Ji " ��� ��� We have that�

Fe�e��I� "



l

�
�
u

�

�
Fe�e��I� "



l � �
�
� u#

��

��

�

Feiei���I� " I � � i � � Fe�e��I� "



l #
�

�
� u#

�

�

�

with Succeiei���I� " Feiei���I �Si��Ji
�� for � � i � �� and Succe�e��I� " Fe�e��I �S���J��

Given a sequence � " e�� e�� � � � � en� Lemma � implies that the successor of I along � de
ned
as Succ��I� " Succen��en � � � � � Succe�e��I� is a TAMF�

Example �� Let � " e� � � � e�e�� We have that Succ��I� " F �I � S� � J � where�

F �I� "



l

�
� �

��
�
u

�
#
��

��

�
�����

S " ��� �� and J " ��� � �� are computed using Lemma ��

For I � e�� Preee��I� is the set of points in e that can reach a point in I by a trajectory
segment in P � We can de
ne the predecessor operator as

De�nition �� The edge�to�edge predecessor operator is de�ned as

Preee� " Succ��ee�

Given a signature �� the ��predecessor operator is de�ned as

Pre� " Succ��� �

Remark� We are not going to prove the fact that predecessors are TAMFs� It follows
directly from Lemma ��

Example �� Let � " e� � � � e�e� be as in Fig� ��� and I " $l� u%� We have that Preeiei���I� "
F��
eiei��

�I � Ji
�� � Si� for � � i � �� and Pree�e��I� " F��
e�e�
�I � J�� � S�� where�

F��
e�e�
�I� " $�l� �u% F��

e�e�
�I� "



l � ��
��
� u#

�

�

�

F��
eiei��

�I� " I � � i � � F��
e�e�
�I� "



l � �
�
� u� �

�

�

Besides� Pre��I� " F���I � J� � S� where F���I� " $�l � ��
�� � �u#

�
�� %�
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Figure ���� Reachability analysis�

Let � " e� � � � eke� be a simple edge�cycle� i�e�� ei 
" ej for all � � i 
" j � k� Let Succ��I� "
F �I � S� � J with F " hfl� fui �we suppose that this representation is normalized��
We denote by D� the one�dimensional discrete�time dynamical system de
ned by Succ�� that
is xn
� � Succ��xn��

Assumption � None of the two functions fl� fu is the identity�

This assumption is needed in order to avoid having an in
nite number of 
xpoints� This will
become clearer later on section ����

Let l� and u� be the 
xpoints of fl and fu� respectively� and S �J " hL�Ui� We have shown
in section ����� that a simple cycle is of one of the following types� STAY� DIE� EXIT�BOTH�
EXIT�LEFT or EXIT�RIGHT�

The classi
cation above gives some information about the qualitative behavior of trajectories�
Any trajectory that enters a cycle of type DIE will eventually quit it after a 
nite number of
turns� If the cycle is of type STAY� all trajectories that happen to enter it will keep turning
inside it forever� In all other cases� some trajectories will turn for a while and then exit�
and others will continue turning forever� Remember that this information is very useful for
solving the reachability problem �see section �������

Example �� Consider again the cycle � " e� � � � e�e�� Fig� ��� shows part of the reach set
of the interval $���� ����% � e�� Notice that the leftmost trajectory exits the cycle in the
third turn while the rightmost one shifts to the right and �converges to� the limit u� " ��

�� �
Clearly� no point in $���� ����% will ever reach a point of e� smaller than L "

�
� or bigger than

u�� Fig� ��� has been automatically generated by the SPeeDI toolbox we have developed for
reachability analysis of SPDIs �see chapter !��

The above result does not allow to directly answer other questions about the behavior of the
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Figure ���� Example�

SPDI such as� determine for a given point �or set of points� whether� �a� there exists �at
least� one trajectory that remains in the cycle� and �b� it is possible to control the system
to reach any other point� In order to do this� we need to further study the properties of the
system around simple edge�cycles�

��� Viability Kernel

In this section and the following two� we are going to concentrate on studying the qualitative
behavior of sets of trajectories having the same cyclic pattern� that is we consider only cyclic
signatures� We rely on the information given by the classi
cation recalled in the previous
section �STAY� DIE� etc� cycles� to more deeply study the qualitative behavior of the system�
In this 
rst part we introduce viability kernel $��� ��% and we show how to compute it�

In general� a viability domain is a set of points such that for any point in the set� there exists
at least one trajectory that remains in the set forever and the viability kernel is the largest
of such sets�

Example �	 In Figure ���� we can see that the set B divides the space into two regions�
the part that is inside B and the rest �K nB�� The dynamics in B is given by a di�erential
inclusion that allows the 
rst derivative to be any value �i�e�� �ba is such that a " �

� and
b " ����� whereas outside B� the dynamics is given by the two drawn vectors� Let us
consider region A as in Figure ���� Notice that for any point in A� there is a trajectory
segment to a point in B from where it can remain for ever in B� On the other hand� outside
A �and outside B�� for example points y and z� are not starting points of in
nite trajectories�
Then� the viability kernel is given by A �B�

In particular� for SPDI� given a cyclic signature� the viability domain is a set of points which
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can keep rotating in the cycle forever and the viability kernel is the largest of such sets� We
show that this kernel is a non�convex polygon �often with a hole in the middle� and we give
a non�iterative algorithm for computing the coordinates of its vertices and edges�

In what follows� let K � R � �

De�nition �� A trajectory � is viable in K if ��t� � K for all t � �� K is a viability
domain if for every x � K� there exists at least one trajectory �� with ���� " x� which is
viable in K� The viability kernel of K� denoted Viab�K�� is the largest viability domain
contained in K�

Remark� We do not de
ne the viability kernel to be closed as in $��%�

����� One dimensional discrete�time system

The same concepts can be de
ned for D�� by setting that a trajectory x�x� � � � of D� is viable
in an interval I � R � if xi � I for all i � ��

Theorem �� For D�� if � is not DIE then Viab�e�� " S� else Viab�e�� " ���

Proof� If � is DIE� D� has no trajectories� Therefore� Viab�e�� " ��
Let � be not DIE� We 
rst prove that any viability domain is a subset of S� Let I be a
viability domain� Then� for all x � I� there exists a trajectory starting in x which is viable
in I� Then� x � Dom�Succ�� " S� Thus� I � S�
Now� let us prove that S is a viability domain� It su ces to show that for all x � S�

�Notice that this theorem can be used to compute Viab�I� for any I � e��
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Succ��x� � S 
" ��
Let x � S�
If � is STAY� we have that both l� and u� belong to S � J � It follows that both fl�x� and
fu�x� are in S�
If � is EXIT�LEFT� we have that l� � S � J and u� � S � J � Then� fu�x� � S�
If � is EXIT�RIGHT� we have that l� � S � J and u� � S � J � Then� fl�x� � S�
If � is EXIT�BOTH� we have that l� � S � J and u� � S � J � If x � J � then x � F �x�� If
x � J � then fl�x� � x � S � J � and either fu�x� � S � J or fu�x� � S � J �the other case
yields a contradiction�� If x � J � similar to the previous case�
Thus� for all x � S� Succ��x� � S 
" ��
Hence� Viab�e�� " S� �

The following lemma will be useful when proving some results about convergence in the next
section�

Lemma �� For D�� if the trace x�x� � � � of � is viable in S then �n � � � xn � S � J �

Proof� By Theorem ��� x� � S and since xn
� � Succ��xn� we have that xn � Dom�Succ���
i�e� xn � S� On the other hand� xn � Succ��xn��� that is included in Im�Succ��� hence
xn � J � �

����� Continuous�time system

The viability kernel for the continuous�time system can be now found by propagating S from
e� using the following operator� The extended predecessor of an output edge e of a region R
is the set of points in R such that there exists a trajectory segment that reaches e without
traversing any other edge� More formally�

De�nition �� Let R be a region and e be an edge in Out�R�� The e�extended predecessor
of I� Pree�I� is de�ned as


Pree�I� " fx j �� � $�� t%� R � � t � � � ���� " x � ��t� � I � Sig��� " eg

The above notion can be extended to cyclic signatures �and so to edge�signatures� as follows�
Let � " e�� � � � � ek be a cyclic signature� For I � e�� the �
extended predecessor of I� Pre��I�
is the set of all x � R � for which there exists a trajectory segment � starting in x� that
reaches some point in I� such that Sig��� is a su x of e� � � � eke��

It is easy to see that Pre��I� is a polygonal subset of the plane which can be calculated
using the following procedure� First compute Preei�I� for all � � i � n and then apply this
operation k times�
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Figure ���� Viability kernel�

Pre��I� "

k�
i	�

Preei�Ii�

with I� " I� Ik " Preeke��I�� and Ii " Preeiei���Ii
��� for � � i � k � ��

Now� let de
ne the following set�

K� "
k�
i	�

�int�Pi� � ei� �����

where Pi is such that ei�� � In�Pi�� ei � Out�Pi� and int�Pi� is the interior of Pi�

We can now compute the viability kernel of K��

Theorem �� If � is not DIE� Viab�K�� " Pre��S�� otherwise Viab�K�� " ��

Proof� If � is DIE� trivially Viab�K�� " ��
Let � be not DIE� We 
rst prove that any viability domain K� with K � K�� is a subset of
Pre��S�� Let x � K� Then� there exists a trajectory � such that ���� " x and for all t � ��
��t� � K� Clearly� the sequence x�x� � � � of the intersections of � with e� is a trajectory of
D�� Then� by Theorem ��� xi � S for all i � �� Thus� x � Pre��S��
It remains to prove that Pre��S� is a viability domain� Let x � Pre��S�� Then� there exists
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a trajectory segment ,� � $�� T % � R � such that ,��T � � S and Sig�,�� is a su x of �� The�
orem �� implies that ,��T � is the initial state of some trajectory � with Sig��� " ��� It is
straightforward to show that for all t � �� ��t� � Pre��S�� Concatenating ,� and �� we obtain
a viable trajectory starting in x�
Hence� Viab�K�� " Pre��S�� �

This result provides a non�iterative algorithmic procedure for computing the viability kernel
of K��

Example �� Let � " e� � � � e�e�� Fig� ��� depicts� �a� K�� and �b� Pre��S��

��� Controllability Kernel

In this section we de
ne and we show how to compute the controllability kernel of a simple
cycle�

We say K � R � is controllable if for any two points x and y in K there exists a trajectory
segment � starting in x that reaches an arbitrarily small neighborhood of y without leaving
K�

Example �
 Let consider the same example as for viability domains �see Figure ����� the
set B divides the space into two regions� the part inside B and the rest� The dynamics in B
is given by a di�erential inclusion that allows the 
rst derivative to be any value �i�e�� �ba is
such that a " �� and b " ����� whereas outside B� the dynamics is given by the two drawn
vectors� Notice that any point x in B is the starting point of a trajectory that reach any
other point in B as shown in Figure ���� Outside B points are not reachable one from the
other� y is reachable from x but not vice�versa� for instance� Then� B is the controllability
kernel�
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For SPDIs and considering cyclic signatures� the controllability kernel is a cyclic polygonal
stripe within which a trajectory can reach any point from any point� More formally�

De�nition �� K is controllable i� �x�y � K��	 � ���� � $�� t% � R � � t � � � ����� "
x� j��t��yj � 	��t� � $�� t% � ��t�� � K�� The controllability kernel of K� denoted Cntr�K��
is the largest controllable subset of K�

����� One dimensional discrete�time system

The same notions can be de
ned for the discrete dynamical system D�� De
ne

CD��� "

������
�����

hL�Ui if � is EXIT�BOTH
hL� u�i if � is EXIT�LEFT
hl�� Ui if � is EXIT�RIGHT
hl�� u�i if � is STAY
� if � is DIE

�����

Theorem �� For D�� CD��� " Cntr�S��

Proof� Controllability of CD��� follows from the reachability result given in the previous
chapter� To prove that CD��� is maximal we reason by contradiction� Suppose it is not�
Then� there should exist a controllable set C � CD���� Since C � S � J � there should exist
y � C such that either y � l�� or y � u�� In any case� controllability implies that for all
l� � x � u�� there exists a trajectory segment starting in x that reaches an arbitrarily small
neighborhood of y� From the reachability algorithm given in section ����� we know that
Reach�x� � �l�� u��� which yields a contradiction� Hence� CD��� is the controllability kernel
of S� �

����� Continuous�time system

For I � e� let us de
ne Succ��I� as the set of all points y � R � for which there exists a
trajectory segment � starting in some point x � I� that reaches y� such that Sig��� is a pre
x
of e� � � � ek� The successor Succ��I� is a polygonal subset of the plane which can be computed
similarly to Pre��I�� that is�

De�nition �� Let R be a region and e be an edge in In�R�� The e�extended successor of I�
Succe�I� is de�ned as


Succe�I� " fx j ���y � I� t � � � ���� " y � ��t� " x � Sig��� " eg
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Figure ���� Predecessors and successors of a simple cycle�

The extended successors for cyclic signatures �and for edge�signatures� can be de
ned as
follows� Let � " e�� � � � � ek be a cyclic signature� For I � e�� the �
extended successor of
I� Succ��I� is the set of all reachable points x � R � via a trajectory segment � starting in
y � e�� such that Sig��� is a pre
x of e� � � � ek�

As for extended predecessors� Succ��I� is a polygonal subset of the plane which can be
calculated using the following procedure� First compute Succei�I� for all � � i � n and then
apply this operation k times�

Succ��I� "
k�
i	�

Succei�Ii�

where I� " I and Ii
� " Succeiei���I� for � � i � k � ��

Example �
 Let � " e� � � � e�e�� Fig� ��� depicts� �a� Pre��L� u��� �b� Succ��L� u��� with
L " �

� � u� " ��
�� �

De
ne

C��� " �Succ� � Pre���CD���� �����

We show in the following theorem how to compute controllability kernels�

Theorem �� C��� " Cntr�K���
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Figure ��!� Controllability kernel of a simple cycle�

Proof� Let x�y � C���� Since y � Succ��CD����� there exists a trajectory segment starting
in some point w � CD��� and ending in y� Let � be an arbitrarily small number and B��y�
be the set of all points y� such that jy � y�j � �� Clearly� w � Pre��B��y�� � CD���� Now�
since x � Pre��CD����� there exists a trajectory segment starting in x and ending in some
point z � CD���� Since CD��� is controllable� there exists a trajectory segment starting in
z that reaches a point in Pre��B��y�� � CD���� Thus� there is a trajectory segment that
starts in x and ends in B��y�� Therefore� C��� is controllable� Maximality follows from the
maximality of CD��� �Theorem ��� and the de
nition of Succ� and Pre�� Hence� C��� is the
controllability kernel of K�� �

This result provides a non�iterative algorithmic procedure for computing the controllability
kernel of K��

Example �� Let � " e� � � � e�e�� Recall that � is EXIT�LEFT with L " �
� � u� " ��

�� �
Fig� ��!�a� depicts Cntr�K���

��� Properties of Controllability Kernels

In this section we present some properties of controllability kernels� regarding convergence
and its relation to 
xpoints in general� In particular� for STAY cycles we have stronger limit
cycle properties�
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��
�� Convergence

De�nition �� A trajectory � converges to a set K � R � if limt
� dist���t��K� " ��

For D�� convergence is de
ned as limn
� dist��n� I� " �� The following result says that the
controllability kernel CD��� can be considered to be a kind of �weak� limit cycle of D��

Theorem �	 For D�� any viable trajectory in S converges to CD����

Proof� Let x�x� � � � a viable trajectory� By Lemma ��� xi � S � J for all i � �� Recall
that CD��� � S � J � There are three cases� ��� There exists N � � such that xN � CD����
Then� for all n � N � xn � CD���� ��� For all n� xn � CD���� Therefore� xn � l�� Let �xn
be such that �x� " x� and for all n � �� �xn
� " fl��xn�� Clearly� for all n� �xn � xn � l��
and limn
� �xn " l�� which implies limn
� xn " l�� ��� For all n� xn � CD���� Therefore�
u� � xn� Let �xn be such that �x� " x� and for all n � �� �xn
� " fu��xn�� Clearly� for all
n� u� � xn � �xn� and limn
� �xn " u�� which implies limn
� xn " u�� Hence� x�x� � � �
converges to C���� �

Furthermore� C��� can be regarded as a �weak� limit cycle of the SPDI� The following result
is a direct consequence of Theorem �� and Theorem ���

Theorem �� Any viable trajectory in K� converges to C���� �

Example �� Fig� ��!�b� shows a trajectory with signature � " e� � � � e�e� which is viable
in K� and converges to C����

��
�� STAY cycles

The controllability kernels of STAY�cycles have stronger limit cycleproperties� We de
ne the
notion of invariant�

De�nition �	 We say that K is invariant if for any x � K� every trajectory starting in x
is viable in K�

The following result is a corollary of the previous theorems�

Theorem �
 Let � be STAY� Then�
��� C��� is invariant�
��� There exists a neighborhood K of C��� such that any viable trajectory starting in K
converges to C����
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Proof�

�� Suppose that C��� is not invariant� then it exists x � C��� and a trajectory � starting
on x �i�e� x " ����� s�t� � is not viable� By de
nition of C���� exists x� � hl�� u�i and
t � � such that x� " ��t�� On the other hand� by our assumption of non invariance�
it exists T � t such that ��T � 
� C���� that means ��T � 
� Pre�l�� u�� and then x� has
a successor not in hl�� u�i� contradicting the hypothesis that � is STAY� Hence C���
must be invariant�

�� It follows directly from Theorem ����

��
�� Fixpoints

Here we give an alternative characterization of the controllability kernel of a cycle in SPDI�
As in $��%� we de
ne �xpoints and periodic points�

De�nition �� A point x in e� a 
xpoint i� x � Succ��x�� We call a point x � K� a
periodic point i� there exists a trajectory segment � starting and ending in x� such that
Sig��� is a cyclic shift of ��

If x � K� is a periodic point then there exists also an in
nite periodic trajectory passing
through some x � e�� The following result characterizes the set of 
xpoints and of periodic
points for SPDIs�

Theorem �
 For SPDIs�
��� CD��� is the set of all the �xpoints in e��
��� C��� is the set of all the periodic points in K��

Proof�

�� Let � " e�� � � � ek be a cycle signature� hL�Ui " S � J as before and x a 
xpoint of e��
If � is DIE� trivial�
If � is STAY� any 
xpoint of e� must be in hl�� u�i� hence x � hl�� u�i�
If � is EXIT�BOTH� notice that if x is a 
xpoint in e�� then it exists a viable trajectory
� starting on x such that for all n � �� xn " x� but by Lemma ��� xn " S � J � i�e� any

xpoint of e� must be in S � J �
If � is EXIT�LEFT� from the above results any 
xpoint must be in hL�Ui � hl�� u�i�
hence x � hL� u�i�
If � is EXIT�RIGHT� as for EXIT�LEFT� we obtain that x � hl�� Ui�

�� Let x � K� be a periodic point� then any trajectory starting on x must intersect e�
in a point x that is a 
xpoint� but by ��� x � CD���� then x � Pre�x� that implies
x � C���� �
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As a direct consequence of the above theorem� the following result holds�

Corollary �� Given a cyclic signature � " e�� � � � ek� all the �xpoints in e� are included in
hL�Ui � hl�� u�i� �

��� Phase Portrait

Let � be any trajectory without self�crossings� Recall that � is assumed to have an in
nite
signature� An immediate consequence of Lemma �� �see section ���� is that Sig��� can be
canonically expressed as a sequence of edges and cycles of the form r�s

�
� � � � rns

�
n� with �among

others� the following properties�

�� For all � � i � n� ri is a sequence of pairwise di�erent edges� and si is a simple cycle�

�� For all � � i 
" j � n� ri and rj are disjoint� and si and sj are di�erent�

�� For all � � i � n� �� si is repeated a 
nite number of times�
�� sn is repeated forever�

Hence�

Theorem �� Every trajectory with in�nite signature which does not have self
crossings con

verges to the controllability kernel of some simple edge
cycle�

Proof� It follows directly from the above properties and from Theorem ��� �

We de
ne now the notions of limit set and limit points of a given trajectory�

De�nition �
 Given a trajectory � such that ���� " x� a point y is a limit point of x if
limt
� ��t� " y� The set of all the limits points of x is its limit set� limit����

Corollary �� �� Any trajectory � with in�nite signature without self
crossings is such
that its limit set limit��� is a subset of the controllability kernel C��� of a simple edge

cycle ��

�� Any point in C��� is a limit point of a trajectory � with in�nite signature without
self
crossings

Proof� The result is a direct consequence of Theorem ��� �

We conclude that controllability kernels are important elements of the phase portrait of an
SPDI yielding an analog of Poincar�e�Bendixson theorem �see for example $!�%� for simple
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Figure ���� Another SPDI and its �phase�portrait��

trajectories� Moreover� all such components of the phase portrait can be algorithmically
constructed� Indeed� since there are 
nitely many simple cycles� the following algorithm
computes all the limit sets and their attraction basins for such kind of trajectories�

for each simple cycle � compute C���� Pre��S�

Example �� Fig� ��� shows an SPDI with two edge cycles �� " e�� � � � � e�� e� and �� "
e��� � � � � e��� e��� and their respective controllability kernels� Every simple trajectory eventu�
ally arrives �or converges� to one of the two limit sets and rotates therein forever�

��� Limit Cycles for PCD

Limit cycles are very important in control theory as we have seen� In this section we describe
how to count �determine� limit cycles of PCD systems using our reachability algorithm� that
is a much easier task than for SPDI�

We have already seen that there exists a 
nite number of type of signatures and of course
there is also a 
nite number of simple cycles� The 
rst thing to do is to list all the feasible
simple cycles� Then for each simple cycle e�� � � � � en we compute the 
xpoint for each edge
as described in the reachability algorithm� That gives a periodic orbit� In order to know
whether this periodic orbit is already a limit cycle we analyse the Poincar�e map of the cycle
�that is an a ne function y " ax # b with a � ��� if a � � then the periodic orbit is a
�stable� limit cycle� if a � � then the periodic orbit is an unstable limit cycle� if a " � there
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Figure ����� �a�� Edge �vertex� e� is of input to regions R� and R�� �b�� Edge �vertex� e� is
of input just of R��

is no limit cycle� See Fig� ��� and proof of Lemma ��

The above procedure works well for the general case but not when one �ore more� of the
edges on the simple cycle is a vertex� In this case we have to take into account a possible
non�determinism due to the fact that the vertex can be an input edge for more than one
region �see Fig� ������ Hence we have the following lemma�

Lemma �� Given a simple cycle e�� � � � � ei� � � � � en where ei is a vertex� then we have that
ei is an input edge exactly for one region if and only if e�� � � � � ei� � � � � en is a periodic orbit�
Moreover� this periodic orbit is not a limit cycle�

Proof � Suppose that ei is an input edge exactly for one region� that means that the trajec�
tory is deterministic and clearly e�� � � � � ei� � � � � en is a periodic orbit �by de
nition of simple
cycle�� On the other hand� if ei is an input edge for more than one region then once in ei we
can decide to leave the simple cycle at any time� that implies that the cycle is not a periodic
orbit� That the periodic orbit is not a limit cycle follows directly from the fact that there is
no neighborhood for ei� �

Then� the following algorithm compute all the limit cycles for PCDs�

for each simple cycle � compute its 
xpoint�

See $���% for a deeper treatment of limit cycles and of phase portrait construction for PCD�
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��� Summary and Related Work

The reachability question has been an important and extensively studied research problem in
the hybrid systems community� however� there have been very few results on the qualitative
properties of trajectories of hybrid systems $��� ��� ��� ��� ���� ���%� In particular� the
question of de
ning and constructing phase portraits of hybrid systems has not been directly
addressed except in $���%� where phase portraits of deterministic systems with piecewise
constant derivatives are explored and more recently in $��% a characterisation of viability
and invariance kernels were given for implusive di�erential inclusions based on $�!� ��%�

The contribution of this chapter was an automatic procedure to analyze the qualitative
behavior of non�deterministic planar hybrid systems� Our algorithm enumerates all the
�limit cycles� �i�e�� controllability kernels� and their local basins of attraction �i�e�� viability
kernels $��� ��%�� We have also shown that the distance between any in
nite trajectory
performing forever the same cyclic pattern and the controllability kernel always converges
to zero�

Our analysis technique for a single cycle is very similar to the one used in $��% for n�
dimensional systems� However� for polygonal systems� we are able to prove further properties
such as controllability of and convergence to the set of 
xpoints� and that there are only a

nite number of them� These results are the analog of Poincar�e�Bendixson for polygonal dif�
ferential inclusions� The di�erence with $���% is that our results hold for non�deterministic
systems�



Chapter �

�Un�decidability Results for
Extensions of PCD

In this chapter we discuss some issues related to the �un�decidability of lower dimensional
systems �for planar and ��dim systems�� The models considered here are hierarchical PCDs
�HPCDs� that are hybrid automata such that at each location the dynamics is given by a
PCD� PCDs on ��dimensional manifolds� �restricted� ��dimensional rectangular automata
�RA� and linear hybrid automata �LA�� HPCDs with one counter� HPCDs with in
nite
partition and rate dependent initial state HPCDs� On the negative side� we show that the
reachability problem for the last three classes of systems is undecidable proving that the
halting problem for Turing machines can be reduced to them� On the other hand� we show
that we cannot assert whether the reachability problem for the other models is decidable or
not since this problem is equivalent to a �not so� well known open problem� is the reachability
question decidable for piecewise a ne maps �PAMs�& PAMs are one dimensional systems
de
ned by a �real�valued� a ne function f�x� " aix # bi if x � Ii �for � � i � k�� This
is an open problem even whenever the parameters of the map as well as the extremities of
the intervals are rational� A preliminary version of the content of this chapter will appear
in $��%�

Organization of the chapter� In the 
rst section we recall the de
nition of two dimensional
manifolds and of our two reference models� Turing machines �TMs� and piecewise a ne
maps �PAMs�� In the second section we introduce hierarchical PCDs �HPCDs� and PCDs
on ��dimensional manifolds �PCD�m� and we show that the reachability problem for HPCDs�
PCD�m� RA and LA �the last two with some restrictions� is as hard as the reachability for
PAMs� In the following section we show that enriching HPCDs with one counter leads to
the undecidability of the reachability question as well as for others generalization of HPCDs�
namely adding to it in
nite partition or having origin�dependent rate dynamics� We conclude
in the last section with a summary and related work�

���
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��� Preliminaries

In this section we introduce two dimensional manifolds and we recall the de
nitions of our
two reference models� Turing machine and piecewise a ne maps� We also discuss brie�y
about the notion of simulation�

See section ��� for a de
nition of linear hybrid and rectangular automata and section �����
for the de
nition of PCDs�


���� Two dimensional manifolds

All the �topological� de
nitions� examples and results of this section follow the combinatorial
method $�!%�

Let P be a collection of polygons� and e�� � � � � en be a set of edges from these polygons�

De�nition �
 We say that the edges are identi
ed when a new topology is de�ned on P
as follows
 ��� each edge is assigned a direction from one endpoint to the other and placed
in topological correspondence with the unit interval in such a way that the initial points of
all edges correspond to � and the �nal points correspond to �� ��� the points on the edges
e�� � � � � en that all correspond to the same value from the unit interval are treated as a single
point� ��� the neighborhoods of the new topology on P are the disks entirely contained in a
single polygon plus the unions of half disks whose diameters are matching intervals around
corresponding points on the edges e�� � � � � en�

De�nition �� Given a collection of vertices v�� � � � � vn of P we say that they are identi
ed
when a new topology is de�ned on P in which this collection of vertices is treated as a single
point and the neighborhoods are de�ned to be disks completely contained in a single polygon
plus the unions of portions of disks around each of the points v�� � � � � vn�

In any case� any of the edges meeting at one of these vertices is also identi
ed� the sectors
forming a neighborhood at the �point� fv�� � � � � vng must contain matching intervals from
these edges� See Figure ����

De�nition �� A topological space is triangulable if it can be obtained from a set of triangles
by the identi�cation of edges and vertices subject to the restriction that any two triangles are
identi�ed either along a single edge or at a single vertex� or are completely disjoint�

De�nition �� A surface �or ��dimensional manifold� is a triangulable space for which in
addition


�� each edge is identi�ed with exactly one other edge� and

�� the triangles identi�ed at each vertex can always be arranged in a cycle T�� � � � � Tk� T�
so that adjacent triangles are identi�ed along an edge�
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Figure ���� Triangulations for a Torus� �a� A false triangulation� �b� A good triangulation�

We say that a triangulation of a topological space is good if it satis
es the above de
nition�
See Figure ����

We state now� without proving it �see $�!%� p����� an important theorem in the topological
theory of surfaces�

Theorem �� �Classi�cation theorem� Every compact� connected surface is topologically
equivalent to a sphere� or a connected sum of tori� or a connected sum of projective planes�
�

The classi
cation theorem for compact surfaces does not extend to non�compact surfaces�
In fact� there are many interesting non�compact surfaces and that leads to the following
de
nition�

De�nition �� A surface with boundary is a topological space obtained by identifying edges
and vertices of a set of triangles according to all the requirements of the de�nition of surface
except that certain edges may not be identi�ed with another edge� These edges� which violate
the de�nition of a surface� are called boundary edges� and their vertices� which also violate
the de�nition of surface� are called boundary vertices�

Intuitively� a surface with boundary is a topological space in which every point either has a
neighborhood equivalent to a disk or has a neighborhood equivalent to a half disk� Typical
examples of surfaces with boundary are the cylinder and the M�obius strip� Indeed� the
cylinder is equivalent to a sphere with two disks cut out� For this kind of surfaces there is
also a classi
cation theorem�

Theorem �� �Classi�cation theorem for Surfaces with Boundary� Every compact�
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connected surface with boundary is equivalent to either a sphere� or a connected sum of
tori� or a connected sum of projective planes� in any case with some �nite number of disks
removed� �

We introduce now the last two models� that are important since they are our �reference�
models� Turing machines and piecewise a ne maps �PAMs��


���� Turing Machines

We de
ne �for completeness� a well known computing device� called Turing machine�

De�nition �� A Turing machine ����� is a quadruple M " �Q�(� 	� s�� where Q is a �nite
set of states� s� � Q is the initial state� ( is a �nite set of symbols called the alphabet
of M� We assume that Q and ( are disjoint sets and that ( contains a special symbol

 b that is the blank symbol� Finally� 	 is the transition function which maps Q � ( to
�Q�fHaltg��(�fR�L��g� We assume that the halting state Halt and the cursor directions
R �for �right��� L �for �left�� and � �for �stay��� are not in Q � (�

Notice that 	 de
ned as 	�q� s� " �q�� s��D�� is the �program� of the Turing machine� spec�
ifying� for each combination of current state q � Q and current symbol s � (� the next
state q� � Q� the new symbol s� � ( and the direction D � fR�L��g in which the head will
move� At each moment� the Turing machine is in a given state q� with the head reading
the current symbol s� A con�guration of a Turing machine is triple �wL� q� wR� such that
q � Q is the current state� wL is string that is to the left of the head position and wR is the
right string� including the current symbol s� We denote by � the string that contains just
the blank symbol� An input of a Turing machine is a string x of symbols in (� An initial
con
guration for an input x is ��� q�� x��

We de
ne HaltTM $���% to be the following problem�

Problem � Given the description of a Turing machine M and its input x� will M halt on
x� �

This is a well known undecidable problem and can be posed as a reachability problem� Given
the description of a Turing machine M and its input x� will con�guration �w�L� q

�� w�R� be
reachable from con�guration �wL� q� wR��


���� Piecewise a	ne maps �PAMs�

We de
ne in this section one dimensional piecewise a ne maps �PAMs� $��� ��� ��%��

�In ��	
 PAMs are called piecewise�linear continuous functions�
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De�nition �� We say that a function f � R � R is piecewise a ne �PAM� if f is of the
form f�x� " aix# bi for x � Ii� where Ii " $li� ui% is an interval with li� ui � R �

Whenever ai� bi and the extremities of Ii are rational we say that f is a rational PAM� In
the same obvious way we can de
ne piecewise
analytic and piecewise
monotone functions� If
the set of Ii�s is countably in
nite rather than 
nite we say that f is a countably PAM� If f
is injective we say that the PAM is injective �PAMinj��

The reachability problem for a PAM A can be de
ned as a predicate

Reach�A� x� y� � �k � y " fk�x��

Let REACHPAM be the following problem�

Problem � Given a PAM A and two points x and y� is y reachable from x� �

Even for a function f with just two linear pieces� there is no known decision algorithm for the
above problem� The same problem is known to be undecidable in dimension � and if piecewise
a ne maps are replaced by polynomials� the problem is open for any dimension $��� ��� ��%�


���
 About the notion of simulation

We say that two classes of systems are equivalents if and only if each system of one class can
be simulated by a system of the other and vice versa� In what follows the term �equivalent�
will be used in this sense� Even though the idea of simulation �abstraction or realization� is
more or less understood �and uniform� in the Computer Science community as �machines
that perform the same computation� $��� ���� ���%� in dynamical systems� simulation is
captured by the notions of topological equivalence and homomorphism $��� ��� ���%� That
rises the problem of having a good notion of simulation for systems that combine discrete
with continuous dynamics like hybrid systems� Some attempts to overcome this problem
are $�!% and $��%� In any case� simulation is de
ned ad�hoc for some classes of models� for
example in $��% a notion of simulation of a transition system by a PCD is given�

In the following sections we are not going to use a formal notion of simulation but just to
use it with its intuitive �and usual� meaning knowing that if a system A simulates another
system B and if a given problem P �B� is undecidable� then P �A� is undecidable�

��� Between Decidability and Undecidability

We show in this section that slight generalizations of ��dimensional PCDs lead to classes of
systems for which the reachability problem is as as hard as for PAMs� for which such problem
is known to be open� We will consider hierarchical PCDs �HPCDs�� PCDs in ��dimensional
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manifolds� rectangular hybrid automata with one clock x and one positive n�skewed clock
y �under some restrictions� and linear hybrid automata with two stopwatches �with some
restrictions�� Recall that the reachability problem is decidable $���% for ��dimensional PCDs
and undecidable for dimensions greater than two $�!%�


���� HPCD

Hierarchical piecewise constant derivative systems �HPCDs� can be seen as hybrid automata
such that at each location the dynamics is given by a PCD� More formally�

De�nition �	 A hierarchical PCD �HPCD� is a hybrid automaton HPCD " �X � Q� f� I�� Inv� 	�
such that Q and I� are as before while the dynamics is not anymore a single di�erential equa

tion but a PCD and each transition tr " �
� g� �� 
�� is such that ��� its guard g is a predicate
of the form P �x� y� � �ax# by# c " ��x � I � y � J� where I and J are intervals and a� b�
c and the extremities of I and J are rational
valued and ��� the reset functions � are a	ne
functions
 ��x� " Ax # b� Last� Inv is de�ned as the negation of the union of the guards�
i�e� we can stay in location 
 as long as no guard is satis�ed�

If all the PCDs are bounded� then the HPCD is said to be bounded�

Notation� In section ��� we have introduced a ��dim coordinate system on each edge e� a
point x on edge e with local coordinates � is denoted by �e� �� or whenever no confusion
may arise� just as �� If the dynamics of 
 is given by PCD and that of 
� is given by PCD��
for convenience and w�l�o�g� we will consider that a guard of a transition tr " �
� g� �� 
��
is a segment of an edge e of PCD and that reset functions assign points on edges of PCD
to points on edges of PCD�� Given a point x " �x� y�� we will write ��e� x� y� " �e�� x�� y���
where e � EV �
� is an edge� e� � EV �
�� is the target edge of PCD�� and x� and y� are the
new values of the variables after the reset� In some cases we will use the local coordinates
of the point on the edge and in this case we will write ��e� �� " �e�� ���

Notice that the notions of 

trajectory segment and trajectory are the same as for hybrid
automata �see section ���� and that the notion of edge�to�edge successor and its relation
with trajectories is de
ned on the same lines as for PCDs �see section ������ except that in
HPCDs there are resets and in this case the successor is given by the reset function�

It can be argued that the term hierarchical in the above de
nition is super�uous and that
in fact HPCDs are just � dimensional linear hybrid automata� Even though this is true� the
de
nition is intentional since we want to emphasize the fact that there are just �few� real
discontinuities due to jumps and reset and that in general the trajectory behaves like a PCD�

Given two points x� " �e� ��� and xf " �e
�� �f �� the reachability problem for a HPCD H can

be de
ned as a predicate Reach�H�x��xf � � �� � �f " Succ������ Let REACHHPCD be the
following problem�
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Figure ���� Sketch of the simulation of a HPCD by a PAM�

Problem � Given a HPCD H and two points x� and xf � is xf reachable from x�� �

We will prove that HPCDs are equivalent to PAMs� in the sense of section ������ For that
we show 
rst that each HPCD H is simulated by a PAM A and that for each PAM A there
is a HPCD H such that H simulates A� For proving the 
rst� we should� ��� Encode an
initial and 
nal point of H by points on some intervals of A� ��� Represent a con
guration
of H by a con
guration of A� ��� Simulate an edge�to�edge transition of H by some function
application on A�

Lemma �	 �PAMs simulate HPCDs� For every �
dimensional HPCD H there is a PAM
A such that A simulates H�

Sketch of the proof� The idea of the proof is the following� We arrange all the edges
of H in the Real line �in an arbitrary order� and we represent each edge�to�edge successor
function and each reset function by an a ne map �restricted to an interval�� Assembling all
those a ne maps together yields the PAM A simulating H� See Figure ��� and Appendix B
for details� �

Remark� Notice that to not have problem in the above simulation� the HPCD H must be
bounded�

In order to prove that HPCDs simulate PAMs we should� ��� Encode an initial and 
nal point
of A by points on some edges on H� ��� Represent a con
guration of A by a con
guration
of H� ��� Simulate one�step computation of A by some trajectory segment �many�steps
successor� on H�

Lemma �� �HPCDs simulate PAMs� For every PAM A there is a �
dimensional HPCD
H such that H simulates A�

Sketch of the proof� Let A be de
ned by f�z� " aiz# bi if z � Ii for i � f�� � � � � kg where
Ii " $li� ui% are rational intervals� We de
ne a one�location HPCD with a one�region PCD
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Figure ���� The HPCD that simulates a PAM�

de
ned by y � � � y � �� i�e� there are two edges e � y " � and e� � y " �� and dynamics
de
ned by vector ��� �� as shown in 
gure ���� There are as many transitions as intervals Ii
of the PAM� The guards are of the form y � e � x � Ii and the reset functions associated
with these guards are of the form ��e�� x� y� " �e� aix # bi� ��� The initial point z� of the
PAM is encoded as a point �x�� y�� � e with local coordinate �� " x� " z�� Hence� it is easy
to see that zf " f�z�� i� �f " ��e�� ��� where �� " Succee������ �

From the above two lemmas� we have then the following theorem�

Theorem �
 �HPCDs are equivalent to PAMs� REACHHPCD is decidable i�
REACHPAM is� �

Remark� It can be said that encoding everything in reset functions is not fair� Indeed�
the simulation works for less general resets� In Lemma ��� �see Appendix B� it is shown
that any PAM can be simulated by an HPCD with reset functions of the form ��x� y� "
�y# d� ��� Let us denote the corresponding HPCD by HPCDiso and its reachability problem
by REACHHPCDiso

� Hence we have the following theorem�

Theorem �
 �HPCDiso are equivalent to PAMs� REACHHPCDiso
is decidable i�

REACHPAM is� �


���� About rectangular and linear ��dimensional hybrid automata

In this section we prove some corollaries of Theorem �! and Theorem ���
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We start proving that RA�cl�mc and RA�cl are equivalent to PAMs� as a consequence of
Theorem �!�

�x 
 �

�y 
 


� � y � �

y " � � x � Ii

x �" aix# bi� y �" �

Figure ���� A RA�cl�mc equivalent to HPCD of Figure ����

The class of one�state rectangular hybrid automata with one clock y� one memory cell x�
invariants of the form C � y � D� guards of the form y " D and resets of the form
��x� y� " �ax# b� �� will be denoted as RA�cl�mc�

Corollary �� �RA�cl�mc are equivalent to PAMs� Reachability for RA�cl�mc is decid

able i� reachability for PAMs is�

Sketch of the proof� The proof consists in taking the HPCD de
ned for simulating a
PAM �see Figure ���� and building an equivalent RA�cl�mc� The corresponding RA�cl�mc is
pictured in Figure ���� �

The class of one�state rectangular hybrid automata with two clocks x and y� invariants of
the form C � y � D� guards of the form y " D and resets of the form ��x� y� " �ax# b� ��
will be denoted as RA�cl�

Corollary �� �RA�cl are equivalent to PAMs� Reachability for RA�cl is decidable i�
reachability for PAMs is�

Sketch of the proof� In Lemma �� an HPCD H �see Figure ���� that simulates a PAM
was built� We obtain another HPCD H� applying an a ne transformation to H� where the e
edge remains unchanged whereas e� is translated by one unit to the right� H� is represented
in Figure �����a�� where given I " $l� u% I # � is a short for $l# �� u# �%� It is not di cult to
see that the automaton of Figure �����b� is a RA�cl equivalent to H�� �

Notice that RA�cl automata can be considered as a generalization of updatable timed au�
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Figure ���� �a� A HPCD that simulates a PAM� �b� The corresponding RA�cl�

tomata $��� �!% since some resets on RA�cl are more general �of the form y �" ax# b��

In what follows we prove two corollaries that are consequence of Theorem ���

We denote by RA�sk�sl� the class of rectangular hybrid automata with one two�slope clock x
�taking values on f��� �g� and one positive n�skewed clock y with the following restrictions�
��� on each transition� x is reset to function of y of the form x �" y# d and y is reinitialized
with a constant value c� where c is the inferior bound of y in 
�� ��� the values of the two
variables are never compared� and ��� the guard of a transition from location 
 to 
� is of the
form x " A� where A is one of the bounds of x in the invariant of location 
�

Corollary �� �RA�sk�sl are equivalent to PAMs� Reachability for RA�sk�sl is decidable
i� reachability for PAMs is�

Sketch of the proof� Given a PAM� we construct a HPCD which simulates it as in the
proof of Lemma ��� �see Figure ��!��a� for a fragment of this HPCD�� It is easy to see that
this is in fact a RA�sk�sl �see Figure ��!��b��� �

Let H be a linear hybrid automaton with just two �mutually exclusive� stopwatches x and y
with the following restriction� ���� whenever a transition is taken� x and y remain unchanged
or the new value of x is a function of y of the form x �" y # d and y is reinitialized with a
constant value c� where c is the inferior bound of y in 
�� ���� the guard of a transition from

 to 
� is of the form x " A or ax # by # c " �� where A is one of the bounds of x in the
invariant of location 
 and a� b and c are rational constants� We denote these class by LAst�

Corollary �� �LAst are equivalent to PAMs� Reachability for LAst is decidable i� reach

ability for PAMs is�
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Figure ���� �a� A one�location RA�sk�sl� �b� An equivalent two�location LAst�
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Sketch of the proof� We use the previous corollary to build a RA�sk�sl that simulates
a given PAM� It is well known that rectangular hybrid automata with both negative and
positive skewed clocks are equivalent to similar automata with only positive values on the
skewed clocks $���%� Given a RA�sk�sl HR we obtain the corresponding timed automaton HP

using the procedure of $���% and we obtain a LAst HL just decomposing each location of HT

into two as shown in Figure ���� In Figure ���� we show a two�location RA�sk�sl with one
clock and one skewed clock and its corresponding LAst� �

Ci � y � Di Cj � y � Dj

�x � �
�y � ai

�x � �
�y � aj
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Figure ����� From RA�sk�sl to LAst�


���� PCD�m� PCDs on ��dimensional manifolds

Surfaces �or ��dimensional manifolds� were introduced in section ������ In this section we
introduce PCDs on �
dimensional manifolds and we show that the reachability problem for
this class of systems is equivalent to a subproblem of REACHPAM �Problem ��� By de
nition
a ��dimensional manifold must be triangulable and to de
ne a PCD on a �triangulated� �

dimensional manifold we have to de
ne a PCD on each of its triangles�

De�nition �� A PCD on ��dimensional manifolds �PCD�m� is a PCD de�ned on a surface�

Notice that a PCD can have any kind of polygonal regions� but w�l�o�g� we will consider here
triangles as regions� since all the regions of the original PCD can always be triangulated as
shown in Figure ���� where a PCD on a torus is de
ned�



��� �Un�decidability Results for Extensions of PCD
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Figure ����� �a� A PCD�m�Torus T � �b� A triangulation of T �

Given two points x� " �e� ��� and xf " �e
�� �f �� the reachability problem for a PCD�m H can

be de
ned as a predicate Reach�H�x��xf � � �� � �f " Succ������ We de
ne REACHPCD�m

to be the following problem�

Problem � Given a PCD�m H and two points x� and xf � is xf reachable from x�� �

We show that indeed the decidability of Problem � is an open problem� showing as before�
that REACHPCD�m

is equivalent to REACHPAM for injective PAMs�

Lemma �� �PAMinj simulate PCD�m� Every PCD�m can be simulated by an injective
PAM�

Sketch of the proof� Let H be a PCD�m� The reduction consists in two parts� First� re
ne
H by triangulation� Second� we proceed as for the simulation of HPCDs by PAMs� Notice
that H is in fact an HPCD where a jump is produced each time we reach an identi
ed edge
and the resets are the identity on the local coordinate of the identi
ed edges� We will not
reproduce the proof here� see Lemma ��� The requirement that each edge is identi
ed with
exactly one other edge ensures injectivity� �

Lemma �� �PCD�m simulate PAMinj� Every injective PAM can be simulated by a PCD�m�

Sketch of the proof� Let A be an injective PAM de
ned as f�z� " aiz # bi if z � Ii for
� � i � n� We obtain a PCD�m in the following way� First de
ne a point on an edge e with
local coordinate � equal to z and then de
ne a PCD such that Succee���� " ai� # bi �see
Figure ������a��� Consider then the line de
ned by edge e�� This edge is partitioned into
intervals Iki if f�Ii� � Ik 
" �� as shown in Figure ������b�� In fact� Iki " f�Ii� � Ik� Each
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Figure ����� Simulation of a PCD�m by a PAMinj� �a� First de
nition of PCDi� �b� Decom�
position of edge e�i� �c� Partition of edge Ii�

segment Iki of this edge is identi
ed with the corresponding interval on the oriented edges
Ik� Finally� edge Ii is partitioned into intervals I

h
i if f�Ih� � Ii 
" �� again Ihi " f�Ih� � Ii

�see Figure ������c��� We obtain in this way �doing the same construction for every interval
Ii� � � i � n� a surface with boundary� It is important to emphasize that each Iji � e�i �for
all � � i 
" j � n� is identi
ed with exactly one segment of edge Ij � By the Classi
cation
Theorem for Surfaces with Boundary �see Theorem ��� we have that this surface is equiv�
alent to a sphere with some disks removed and we obtain then a PCD�m just �sewing� the
disks� We associate with these disks a zero dynamics� i�e� the dynamics on these regions are
given by the vector ��� ��� See Appendix B for a detailed proof� �

From the above two lemmas we have that zf " f��z�� i� Reach�H�x��xf �� where x� has
local coordinate �� " z� on a given edge e and xf has local coordinate �f " zf on an edge
e�� Then the following theorem holds�

Theorem �	 �PCD�m are equivalent to PAMinj� Reachability for PCD�m is decidable i�
reachability for injective PAMs is� �

We have proved in this section that the decidability of problems REACHHPCD and REACHPCD�m

are as hard as the decidability of REACHPAM �

��� Undecidability Results

The importance of this section does not lie in the results themselves �since they are quite
straightforward� but on the fact that the class of simple systems like HPCDs reveals to really
be in the boundary between decidable and undecidable hybrid systems� Indeed� modifying
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HPCDs slightly we obtain other classes of systems for which the reachability problem become
undecidable� We consider two kinds of modi
cations� the 
rst is the addition of a simple
counter that gives rise to HPCD�c and the second is the addition of an in�nite pattern� We
will consider two kinds of �in
nite patterns�� the 
rst is the possibility of having in
nite
number of regions �HPCD�� and the second one is the possibility of having dynamics with
some kind of periodic behavior �HPCDx��


���� HPCDs with one counter �HPCD�c�

We introduce in what follows HPCDs with an additional element� a counter� We next show
that these systems simulate Turing machines�

De�nition �
 A HPCD with one counter HPCD�c is a HPCD H " �X � Q� f� I�� Inv� 	�
where
 X � R � � N is augmented with a memory cell c called a counter� Q and Inv are
as before� I� is as before� initializing also the counter c� the dynamics of each location 
 is
a PCD �by de�nition� f��c� " ��� transitions are such that
 ��� guards g are of the form
P �x� y� � Q�c� where P �x� y� is as for HPCDs and Q�c� � c " � j c � � j true� and ��� the
reset function� for a given point x " �x� y� � e is de�ned as ��e� x� y� c� " �e�� �� f��x�� f��c���
where f� is of the form ax# b and f��c� " c# � or f��c� " c� ��

Informally� a HPCD�c is similar to a HPCD
� augmented with a counter that can just be

incremented or decremented at each transition and that can be tested against zero�

Let us consider an HPCD with one counter �HPCD�c�� We prove that the reachability
problem for HPCD�c is undecidable showing that a HPCD�c H can simulate a Turing machine
M� In order to do that we 
rst encode a con
guration �wL� q� wR� �we consider that the
current symbol is the 
rst character of wR� ofM as a point x on a given edge on a location

 of Hwith �rational� local coordinate �� We show then that each basic operation ofM can
be simulated by an algebraic operation on x performing some computation on H�
It is well known that the string wLwR can be represented as a positive rational number z as
follows� Let wL " � � � ai� � � � � a�� a� and wR " a��� a��� � � � � a�j � � � �w�l�o�g� we suppose that
M has at least one ����� Then we de
ne

z "

�X
i	��

ai�
i

Notice that wL and wR can be obtained by taking intz �the integer part of z� and fracz �its
fractional part�� If fracz �

�
� then the current symbol is �� otherwise it is ��

Proposition � �HPCD�c simulate TMs� For every TMM there is a �
dimensional HPCD
with one counter H such that H simulates M�

�Notice that it is not exactly a HPCD� since the reset are di�erent
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Sketch of the proof� We associate with each TM�state qi three locations 
i� 

�
i and 


��
i of

HPCD�c de
ned as �see Figure ���� and ������ A con
guration of the TM is encoded as a
point x on edge e� with local coordinate �� The dynamics is de
ned in such a way that a
kind of spiral is produced in order to reach edges e� or e�� The counter is used to count the
number of cycles of the spiral� thus it counts the �integer� part of �� Notice that edge e� or
e� is reached depending on whether frac
 � �

� �current symbol is �� or frac
 � �
� �current

symbol is �� and at this moment the value of c is c " int
� If edge e� is reached� then guard
g� is satis
ed and the system jumps to edge e� on location 


�
i with �

� " frac
 and c " int
�
At 
�i� �

� is incremented at the same time c is decremented and whenever c " � �and hence
�� " �� a jump to edge e� on location 
j is produced where c " � and �f " f ������ The
proof is similar for edge e� on location 
i� arriving at location 
k with c " � and �f " f �������
Each TM�instruction is encoded then as follows�

qi s �� s qj R� Take f ���� " f ����� " ���

qi � �� � qj R� De
ne f ����� " ��# ��

qi � �� � qj R� In this case we take f ���� " ��� ��

qi s �� s qj L� Take f ���� " f ����� " �
���

qi � �� � qj L� De
ne f ����� " �
��� �

� �

qi � �� � qj L� Take f ���� " �
��#

�
� �

We have then that Reach�H�x��xf � i� a TM stops in a con
guration �wLf � qf � wRf
� starting

at a given con
guration �wL� � q�� wR�
��

See appendix for a detailed proof� �


���� HPCDs with in�nite partition �HPCD��

We will consider in this section HPCDs for which we relax the condition of having a 
nite
number of regions� We call this class of systems� HPCDs with in�nite partition �HPCD���
We are not going to de
ne this class formally� since we are just interested in showing that
this additional feature �having an in
nite partition� leads immediately to the undecidability
of the reachability problem for HPCD� �REACHHPCD���

From the previous section we can conclude that the di culty in simulating a TM is that on
PCDs �HPCDs� it cannot be distinguished whether the current symbol is � or �� Indeed�
for HPCD�c we can emulate that adding one counter to memorize the integer part of the
TM�string representation in order to obtain the fractional part to decide whether the current
symbol is � or �� The following proposition shows that this test can be easily done with an
in
nite partition�
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Figure ����� Sketch of the simulation of a TM by a HPCD��

Proposition � �HPCD� simulate TMs� For every TMM there is a �
dimensional HPCD
with in�nite partition H such that H simulates M�

Sketch of the proof� We represent the TM tape contents by a point on the x�axis with the
abscissa x "

P�
i	�� ai�

i in a HPCD with in
nite partition as in Figure ����� In this case
it is not necessary to test whether the current symbol is � or �� whenever an �even� edge is
reached �ei with i " �k for k � N �� that corresponds to fracx �

�
� � a jump is produced to a

���state�� whereas the �odd� edges are sent to ���states�� �


���� Origin�dependent rate HPCDs �HPCDx�

Another way of introducing �in
nite patterns� is allowing continuous dynamics with some
periodic behavior that depends on the initial points after a reset is done� We de
ne 
rst
origin
dependent rate PCDs to extend then the de
nition to HPCDs �HPCDx��

De�nition �
 An origin�dependent rate PCD is a PCD H " �P� F � such that each region
Ps has dynamics 'x " 
s�x�� �as before� given a generic region P we will also use the notation

�P�x����

In the construction of Proposition � we will use rather particular 
s functions�

A trajectory segment in some interval $�� T % � R � with initial condition x " x�� is a continuous
and almost�everywhere �everywhere except on 
nitely many points� derivable function ����
such that ���� " x� and �t�� t�� � � � � tn such that t� " � and tn " T � and xi " ��ti� � e for
some edge e � In�P � and for all t � $ti� ti
��� '��t� " 
�P�xi� is de
ned and is equal to '��ti��

After reaching an edge� the system evolves according to a 
xed rate that depends on the
initial value of the variables when entering the region� The idea of having �ows �dynamics�
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Figure ����� Sketch of the simulation of a TM by a HPCDx�

that depend on initial sates has been taken from $��%� We extend the above de
nition to
HPCDs�

De�nition �� An origin�dependent rate HPCD �HPCDx� is a HPCD such that each PCD
is an origin
dependent rate PCD�

Let REACHHPCDx
be the reachability problem for HPCDx� stated in a similar way as for

HPCDs� We show next that REACHHPCDx
is undecidable showing that HPCDx simulate

Turing machines�

Proposition 	 �HPCDx simulate TMs� For every TMM there is a �
dimensional HPCDx

H such that H simulates M�

Proof� We associate with each TM�state qi a location 
i� where the PCDi is de
ned as�

Region De�ning conditions Vector

R� �y � �� � �y � �� ��� f�x���

R� �y � �� � �y � ��� ��� f�x���

R� y � �� �����

R� y � � �����

See Figure ����� Let e�� e� and e� be de
ned as� e�
def
" �y " ��� e�

def
" �y " �� and

e�
def
" �y " ��� and f�x�� " ����b�x�c� where x� is the 
rst coordinate on edge e� of the

initial point x� � Notice that f is in fact the function
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Figure ����� Relation between the classes of ��dimensional hybrid systems considered in this
work�

f�x� "

�
� if fracx �

�
�

�� otherwise

There are two transitions from 
i� ��� tr� " �
i� g�� ��� 
j� where g� � e� and ���e�� x� "
�e��� f

��x��� ��� tr� " �
i� g�� ��� 
h� where g� � e� and ���e�� x� " �e�� f
���x��� Transitions

tr� and tr� allow the trajectory to continue in locations 
j and 
h with a reset function that
implement the instructions of the Turing machine as before� �

Notice that the above de
nition allows the dynamics to be de
ned by any function of the
initial point� but in order to simulate a TM we need very particular kind of functions� those
that have a periodic pattern� We could have chosen any periodic function like sinus or
cosinus� In any case� the key idea is to obtain an �in
nite pattern� as before�

��� Summary and Related Work

As a summary of the result of this chapter� we picture in Figure ���� the relation of the main
hybrid models we have considered in this thesis�

Although many intense research activity in the last years have been done in the domain
of hybrid systems� there is no clear boundary between what is decidable or not on such
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systems� The contribution of this chapter is twofold� First� we have shown that between �
dimensional PCDs �for which the reachability problem is decidable $���%� and � dimensional
PCDs �reachability is undecidable $��%� there exist an interesting class� �
dimensional HPCD�
for which the reachability question is still open� We have also shown that the same is true for
other similar classes� namely ��dimensional rectangular automata and ��dimensional linear
hybrid automata with some restrictions as well as for PCDs on ��dimensional manifolds�
Second� we have proved that ��dimensional HPCDs are really in the boundary between
decidability and undecidability� since adding a simple counter or allowing some kind of
�in
nite pattern� to these systems� makes the reachability problem undecidable�

It is well known that for particular cases the reachability question is decidable� In $�% it was
shown that reachability is decidable for timed automata �TA�� that are particular case of
hybrid automata �all the variables have slope �� and in $���% the decidability of the same
problem for ��dimensional PCDs was proved� In $��% some syntactic extensions of TA are
considered �updatable timed automata� for which the decidability of the emptiness problem
is studied and in $�!% the expressive power of such automata are considered� Consider now
the following restrictions� ��� whenever the dynamics change� its value is �nondeterminis�
tically� reinitialized� and ��� the value of two variables with di�erent dynamics are never
compared� Under ��� and ���� it was shown that the reachability problem for multirate au�
tomata �a hybrid automata such that the variables run at any constant slope� �see $�� ���%�
and rectangular automata $!�� ���% is decidable� Some more decidability results were given
for subclasses of linear hybrid systems� extended integrator graphs� in $��% and for timed
graphs with one stopwatch in $��%�

On the other hand and not surprisingly� many undecidability results were given� In $!�% it was
shown that relaxing restriction ���� the reachability problem for rectangular automata with
at least � clocks and one two�slope variable �with rational slopes k� 
" k�� is undecidable and
that relaxing ��� leads to undecidability of the reachability problem for rectangular automata
with at least � clocks and one skewed clock� In $��!% it was shown that the reachability
question for TA with � stopwatches is undecidable �under restriction ���� as well as for
TA with � memory cell and allowing assignments between variables� Other undecidability
results �always for the reachability problem� were given for TA with � memory cells without
assignment between variables $��%� for TA with two three�slope variables under restriction
��� $��%� for TA with two non�clock constant slope variables $�%� for TA with additive clock
constraints $�% and for TA with two skewed clocks $�%�

Some other undecidability results were given for low �three or less� dimensional spaces� In $��%
it was shown that the reachability problem for ��dim PCDs is undecidable� In $���% it was
proved that Turing machines can be simulated by dynamical systems with piecewise a ne
functions �in � dimension spaces�� In $��%� two elementary functions are constructed� one in
one dimension that simulates Turing machines �TMs� with an exponential slowdown and one
in two dimensions that simulate TMs in real time� See references therein for other undecid�
ability results� Among other results� in $��% it is shown that smooth ODEs in R � can simulate
arbitrary Turing machine and in $��% it is proved that TMs can be simulated by ��dimensional
PAMs� by one dimensional countable PAM �PAMs with an in
nite number of intervals� and
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by a continuous piecewise�monotone functions in linear time� As a relevant result in the
same work it is also shown that there exist TMs that cannot be simulated by a one dimen�
sional PAM� Finally� in $��% the algorithmic complexity of hybrid and dynamical systems is
analyzed� in particular in its fourth chapter it is studied the frontier between decidability
and undecidability for low dimensional systems for some problems like the controllability of
commuted linear systems in dimension two that are related to the mortality problem for two
dimensional matrices and to the reachability problem for one dimensional PAMs� In $�!% the
decidability of other problems of hybrid systems di�erent from reachability� like stability and
controllability� are analyzed�

HPCD� and HPCDx are not O�minimal hybrid systems $��%�
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Chapter 	

SPeeDI

In this chapter we discuss some issues related to the prototype of the tool SPeeDI� that
implements the reachability algorithm for SPDI presented in chapter �� We present some
theoretical results 
rst and then we describe SPeeDI� The tool SPeeDI is a collection of
utilities to manipulate and reason mechanically about SPDIs� completely implemented in
���� lines of Haskell� a general�purpose� lazy� functional language�

A description of the tool will appear in $��%�

Organization of the chapter� In section � we study some properties of types of signatures
that are used by the SPeeDI algorithm� In the second section we describe the architecture
of the tool and its main functionalities� In section � we discuss some implementation issues
and in section � we present an example� Finally� the last section resume the chapter and
future work�

��� Characterization of Types of Signatures

In this section we de
ne the underlying graph of an SPDI to be a kind of �symbolic� graph of
the SPDI and we show the relation between them� This is presented in the 
rst part where
one of the interesting relation is between paths on the graph and feasible signatures in the
SPDI� In the second part we show some important properties of the signatures generated by
Algorithm A� in addition to the ones proved on Lemma ��� and we conjecture that in fact
these properties are necessary and su cient conditions for characterizing the set of types of
signatures�

����� The graph of an SPDI

Given an SPDI H� let E be the set of edges of H� then we can de
ne a graph GH where
nodes correspond to edges of H and such that there exists an arc from one node to another
if there exists a trajectory segment from the 
rst edge to the second one without traversing

���
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Figure !��� Path in GH does not imply existence of trajectory segments� �a� An SPDI� �b�
Its graph�

any other edge� More formally�

De�nition �� Given an SPDI H� the underlying graph of H �or simply the graph of H��
is a graph GH " �NG � AG�� with NG " fe j e � Eg and AG " f�e� e�� j ��� t � ���� � e � ��t� �
e� � Sig��� " ee�g� We say that a sequence e�e� � � � ek of nodes in GH is a path whenever
�ei� ei
�� � AG for � � i � k � ��

The following lemma shows the relation between edge signatures in an SPDI and paths in
its corresponding graph�

Lemma �� Let � be a trajectory segment of H with edge signature Sig��� " � " e� � � � ep�
then � is a path in GH�

Proof� Trivial� �

Remark� Notice that the converse of the above lemma is not true in general� See counter�
example of Figure !��� where there exists a path from node e� to e�� but it does not exist a
trajectory segment form edge e� to edge e� on the SPDI�

Lemma �
 Let � " e� � � � ep be a feasible signature� then � is a path in GH�

Proof� Trivial� �
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����� Properties of types of feasible signatures

On section ��� we have proved that types of feasible signatures� generated by Algorithm A�
satisfy properties P� and P�� These properties were important since they guarantee the

nitness of the set Tfeasi of type of feasible signatures�
Given a graph G� we de
ne the following two predicates�

Seq�e�� � � � � ek� i� �ei� ei
�� � AG � ei 
" ej

for � � i 
" j � k� which determines that e�� � � � � ek is a sequential path on G and
Loop�w� i� Seq�w� � �last�w�� f irst�w�� � AG � jwj � �

that de
nes the simple loops of G�
In the following lemma we prove more properties of types of feasible signatures� In fact� hav�
ing shown that for any feasible signature of an SPDI there exists a path on the corresponding
underlying graph �Lemma �!� we will abuse notation and in what follows the expressions
�feasible signatures� and �paths� will be overlapped�� This overlapping of notions is done
intensionally since we want to apply Algorithm A �see section ���� not to feasible signatures
but for paths on the graph that correspond to feasible signatures� We have then that the
following holds�

Lemma �
 Let � " e� � � � ep be path on a graph HG �corresponding to a feasible signature
on H�� then the type of signature type��� " r�� s�� � � � � rn� sn� rn
� �generated by algorithm
A� satis�es the following properties�

P� For every � � i 
" j � n# �� ri and rj are disjoint�

P� For every � � i 
" j � n� si and sj are di�erent�

P� �� For � � i � n# �� Seq�ri��

�� For � � i � n� Loop�si��

P� �� For � � i � n� �last�siri
��� f irst�si
��� � AG and if r� 
" � then �last�r��� f irst�s��� �
AG �

�� For � � i � n� �last�si�� f irst�ri
�si
��� � AG�

P� For every � � i � n� si and ri
� are disjoint�

P� rn
� 
" ��

P� For every � � i � n� si is never a su	x of ri�

P	 For � � i � n� if ri is a su	x of si then any su	x of si�� is di�erent from any pre�x of
si�

�Obviously� paths that corresponds to feasible signatures must be considered�
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P
 If v is a vertex appearing in type���� then it can only occur exactly once in ri for some
� � i � n# � in ��

Proof � Properties P� and P� were already proved in Lemma ���

P� These properties are valid by construction�

P� The result holds by de
nition of SPDI and of the corresponding graph GH�

P� Suppose that there exists e � ri
� such that e � si� But this is not possible by construc�
tion of ��

P� By construction� rn
� has at least one edge�

P� Again� the result follows by construction�

P	 Given � " e� � � � ep we consider �A " r�s
k�
� � � � rns

kn
n rn
� �obviously with type r� s� � � �

rn sn rn
��� Suppose that for some � � i � n there exists a su x of si�� equal to a
pre
x of si and such that ri is equal to a su x of si� then si is equal to a su x of si��
followed by ri �si " suffix�si���ri�� But this contradicts the construction of si since
ki is not the maximum number of times si is repeated�

P
 Notice 
rst that v cannot occur in si for any � � i � n since this would mean that the
trajectory segment crosses itself� Suppose now that v occurs at ri for some � � i � n�
then by Lemma �� it cannot appear later on the signature� �

We claim that the decomposition obtained by algorithm A is canonical in the sense that
all these properties really characterize the set of types of feasible signatures generated by
Algorithm A�

Conjecture � If � " e� � � � en is a feasible signature then it admits a unique decomposition
satisfying properties P� to P
� �

If the above conjecture is valid� this canonicity would guarantee that any other algorithm
that generates a set of type of signatures satisfying properties P� to P
 is equivalent to A�
This would be interesting from the practical point of view� since the construction given by
A is not an e cient one� and certainly more e cient ways of generating the set of type of
feasible signature could be found� Indeed� SPeeDI implements a di�erent algorithm from A
and the types of signatures generated satisfy properties P��P� �see section !������

��� Description of the Tool

In this section we outline the main features of the tool and we describe its main utilities�
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Visualization aids� To help visualize systems� the tool can generate graphical representa�
tions of the SPDI� and particular trajectories and signatures within it�

Information gathering� SPeeDI calculates edge�to�edge successor function composition
and enlist signatures going from one edge to another�

Veri�cation� The most important facet of the tool suite is that of veri
cation� At the lowest
level� the user may request whether� given a signature �with a possibly restricted initial
and 
nal edge�� it is a feasible one or not� At a more general� and useful level� the
user may simply give a restricted initial edge and restricted 
nal edge� and the tool
attempts to answer whether the latter is reachable from the former�

Trace generation� Whenever reachability succeeds SPeeDI generates stripes of feasible
trajectories using di�erent strategies and graphical representation of them�

<trace><type_of_signature> simsig2figsimsigreachable <file.fig>

NO

YES

<file.spdi> 

<input interval>

<exit interval>

Figure !��� Work�ow of the tool�

This typical usage sequence of the tool suite is captured in Figure !���

Figure !�� illustrates a typical session of the tool on an example SPDI composed of ��
regions� The left part of the diagram shows selected portions of the input 
le� de
ning
vectors� named points on the x�y plane� and regions �as sequences of point names� and pairs
of di�erential inclusion vectors�� The lower right�hand panel shows the signature generated
by the tool reachable which satis
es the user�s demand� The signature has two loops which
are expressed with the star symbol� A trace is then generated from the signature using
simsig� It traverses three times the 
rst loop and two times the second one� The graphical
representation of the SPDI and the trace is generated automatically using simsig�fig� The
execution time for this example is a few seconds�

See Figure !�� for a succinct description of the di�erent utilities of the tool� A more detailed
explanation is given in Appendix C�

��� Implementation Issues

SPeeDI is implemented in Haskell and consist of the utilities described in the previous section
plus a library for intervals� vectors and truncated a ne multi�valued functions�
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Figure !��� Example

����� Input language

As shown in Figure !��� the input 
le consists of three parts� description of points� description
of vectors and description of regions� For a more detailed syntax of the input 
le� see
Appendix D�

����� Input Validation

Besides the obvious syntax validation� SPeeDI has the following consistency validations on
the input 
le�

�� Regions must be well de
ned polygons�
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Information gathering

Counterexample
generation

Verification

Visualisation
Library

sig��g

path��g

simsig��g

simSIG��g

spdi�ps

sig�ps

trysig simsig

reachable simSIG

VectorIntervalTMAF

showsigslooptypegetmafs

Figure !��� General architecture of the tool�

�� Vectors corresponding to a region di�erential inclusion must respect the fact that the
�a�vector� corresponds to a and �b�vector� corresponds to b� i�e�� that �a b � ��

�� Each region is good �see section �����

����� Data structures

In functional languages� the underlying model of computation is the notion of function� In
Haskell $��% the built�in types are integers� �oating point numbers� characters� booleans�
functions� lists� strings and tuples� All of them are used in our implementation and in what
follows we explain the data structure used in order to de
ne SPDI�

An SPDI H can be represented as a graph GH� Indeed� given H� we can de
ne a graph GH
where nodes correspond to edges of H and such that there exists an arc from one node to
another if there exists a trajectory segment from the 
rst edge to the second one without
traversing any other edge� GH is de
ned in Haskell as a list of edges identi
ers and a transition
function that associate to each pair of edges its TAMF if it exists or �Nothing� otherwise�

The graph is de
ned then in SPeeDI as�

data Graph � ��	

Graph 
 ��	

transitionFunction �� EdgeId �� EdgeId �� Maybe TAMF� �
	

domain �� �EdgeId� ��	

�
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<file.ps><file.spdi>

<file.spdi>

<signature>

<file.spdi>

<signature>

<file.spdi>

<signature>

<file.spdi>

<exit interval>

<src edge>
<dst edge>

<input interval> 
Yes/No

<type of loop>

<file.spdi>

<edge list>

<exit edge>

<MAF list>

<file.spdi>

<edge list>
<signature list>

<file.spdi>

<src edge>

<dst edge>

<reachable interval>

<file.spdi>

<exit interval>

<input interval>

<signature>

[−o file.fig]

<file.fig>

<signature>
<exit interval>

<input interval>
<file.spdi> 

<file.spdi>

<exit interval>

<input interval>

<signature>

<reachable interval>

<concrete signature>

[−o file.fig]

<file.fig>

<signature>
<exit interval>

<input interval>
<file.spdi> 

<file.spdi>

<exit interval>

<input interval>

<signature>

<reachable interval>

<concrete signature>

<file.fig> <file.fig>

<file.ps>

spdi�ps

getmafs showsigs

trysig

looptype

reachable

simSIGsimSIG��g

simsigsimsig��g

path��g

sig�ps

sig��g

Figure !��� Description of the utilities�
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Line ��� is the name of the data�type whereas in line ��� Graph is the type constructor �we
chose it to be equal to the data�type name�� As explained before� the graph then by a domain
that is a list of edges identi
ers and a transitionFunction that is a function that given
two edges identi
ers gives the corresponding TAMF if it exists �i�e� if the second edge can be
reached in one step from the 
rst one in the SPDI� and Nothing otherwise� This is de
ned
by the type Maybe�

����
 Generation of Types of signatures

Given two intervals I� � e� and If � ef SPeeDI generates all the types of signatures
r�� s�� � � � � rn� sn� rn
� that satisfy the following properties�

�� first�r�� " e� and last�rn
�� " ef �

�� For every � � i 
" j � n# �� ri is a path on the graph�

�� For every � � i 
" j � n� si is a simple loop on the graph�

�� For every � � i 
" j � n# �� ri and rj are disjoint�

�� For every � � i 
" j � n� si and sj are di�erent�

�� For every � � i � n� si and ri
� are disjoint�

�� For every � � i � n� si is never a su x of ri�

The 
rst property guarantees that only signatures from the initial edge to the 
nal one are
generated� The next two properties are natural properties� only types of signatures of the
form obtained by A are generated� These properties correspond to P� of Lemma ��� The
fourth and 
fth conditions are properties P� and P� of Lemma �� �see section ����� The
last two conditions are in fact properties P� and P� respectively described in Lemma ���

����� Optimizations

In this section we describe the optimizations done in order to minimize the number of types
of signatures analyzed for reachability� The following optimizations are implemented on the
current version of the tool�

�� Elimination of some types of infeasible signatures� we just consider trajectories that
have a TAMF� It can be the case that there is no trajectory segment from one edge to
other of the same region even though there is a path on the graph� This is detected on
SPeeDI checking that the transitionFunction for the two given edges gives a TAMF
and not Nothing�
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Figure !��� The SPDI of Example !���

�� �Recursive� elimination of the minimal elements of the graph di�erent from the source
node src� When considering reachability from edge e to edge e�� clearly any minimal
element on the graph cannot be reachable from e�

�� As in the previous point� we do the same for the maximal elements and the destination
node dst�

��� Example

In this section we present an example of an SPDI and the application of the di�erent utilities
explained before�

��
�� Presentation of the example

The SPDI we are going to consider has �� regions and ��� edges as shown in Figure !��� We
are not going to write down the details of the de
nition of the example� the input 
le �spdi
is shown in Appendix E�
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��
�� Information gathering

To see the a ne functions �edge�to�edge successors� of a sequence of edges and the composed
successors� we use getmafs as follows�

getmafs example��spdi ����������������������������!�����������!�������������������

We present here just the output for the 
rst three edges�

The requested AMFs�

From edge �� �����	 to edge �� ������	�

AMF is ���������������
���x����� ��������������
���x�����

�accumulated AMF is ���������������
���x����� ��������������
���x�����	

From edge �� ������	 to edge ��
 �����
	�

AMF is ����x� ���x�

�accumulated AMF is ���
�
��

����
��
�
x����� ����
��
�����
���
x������	

From edge ��
 �����
	 to edge �� ������	�

AMF is ����x� ���x�

�accumulated AMF is ����������������
���x������ ���������
���������x�������	

See Appendix F�� for the complete answer as well as execution time�

Sometimes it can be useful to know the qualitative behavior of a cycle �see section ����� For
example for the cycle shown in Figure !���

looptype example��spdi �����������������!�����������!�������������������

gives as a result -Loop type� Exit right��

A type of signature from one edge e� to another ef is said to be feasible is there exists a
path from e� to ef on the symbolic graph� To see all the feasible type of signatures from
edge ���� to edge �!��� we execute

showsigs example��spdi ���� �!���

that gives �� feasible type of signatures� the 
rst being

Generating normal signatures from edge ���� to ����� ���

�� �����������	�����
�������
��
��
�����
�����
��
������
������	�

��
�����
���������������������
��
��
��
��
�����������������������������


��
���
�����
�����������������
���������������������	������������������
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Figure !��� An edge cycle�

����
������������������������������������������������	

���

The full output is given in Appendix F���

��
�� Reachability

The type of signatures listed by showsigs are the candidates for the reachability question�
Is If � ef reachable from I� � e�& For example if we want to know whether edge �!��� is
reachable from interval $�� �% in edge ���� we execute

reachable example��spdi �$���%� �$����%� ���� �!���

We obtain -REACHABLE� as answer and the same signature as the 
rst shown by showsigs�
See Appendix F�� to see the detailed output�

Given a type of signature �for example the answer of reachable� we can obtain the reachable
interval on its last edge using trysig as follows�

trysig example��spdi ������� ��������

����������� �����
�������
��
��
�����
�����
��
������
�������
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�
�����
��������������������� �
��
��
��
��
�����������������

������������
��
���
�����
�����������������
����������������

������ 
���������������������
�������������������������������

������������������

that gives the interval $������������������!�!�% on edge �!��� as answer� Notice that in this
type of signature we have two cycles but in order to compute trysig we don�t need to iterate�
since we use the algorithm of section ��� �that use acceleration of loops��

If we want to see a concrete signature �i�e� the corresponding signature with an unfolding
of the cycles�� we can apply simSIG that gives a list of pairs �edges� interval� that is the
�trace� of the type of signature�

simSIG example��spdi ������� ��������

����������� �����
�������
��
��
�����
�����
��
������
�������

�
�����
��������������������� �
��
��
��
��
�����������������

������������
��
���
�����
�����������������
����������������

������ 
���������������������
�������������������������������

������������������

The complete output of the simulation is presented in Appendix F�� and it is shown in
Figure !��� This picture was generated with simSIG��g��

������

�������

���� 

�� �

��� ��

���� �
�� �

Figure !�!� SPDI of Example !�����

�Numbers of edges and regions were added for pedagogical reasons�
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��� Comparison with HyTech

While SPeeDI is� as far as we know� the only veri
cation tool for hybrid systems implement�
ing a decision algorithm �with the exception of timed automata�� it is interesting to compare
it to �semi�algorithmic� hybrid system veri
cation tools such as HyTech $!�� ��%� HyTech
is a tool capable of treating hybrid linear systems of any dimension� making it much more
general than SPeeDI� which is limited to two�dimensional systems without resets� On the
other hand� SPeeDI implements acceleration techniques �based on the resolution of 
x�point
equations� which yield a complete decision procedure for SPDIs� Also� SPeeDI does not han�
dle arbitrary polyhedra� but only polygons and line segments� For these reasons� comparing
the performance of the two tools is meaningless and no fair benchmarking is really possible�
However� we have explored a simple illustrative example�

����� Example

Consider the SPDI de
ned as follows �see Figure !�!� with I� � �y " �� x � $�� �%� as initial
region�

Region De�ning conditions Vector

R� �x � �� � �y � �� a " ���� �
����b " ���� �

���

R� �x � �� � �y � ���� a " b " �������
R� �x � �� � �y � ���� a " b " ������
R� �x � �� � �y � �� a " b " ��� ��

We consider di�erent 
nal points xf on the x axis and try to answer the question� Is xf
reachable from I�&

The experimental results are given in Table !�����

All the results above of HyTech were using the reach backward command� In all the cases
the reach forward gives �Library overflow error in multiplication��

In order to understand these results� notice that as shows the exact analysis� the system�
starting from the initial interval I� spirals as shown on Figure !��� that simulates the case
whenever xf "

���
� �the picture was obtained using simsig�fig�� The intersection of the

spiral with the x axis converges to the �
xpoint interval� I� " ����� � ����� SPeeDI in fact
computes this interval I�� and whenever xf � I� it gives immediately the positive answer
to the reachability question� If xf � ��� SPeeDI says �no�� The only case when it really
computes successors is when xf lies between I� and I

��

Notice that the problems with HyTech are mainly whenever the 
nal point If is close to
the 
xpoints �l� " ���

� and u� " ���� and of course whenever If is located in between the

xpoints or when xf � u��
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Final Point HyTech SPeeDI Reachable

��� overflow ���� sec Yes

��� overflow ���� sec No

��� overflow ���� sec No

��� overflow ���� sec No

� ���� sec ���� sec No

�� ���� sec ���� sec No
���
� ���� sec ���� sec Yes
���
� overflow ���
 sec Yes
���
� ���� sec ���� sec Yes
�
� ���� sec ���� sec No

Table !��� Comparison results with HyTech�

��� Summary

We have presented a prototype tool for solving the reachability problem for the class of
polygonal di�erential inclusions� The tool implements the algorithm presented in chapter �
which is based on the analysis of a 
nite number of qualitative behaviors generated by a
discrete dynamical system characterized by positive a ne Poincar�e maps� Since the number
of such behaviors may be extremely big� the tool uses several powerful heuristics that exploit
the topological properties of planar trajectories for considerably reducing the set of actually
explored signatures� When reachability is successful� the tool outputs a visual representation
�in the form of an X
g 
le� of the stripe of trajectories that go from the initial point �edge�
polygon� to the 
nal one�

SPeeDI was implemented in Haskell $!�%� a general�purpose� lazy� functional language $��� ��%�
Despite the fact that functional languages� especially lazy ones� have a rather bad reputation
regarding performance �see for example $���% for a report on the experiences of writing
veri
cation tools in functional languages�� we found that the performance we obtained was
more than adequate for the magnitude of examples we had in mind� Furthermore� we feel
that with the gain in the level of abstraction of the code� we have much more con
dence in
the correctness of our tool had we used a lower level language� We found laziness particularly
useful in separating control and data considerations� Quite frequently� optimizations dictated
that we evaluate certain complex expressions at most once� if at all� In most strict languages�
this would have led to complex code which mixes data computations �which use the values
of the expressions� with control computation �to decide whether this is the 
rst time we are
using the expression and� if so� evaluate it�� Thanks to shared expressions and laziness� all
this came for free . resulting in cleaner code� where the complex control is not done by the
programmer�

From some experiments we have run comparing HyTech with SPeeDI� we have reached a
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Figure !��� Simulation of reachability for xf "
���
� �

number of qualitative conclusions�


 It is well known that since HyTech uses exact rational arithmetic� it can easily run into
over�ow problems� This is particularly an issue when the path to the target passes
through a large number of regions� This makes veri
cation of non�trivial sized SPDIs
�eg the one in 
gure !��� impossible�


 In the case of loops� SPeeDI calculates the limit interval without repeatedly iterating
the loop� It makes use of this interval to accelerate the reachability analysis� avoiding
time consuming loop traversals� In contrast� HyTech performs these iterations� Fol�
lowing the loops explicitly� easily leads to over�ow problems� and� more seriously� in
certain �even simple� con
gurations� this analysis never terminates�

While the 
rst issue is limited to HyTech� the second is inherent to any tool based on non�
accelerated reachability analysis� On examples which HyTech can handle� the two tools take
approximately the same amount of time �a fraction of a second� to reach the result� SPeeDI�
however� can handle much larger examples�



Chapter 


Relaxing �Goodness�

In this chapter we show that in fact our goodness hypothesis is unnecessary and thus reach�
ability is decidable for SPDIs without this condition� General SPDIs �GSPDIs� are SPDIs
without the goodness restriction�

Organization of the chapter� In the 
rst section we present the problem and we de
ne
some basic concepts� In the second section we prove that reachability is preserved after
eliminating Input
Output edges and we make an informal discussion about the importance
of the ordering between edges� In section three we give a �topological� proof of the results
of chapters � and � that rely on the goodness condition and we show that reachability is
decidable for GSPDIs� In the last section we summarize the chapter�

��� Preliminaries

The goodness restriction �see De
nition �� in section ���� was introduced in order to simplify
treatment of trajectories since it guarantees� among other things� that each region can be
partitioned into entry and exit edges in an ordered way� This good property can be lost when
relaxing goodness� Indeed� without this condition there are edges that are neither of entry
nor of exit as shown in the following example�

Example �� In Figure ���� In�R� " fe�� e
g� Out�R� " fe�� e�g� Edges e� and e� are
neither of entry nor of exit of R�

We de
ne now inout edges�

De�nition �� An edge e � P is an inout edge of P if e is neither an entry nor an exit edge
of P �

In what follows we de
ne general SPDIs�

���
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De�nition �� An SPDI without the goodness restriction is called a general SPDI �GSPDI��

Thus� in GSPDIs there are three kinds of edges� inouts� entries and exits�

We have seen how self�crossing of trajectory segments of SPDIs can be eliminated in sec�
tion ������ The result still holds for GSPDIs� thus in what follows we will consider only
trajectory segments without self�crossings�

Notice that on GSPDIs a trajectory can �intersect� an edge at an in
nite number of points
because it can slide at it� Thus� a trace is not anymore a sequence of points but rather a
sequence of intervals�

De�nition �� The trace of a trajectory � is the sequence trace��� " I�I� � � � of the inter

section intervals of � with the set of edges� that is� Ii � �� � E��

A point interval I " $x�x% will be sometimes written as x whenever no confusion might arise�

De�nition �� An edge signature �or simply a signature� of a GSPDI is a sequence of edges�
The edge signature of a trajectory �� Sig���� is the ordered sequence of traversed edges by
the trajectory segment� that is� Sig��� " e�e� � � �� with trace��� " I�I� � � � and Ii � ei�
The region signature of � is the sequence RSig��� " P�P� � � � of traversed regions� that is�
ei � In�Pi��

Notice that in many cases the intervals of a trace are in fact points� We say that a trajectory
with edge signature Sig��� " e�e� � � � ei � � � and trace trace��� " I�I� � � � Ii � � � interval
crosses
edge ei if Ii is not a point�

Given a trajectory segment� we will make the di�erence between proper inout edges and
sliding edges�

De�nition �	 Let � be a trajectory segment from point x� � e� to xf � ef � with edge
signature Sig��� " e� � � � ei � � � en� and ei � E�P � be an edge of P � We say that ei is a sliding
edge of P for � if � interval
crosses ei� otherwise e is said to be a properinout edge of P for
��

We say that a trajectory segment � slides on an edge e if e is a sliding edge of P for � and �
is said to be a sliding trajectory if there is at least one sliding edge e � Sig����

Example �� In Figure �����a�� e is a proper inout edge� Edge e on Figure �����b� is a
sliding edge�
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��� Simpli
cation of Trajectory Segments

In this section we show how to simplify trajectory segments eliminating inout edges� We
start by eliminating proper inout edges�

Lemma 	� Let � be a trajectory segment x� � e� to xf � ef with edge signature Sig��� "
e� � � � ei � � � en� If ei is a proper inout edge then there exists a trajectory segment �� from x�
to xf such that

that traverses ei in at most one sense �that is� ei is either an entry or an exit� but no both��

Sketch of the Proof � There is only one case of proper inout edges for trajectory segments
without self�crossings� This is illustrated in Fig� �����a� where edge ei is a proper inout edge�
After a straightforward algebraic vector manipulation� on the same lines of elimination of
self�crossings � section ������ the trajectory segment shown in Fig� �����a�� is obtained� �

As a consequence we have the following proposition�

Proposition � �Existence of a trajectory without proper inout edges� If there ex

ists a trajectory segment from points x� � e� to xf � ef then there always exists a trajectory
segment� whose edge signature contains no proper inout edges� between them�

Proof� By induction on the number n of proper inout edges of the signature of the trajectory
segment using Lemma �� in the induction step� �

We show now how to eliminate sliding edges�

Lemma 	� Let � be a trajectory segment x� � e� to xf � ef with edge signature Sig��� "
e� � � � ei � � � en� If ei is a sliding edge for � then there exists a trajectory segment �� from x�
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to xf that does not slide on edge ei�

Sketch of the Proof � Sliding edges can arise in four di�erent cases� they are shown
in Fig� �����a� to �d�� The corresponding primed 
gures �Fig� �����a�� to �d��� show the
transformation done in order to avoid sliding on edge e� �

As a consequence we have the following result�

Proposition 
 �Existence of a non�sliding trajectory� If there exists a sliding trajec

tory segment from points x� � e� to xf � ef then there always exists a non
sliding trajectory
segment between them�

Proof� By induction on the number n of sliding edges of the signature of the trajectory
segment using Lemma �� in the induction step� �

Remark� Notice that the choose of eliminating 
rst proper inout edges and next sliding� is
not arbitrary� In fact� the number of sliding edges is not guaranteed to decrease if sliding
edges are eliminated before proper inout edges� See the following example�

Example �� In Figure �����a� a trajectory segment that slides at edge e� is shown� After
eliminating the sliding at edge e�� a new sliding edge is introduced �e�� This is shown in
Figure �����b�� However� if proper inout edges are eliminated 
rst� we do not introduce new
proper inout edges as shown in part �c� of the same Figure�

Remark� We are not going to prove formally that the simpli
cation of trajectory segments
given before preserves reachability since this is done on the same lines as in chapter � for
SPDIs�

About the ordering between edges� We 
nish this section with an informal discussion
about the importance of the �contiguous� order between entry and exit edges on SPDIs�

We have seen that in SPDIs edges of a region can be bipartitioned into entry and exit edges
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in a �contiguous� way �see Fig� ���� having as a consequence an ordering between edges� As
explained above� this is not longer the case in GSPDIs�

First of all� notice that the ordering of edges on an SPDI were chosen in order to preserve the
�positive a nity� �and hence the monotonicity� of the successor functions� Given a region R
with di�erential inclusion �ba � let e be an entry edge and e� and e� two exit edges of R� For
e we chose the direction �given by a director vector e� that satis
es the inequality �a e � �
�see Figure ��!�� The same for e� and e�� As a consequence we obtain an ordering like in
Figure ����

Notice that on a GSPDI �see Figure ����a��� the property that for any edge e� �a e � � is not
longer valid since an edge can be of entry and of exit and then the ordering can change� In
spite of that� once an inout edge is �converted� into an entry �or exit� then we can have the
notation of considering the ordering of entry edges going counter�clockwise and clockwise for
exit edges �see Figure ����b���

It is important to notice that even though the de
nition of edge and region signatures as
well as edge cycle continue to hold� it is not the case for region cycle� In fact we can have a
region signature P� � � �Pi � � �PkP� that it is not a region cycle� The reason is that in GSPDIs
a trajectory can enter a region through two di�erent edges without forming a cycle�

Thus we have that a region signature P� � � �Pi � � �PkP� is a region cycle if the edge signature
e� � � � eke�� with ei � Out�Pi� for all � � i � k� forms an edge cycle�

In Figure ��� the following is a region cycle� P�P�P�P�P�P�P�� Notice that P�P�P�P� is
region cycle for SPDIs but not for the given GSPDI�
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Figure ���� �a� A GSPDI� �b� Ordering after 
xing input and output edges�
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��� Reachability Analysis for GSPDIs

In this section we rephrase �topologically� the results of chapters � and �� that used the
�contiguity� between entry and exit edges in their proofs� and we prove them� We also
re�prove soundness of Exit�LEFT and Exit�STAY algorithm and at the end we show that
reachability is decidable for GSPDIs�
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ee
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a a
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Figure ��!� �a� �a e � �� �b� �a e � ��
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Figure ����� �a�� Simple cycle si and its continuation through edge e� �b� Edge e
� cannot be

reached from point x� without intersecting x�x���

����� Proof of Lemma ��� Lemma �� and Corollary �


The only results that use the �contiguity� order between entry and exit edges are Lemmas ��
�see section ����� �� and Corollary �� �see section ����� We prove these results without using
the order between entry and exit edges�

Recall Lemma �� for property P��

Lemma ��� Let � " e� � � � ep be a feasible signature� then its type� type��� " r�� s�� � � � �
rn� sn� rn
� satis�es the following property� P�
 For every � � i 
" j � n� si and sj are
di�erent�

Proof� In order to prove property P� we prove that� given a simple cycle si " e�� � � � � e�
the sequence of edges ee� cannot occur after leaving si �hence it cannot occur in any other
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simple cycle sj � with � � i � j � n�� After cycling ki times cycle si is abandoned by edge e
�guaranteed by construction�� Let P be a region s�t� e � In�P � and consider the unfolding
of the last iteration and its continuation �see Fig� ������a���

� � � � e� e�� � � � � e� e��� � � �

where e�� " first�ri
��� e � In�P � and e�� e�� � Out�P � �e� 
" e���� Let x� be the last point
visited on edge e before leaving cycle si and x��� be the 
rst point on edge e

�� after leaving
si �see Fig� ������b��� Segment x�x��� of the trajectory segment divides region P into two

subregions P� and P� and edge e into two segments elx� and x�eu� By the non�crossing
hypothesis �and monotonicity on edges� after leaving si the only accessible part of edge e is
the segment x�eu � e� By Jordan�s curve theorem the only way to reach edge e� from any
point in x�eu � e is by crossing x�x��� or by crossing one of the edges of region P�� The 
rst
case is not possible since it would contradict the hypothesis of non�crossing trajectory and
in the second one the sequence ee� would not belong to the trajectory segment� �

In what follows we use the following notation� whenever we partition the space into two
regions PL and PR by the line de
ned by a segment of line xy� PL is the semi�space of all
the points that are a left rotation of �xy and PR is the semi�space corresponding to the points
that are a right rotation of the same vector� With f�x� � we mean that f is de
ned at x
and f�x� 	 will mean that f is unde
ned at x�
Next we will �topologically� rephrase Lemma �� and Corollary �� and we prove them both�

Lemma �	� Let P be a region� e � In�P �� e�� e� � Out�P �� hli� uii be any subinterval of
heli� eui i and fi�x� " F c

e�ei
�x��

�� Let P be partitioned into two regions PL and PR by the line de�ned by xl�� then the
following holds
 if e� � PL� f��x� � and l� � f��x� then u� � f��x��

�� Let the plane be partitioned into two subspaces PL and PR by the line de�ned by xl��
then the following holds
 if e� � PR� f��x� � and f��x� � u� then f��x� � l��

Proof �

�� Remember that the line de
ned by e� is ordered and that u�� A and f��x� belongs to it�
We have then that e� � PL �and hence u� � PL� and that f��x� � PR �by construction
of the partition�� We have then that u� � A and A � f��x�� that implies u� � f��x��
See Figure �����a��

�� This case is symmetric to the previous one� �

Corollary ��� Let P be a region� e � In�P �� e�� e� � Out�P �� fi�x� " F c
e�ei
�x� be an a	ne

function and Fi�hx� yi� " Fi�hx� yi�Si��Ji be a truncated a	ne multi
valued function �with
Fi " $f

l
i � f

u
i % and Ji " hLi� Uii��

�� Let P be partitioned into two regions PL and PR by the line de�ned by xL�� then the
following holds
 If e� � PL and L� � f l��x� then F��hx� yi� " ��
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Figure ����� Lemma ������ �a� When f l��x� �� �b� The case f l��x� 	�

�� Let P be partitioned into two regions PL and PR by the line de�ned by xL�� then the
following holds
 if e� � PR and fu� �y� � U� then F��hx� yi� " ��

Proof�

�� If f l��x� is unde
ned� then it is obvious that F��hx� yi� " �� If f l��x� is de
ned� then
the result follows directly from Lemma ���� and de
nition of Fi�hx� yi��

�� Symmetric to the above case using Lemma ����� �

����� Soundness of Exit�STAY and Exit�LEFT

We prove now soundness of the Exit�STAY and Exit�LEFT algorithm whose proofs rely on
the results proved in the previous section�

Let A " Succbs �L� and consider the line de
ned by AL� This line partition the space into
PL and PR as before�

Exit�STAY
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function ExitSTAY �I� s� ex�
�� �

Soundness By hypothesis� L � l� � u� � U � Hence� for all i� �Ii " h�li� �uii � hL�Ui� hence
Ii " �Ii and by Corollary ����� we have that Succ

i
s�ex�I� " ��

Termination Trivial� �

Exit�LEFT�

function ExitLEFT �I� s� ex�
�� Succs�ex�Succs�f �hL�maxfu� u�gi��

Soundness By hypothesis� l� � L � u� � U � Thus� there exists a natural number n s�t�
�ln � L and for all i� ui " �ui � U � Let�s consider the following two cases�

�� If ex � PR then Ex " � �by de
nition of Exit�LEFT� and Succs�ex�Ii� " � for any
i �by Corollary ��������� so Succs�ex�Succs�f �hL�maxfu� u�gi�� " ��

�� If ex � PL� we consider two cases�

�a� If u � u� then for all i� ui " �ui � u� and then �m��Succ
m
s�f �I� " Succs�f �L� u

���
thus Ex " Succs�ex�Succs�f �L� u

����

�b� If u� � u then for all i� ui " �ui � u and �m��Succ
m
s�f �I� " Succs�f �L� u��

Consequently� Ex " Succs�ex�Succs�f �L� u���

From both cases we have that Ex " Succs�ex�Succs�f �hL�maxfu� u�gi���
Termination Trivial� �

From the above results we have that the main algorithm for reachability is still valid for
GSPDIs after doing the following pre�processing steps�

�� Detect all the inout edges�

�� Generate all the types of signatures 
xing inout edges as entry and exit�

�� Apply the reachability algorithm for SPDIs given in chapter ��

Notice that even though the set of type of signatures grows exponentially� it continues to be

nite� hence we have that

Theorem 	� The problem Reach�H�x��xf � is decidable for GSPDIs� �

��� Conclusion

In this chapter we have de
ned general SPDIs �GSPDIs� that are SPDIs without the goodness
restriction and we have proved that reachability is decidable for GSPDIs�
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Conclusion

���� Achievements

We have presented an algorithm for solving the reachability problem for polygonal di�erential
inclusion systems �SPDIs�� The novelty of the approach for the domain of Hybrid System
is the combination of two techniques� namely� the representation of the two�dimensional
continuous dynamics as a one�dimensional discrete system �due to Poincar�e�� and the char�
acterization of �symbolic� trajectories of the latter as a 
nite set of types of signatures� The
importance of this result lies not only on the result itself �the decidability of the reachability
problem� but also on the method used� This is the 
rst application of a �geometric� method
to non�deterministic systems with the possibility of accelerating simples cycles in many cases�

As an application of the above algorithm� we have also given an automatic procedure to
analyze the qualitative behavior of SPDIs� Our algorithm enumerates all the �limit cycles�
�i�e�� controllability kernels� and their local basins of attraction �i�e�� viability kernels�� Our
analysis technique for a single cycle is very similar to the one used in $��% for n�dimensional
systems� However� for polygonal systems� we are able to prove further properties such
as controllability of and convergence to the set of 
xpoints� and that there are only a 
nite
number of them� These results are the analog of Poincar�e�Bendixson for polygonal di�erential
inclusions� The di�erence with $���% is that our results hold for non�deterministic systems�

We have not restricted our analysis only to SPDIs but to other two dimensional hybrid
systems� Although many intense research activity in the last years have been done in the
domain of hybrid systems� there is no clear boundary between what is decidable or not
on such systems� In this line� we have two kind of results� First� we have shown that
between ��dimensional PCDs �for which the reachability problem is decidable $���%� and
� dimensional PCDs �reachability is undecidable $��%� there exists an interesting class� �

dimensional HPCDs� for which the reachability question is still open� We have also shown
that the same is true for other similar systems� namely ��dimensional rectangular automata
and ��dimensional linear hybrid automata with some restrictions as well as for PCDs on
��dimensional manifolds� This result was obtained showing that the decidability of the

���
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reachability problem for the above systems is equivalent to the decidability of the same
question for piecewise a ne maps �PAMs�� that is a well known open problem� Second� we
have proved that ��dimensional HPCDs are really in the boundary between decidability and
undecidability since the addition of a simple counter or the permission of having some kind of
�in
nite pattern� to these systems makes the reachability problem undecidable� The method
used here was the reduction of the halting problem of Turing machines to the reachability
problem for the above classes of systems�

From the practical point of view� we have implemented the reachability algorithm for SPDIs
in the functional language Haskell $!�% in a prototype of a tool called SPeeDI� Even though
there is no speci
c tool for handling ��dimensional non�deterministic systems using a decision
algorithm� thus any comparison with other �semi�algorithmic� hybrid system veri
cation
tools �like d�dt $��% or HyTech $!�%� could be meaningless� we have explored a simple example
in order to compare SPeeDI with HyTech� From this comparison we can conclude that the
geometric method �using Poincar�e maps and acceleration techniques� used by SPeeDI has
an important impact practically�

Summarizing� the main contributions of this thesis are the following�


 Reachability analysis� A decision procedure for solving exactly the reachability problem
of Polygonal Di�erential Inclusion Systems �SPDIs��

� First application of geometric methods for non�deterministic systems�

� Application of acceleration of cycles�


 Algorithmic phase portrait construction of SPDIs�

� Identi
cation of important elements of the phase portrait� namely the viability
and controllability kernels�

� Exploration of properties of controllability and convergence to the set of limit
cycles �Poincar�e�Bendixson�s like theorem��

� A non�iterative algorithm for computing �exactly� the viability and controllability
kernels�


 Undecidability analysis for ��dimensional hybrid systems�

� Identi
cation of classes of ��dimensional hybrid systems for which the decidability
of the reachability question is equivalent to a well�known open problem�

� Identi
cation of features to cross the decidability boundary�


 Implementation of the reachability algorithm for SPDIs into a prototype of a tool called
SPeeDI�



���� Research Directions ���

���� Research Directions

TAMF� The TAMF class could be formalized in an algebraic way using a simpler axiom�
atization of intervals than the one de
ned in $�%�

Reachability� One question that naturally arises is decidability of the reachability problem
for hybrid automata whose locations are equipped with SPDIs �hierarchical SPDIs�� We have
shown that the decidability of the reachability problem for HPCDs is an open question� We
can certainly 
nd �stringent� conditions� such as planarity of the automaton� �memory�less�
resets� etc�� under which decidability follows almost straightforwardly from the decidability
of SPDIs�

Phase Portrait� This work is a 
rst step in the direction of 
nding an algorithm for auto�
matically constructing the complete phase portrait of an SPDI� This would require identifying
and analyzing other useful structures such as stable and unstable manifolds� orbits �generated
by identity Poincar�e maps�� bifurcation points �resulting of the non�deterministic qualitative
behavior at the vertices of the polygons�� limit behaviors of self�intersecting trajectories� etc�

Actually� Example �� illustrates the di culties that arise when exploring the limit behavior
of self�crossing trajectories of an SPDI� Figure ��� shows that there exist in
nite self�crossing
�and even periodic� trajectories that keep switching between the two cycles forever� In this
particular case� it can be shown that all trajectories converge to the �joint controllability
kernel� Cntr�K�� �K��� which turns out to be C�����C���� �the cross�shaped region in the
Figure is the bridge between the two cycles�� However� the analysis of limit behaviors of
self�cutting trajectories in the general case is considerably more di cult and challenging�

SPeeDI� From the practical point of view� we intend to improve SPeeDI including some
�topological� optimizations� There are some intrinsic topological properties of SPDIs that
can be exploited in order to optimize the generation of type of signatures� These optimiza�
tions are not implemented in the current version of SPeeDI�

�� We can explore the topological restriction that types of feasible signatures must respect
the non�crossing property� For example� given e�� e�� e� � In�R�� with e� � e� � e� and
e�� e�� e
 � Out�R�� with e� � e� � e
 and a signature r�s� � � � siri � � � with si " e� � � � e�
and ri " e
 � � �� then no continuation of the signature can contain e� and hence none
of the successor of this edge� This is true for the other regions of the loop�

�� Another topological restriction comes from the fact that after getting into an EXIT�
LEFT cycle� it is not possible to visit output edges that are at the right of the signature
as well as all their continuation� The same kind of analysis can be done for EXIT�
RIGHT and DIE loops�

�� A STAY cycle can appear just at the end of a signature�
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Figure ����� �a� xf is reachable from x� following the leftmost �truncated� trajectory� �b�
The dynamics in region P� is di�erent the second time the trajectory enters it� �c� Taking
c� makes xf unreachable�

Future work previews the integration of SPeeDI into a large tool suite for qualitative analysis
of hybrid systems� We also plan to extend its functionality beyond reachability veri
cation�
In particular� we are currently working on the implementation of the algorithm developed
in Chapter � for constructing the phase portrait of an SPDI which is composed of viability
and controllability kernels�

Practical Applications� In this thesis we have not presented practical �real� examples
and we intend to 
nd out some interesting systems which can be modeled by SPDIs� The
use of SPDIs for approximating non�linear planar di�erential equations seems to be a a very
interesting application for further research� Given a non�linear di�erential equation we can

nd a �good� partition of the state space in order to be able to approximate it with an SPDI�
The relevance of the approach is not only as a method for approximating reachability but
also as a way of 
nding over�approximations of limit cycles and their basins of attraction�

Parametric Analysis� On other possible direction of future work is the application of
the same method used for reachability for solving the the parameter synthesis problem for
SPDIs� that is� for any two points� x� and xf � assign a constant slope cP � 
�P � to every
region P such that xf is reachable from x�� or conclude that such an assignment does not
exist� Actually� the existence of a trajectory segment does not imply the existence of one
with uniquely �in each region� de
ned slope� That is� the decidability of the reachability
problem for SPDIs does not imply the decidability of the parameter synthesis one� As
a simple counter�example just think of a cycle signature � " e�e�e�e� with x��xf � e�
�i�e� x� " �e�� x�� and xf " �e�� xf �� with di�erential inclusions 'x � �

b�
a�
such that the

leftmost truncated successor is di�erent from the non�truncated one for the 
rst iteration
�Succb�e��x�� 
" Fb

�e�
�x��� and they are equal therein after� Suppose also that xf is reachable

from x� following always the leftmost �truncated� trajectory segment cycling three times�
that is xf " Succ��e��x�� �see Fig� ������a��� Clearly� xf is reachable from x�� but there does
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not exist a unique value c� � �b�a� that gives a positive answer to the reachability problem�
In Fig� ������b� we can see that the dynamics in region P� is di�erent the second time the
trajectory segment enters it �suppose c� " a� � b�� whereas Fig� ������c� shows that the
truncated successor restricts the following choice of possible values of the dynamics for P�
to be at most equal to c� � �b�a� � therefore 
xing the slope to be at least c� in P�� makes xf
unreachable �independently of the slopes chosen in the other regions��
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Appendix A

Some properties of STAY cycles

We prove here two results about STAY cycles�

Lemma � If � is STAY then S � J � F���S � J��

Proof� By hypothesis� $l�� u�% � S � J � that means that for any I � S � J � F �I� � S � J �
By monotonicity of inverse function� F�� � F �I� � F���S � J� from which we obtain that
I � F���S � J� �since for any I� I � F�� � F �I��� �

Lemma � If � is STAY then S � J � Pre��S��

Proof� By de
nition Pre��S� " F���S� " F���S � J� � S� By lemma � we have that
S � J � F���S � J� and then S � J � F���S � J� � S� Hence� S � J � F���S�� �

���
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Appendix B

Proofs of Lemmas of Chapter �

Lemma �	 �PAM simulates HPCD� For every �
dim HPCD H there is a PAM A such
that A simulates H�

Proof� Let H be a HPCD and PCDi the PCD of location 
i� We show how to encode each
region of PCDi by parts of a PAM A� Let e� be an input edge of region R and e�� � � � � ek
be output edges of R and reachable from e� by the one�step successor Succe�ei��� " ai�# bi
�� � i � k� �see Figure ����� We partition edge e� into intervals I�� � � � Ik in the following
way� Ii " Pree�ei�ei�� Suppose that each edge ei �� � i � k� has local coordinates ���di�
We dispose sequentially all the edges of R in the positive Real line starting for example at
position p� i�e� ei " �li� ui% with l� " p� u� " p # d� and for all � � i � k� li " ui�� and
ui " li # di� Hence a point on edge ei with local coordinates � will be situated on the Real
line R in position li # � �see Figure ����� We proceed in the same way for the other regions
of PCDi�

Let Succeiej ��� " ai�# bi be a one�step successor� we de
ne a function f as follows�

f�z� " Aiz #Bi if z � Ii

where Ai " ai and Bi " bi # lj � aili

We show now that for �� � ei and �f � ej � Succeiej ���� " �f i� zf " f�z��� Let
Succeiej ���� " �f " ai�� # bi such that �� and �f have coordinates z� " li # �� and
zf " lj # �f on R � Thus

�f " ai�� # bi i� zf � lj " ai�z� � li� # bi
i� zf " aiz� # �bi # lj � aili�
i� zf " Aiz� #Bi

i� zf " f�z��

We have then constructed a function f for each one�step successor� The PAM A correspond�
ing to the PCD of location 
i is de
ned then as the function that consists of the body of all

���
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(a) (b)

aix� ailif ��x� 	 aix� aili

li ui

aix
 bi
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eli ui
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f�li�

�f�li�

f�x� 	 aix
 bi

Ii

Figure B��� �a� Translation of f to f �� �b� Basic elements for the computation of Succee� �

the functions f above� Up to now we have encoded just a simple PCD� it remains to encode
the jumps from location 
i to location 
j in order to simulate a HPCD by a PAM� This is
done in the same way as before� since the reset are edge�to�edge a ne functions�

From the above results we have that Reach�H�x��xf � i� zf " f��z��� �

Lemma ��� �HPCDiso simulates PAM� For every PAM A there is a �
dim HPCD H
with resets of the form ��x� y� " �y # d� �� such that H simulates A�

Proof� Let A be de
ned by f�z� " aiz # bi if z � Ii for i � f�� � � � � ng where Ii " $li� ui% are
rational intervals� For simplifying the presentation of the proof� we suppose that ai � �� We
will discuss at the end how to do the simulation whenever ai � ��

Notice 
rst that given a function f�x� " aix#bi �with ai � �� and an interval Ii on the x�axe�
we can always de
ne a function f ��x� parallel to f�x� such that f ��li� " �� f

��x� " aix�aili
�see Figure B����a���

We show how to obtain a n�locations HPCD H that simulates A� We associate with each
interval Ii ofA� such that ai � �� a location 
i de
ned with the following PCD �see Figure ����

Region De�ning conditions Vector

R� �x � ui� � �x � li� � �y � �� � �y � �aix# aiui� ���� ai�
R� �x � li� � �y � �� � �y � �aix# aiui� ��� ��

R� �x � li� ��� ��

R� �x � li� � �y � �� ��� ��



���

Let ei and e
�
i be the two edges of the above PCD de
ned as

ei
def
" �x � ui� � �x � li� � �y " ��

e�i
def
" �x " li� � �y � �� � �y � ai�ui � li��

Notice that on region R�� taking e " ��� ��� e
� " ��� ��� v " ��� ��� v� " �li���aili # bi�� and

c " ���� ai� �see Figure B����b�� and applying the formula

Succeie�i��� "
e�c

e��c
�#

�v � v���c

e��c

we obtain

Succeie�i��� " ai�# bi�

Notice that any point x� � e�i has local coordinates �
� in the interval $aili # bi� aiui # bi% and

any point x " �x� y� � ei has local coordinates � � $li� ui% such that � " x�

We encode a point z � Ii in A as a point x " �ei� �� on location 
i� where � " z�

Let ef be an edge of PCDf �on location 
f � de
ned by

ef
def
" �x � lj� � �x � uj� � �y " ��

Each location 
i has one transition tr " �
i� g� �� 
f� where the guard is de
ned as

g
def
" �e�i � � � If �

and the reset function is de
ned as

��e�i� �� " �ef � ��
��

Let z� � Ii and zf � If be two points of the PAM A s�t� f�z�� " aiz� # bi " zf � These
points are encoded on H as x� " �ei� ��� and xf " �ef � �f � as explained before�

We prove now that given z� � Ii and zf � If on A�

zf " f�z�� i� �f " Succ�����

where � " eie
�
ief �

First� suppose that z� � Ii� zf � If and zf " f�z�� " aiz� # bi� then on location 
i we have
x� " �ei� ��� such that

Succeie�i���� " ai�� # bi " ����

�By the above considerations about local coordinates� a reset of the form ��e�i� �� � �ef � �� corresponds in
fact to the reset ��e�i� x� y� � �ef � y � d� 
� where d � aili � bi� The result is obtained doing some algebraic
manipulation transforming local coordinates into real coordinates �see Figure B���
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e�

i
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R�

R�

R�

eili ui

Figure B��� PCDi

But ��� " zf � If and hence the guard g is satis
ed and the reset is applied�

��e�i� �
�
�� " �ef � �

�
�� " xf

Thus�

�f " Succ������

Suppose now that �f " Succ������ for � " eie
�
ief � We have that

Succ����� " Succe�ief � Succeie�i����
" Succe�ief �ai�� # bi�

" ai�� # bi
" �f

Hence zf " aiz� # bi " f�z���

Whenever ai � �� we de
ne region R� by �x � ui� � �x � li� � �y � �� � �y � �aix # aili�
�the other regions are then determined�� Taking e " ��� ��� e� " ��� ��� v " ��� ��� v� "
�ui���aiui # bi�� and c " ����ai� we have that Succee���� " ai�# bi� The rest of the proof
is as before�

As a consequence we have then that zf " f��z�� i� Reach�H�x��xf �� �

Lemma �� �PCD�m simulates PAMinj� Every injective PAM system can be simulated by
a PCD�m�

Proof� Let A be an injective PAM de
ned as f�z� " aiz # bi if z � Ii for � � i � n�
For simplifying the presentation of the proof� we suppose that ai � �� Whenever ai � �� a
transformation as the one shown in the proof of Lemma ��� is done�
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(b) (c)(a)
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Figure B��� Simulation of a PCD�m by a PAMinj� �a� First de
nition of PCDi� �b� Decom�
position of edge e�i� �c� Partition of edge Ii�

We obtain a PCD�m M in the following way�

First� for each interval Ii� such that ai � � we de
ne 
rst the following one�region PCD �see
Figure B����a���

Region De�ning conditions Vector

Ri �x � ui� � �x � li� � �y � �� � �y � �aix# aiui� ���� ai�

Let ei and e
�
i be the two edges of the above PCD de
ned as

ei
def
" �x � ui� � �x � li� � �y " ��

e�i
def
" �x " li� � �y � �� � �y � ai�ui � li��

Notice that on region R�� taking e " ��� ��� e
� " ��� ��� v " ��� ��� v� " �li���aili # bi�� and

c " ���� ai� �see Figure B����b�� and applying the formula

Succeie�i��� "
e�c

e��c
�#

�v � v���c

e��c

we obtain

Succeie�i��� " ai�# bi�

Notice that� as for the HPCDiso �see proof of Lemma ���� any point x
� � e�i has local

coordinates �� in the interval $aili # bi� aiui # bi% and any point x " �x� y� � ei has local
coordinates � � $li� ui% such that � " x�

We encode a point z � Ii in A as a point x " �ei� �� on location 
i� where � " z�



��� Proofs of Lemmas of Chapter �
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Figure B��� Sketch of the simulation of a TM by a HPCD�c� �a� PCDi� �b� PCD
�
i and

PCD��
i �

Second� we partition edge e�i �on location 
i� into intervals I
k
i if Succeie�i�Ii��Ik 
" �� as shown

in Figure B����b�� In fact� Iki " Succeie�i�Ii� � Ik� Each segment I
k
i of this edge is identi
ed

with the corresponding interval on the oriented edges Ik� Finally� edge Ii is partitioned
into intervals Iih if Succeie�i�Ih� � Ii 
" � �on location 
h�� again Iih " Succeie�i�Ih� � Ii �see
Figure B����c��� We obtain in this way �doing the same construction for every interval Ii�
� � i � n� a surface with boundary� It is important to emphasize that each Iji � e�i �for all
� � i 
" j � n� is identi
ed with exactly one segment of edge Ij� By the Classi
cation Theo�
rem for Surfaces with Boundary �see Theorem ��� we have that this surface is equivalent to
a sphere with some disks removed and we obtain then a PCD�m just �sewing� the disks� We
associate with these disks a zero dynamics� i�e� the dynamics on these regions are given by
the vector ��� ��� The above construction allows to prove that zf " f�z�� i� �f " Succ�����
on the same lines as for HPCDiso� �

Proposition � �HPCD�c simulates TM� For every TM M there is a �
dim HPCD with
one counter H such that H simulates M�

Proof� Let �wL� q� wR� be a TM�con
guration� We encode each TM�state qi by three oca�
tions 
i� 


�
i and 


��
i of H de
ned as �see Figure B�� and B����

�� Location 
i� PCDi is de
ned as�



���
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i

��e�� �� c� � �e�� �� �� c� ��
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��e�� �� c� � �e�� �� c�

g � e� PCDj
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��e�� �� c� � �e�� f
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Figure B��� Sketch of the simulation of a TM by a HPCD�c� Representation of TM�state qi�

Region De�ning conditions Vector

R� �x � �� � �y � �� ������

R� �x � �� � �y � �� �������

R� �x � �� � �y � �� ������

R� �x � �� � �y � �� � �y � x� �� �����

R� �x � �� � �y � �� � �y � x� �� � �y � x� �
�� �����

R
 �x � �� � �y � �� � �y � x� �
�� �����

Let e�� � � � e� be the following edges�

e�
def
" �y " �� � �x � ��

e�
def
" �y " �� � �x � �� � �x � �

��

e�
def
" �y " �� � �x � �� � �x � �

��

e�
def
" �x " �� � �y � ��

e�
def
" �y " �� � �x � ��

e

def
" �x " �� � �y � ��

e�
def
" �x " �� � �y � ��

�� � �y � ���
e�

def
" �x " �� � �y � �� � �y � ��

��

We consider also the two vertex �that are edges� v�
def
" �y " �� � �x " �� and v�

def
"

�y " �� � �x " �
���

There are three transitions from 
i
��

�As was already mentioned� a point x � �x� y� � e can be represented by edge e and its local coordinate�
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�a� tr� " �
i� g�� ��� 
h� where g� � e�� 
h " 
i and ���e�� �� c� " �e�� �� �� c# ���
�b� tr� " �
i� g�� ��� 
g� where g� � �e� � v��� 
g " 
�i� ���e�� �� c� " �e�� �� c� and

���v�� �� c� " �e�� �� c�

�c� tr� " �
i� g�� ��� 
k� where g� � �e� � v��� 
k " 
��i � ���e�� �� c� " �e�� �� c� and
���v�� �� c� " �e�� �� c��

�

In what follows we do not take into account vertex v� and v� for sake of simplicity�
Their treatment is like for edges e� and e��

Let � " e�e�e
e�� It�s not di cult to see that Succ� " Id and that Succ�e���� " �� �
�since when edge e� is reached� there is a transition to edge e� with a reset function
that takes � into �� ��� Notice also that Succe�e
e	e� " Succe�e
e�e� " Id�

�� Location 
�i� PCD
�
i is de
ned as�

Region De�ning conditions Vector

R� �x � �� � �y � �� ������

R� �x � �� � �y � �� �������

R� �x � �� � �y � �� ������

R� �x � �� � �y � �� �����

Let e�� e�� e� and e� be de
ned as�

e�
def
" �y " �� � �x � ��

e�
def
" �x " �� � �y � ��

e�
def
" �y " �� � �x � ��

e�
def
" �x " �� � �y � ��

There are two transitions from 
�i�

�a� tr� " �

�
i� g�� ��� 
h� where g� � �e� � c � ��� 
h " 
�i and ���e�� �� c� " �e�� � #

�� c� ���
�b� tr� " �


�
i� g�� ��� 
j� where g� � �e� � c " �� and ���e�� �� c� " �e�� f

����� c� �
j and
f ���� will be de
ned later��

Let � " e�e�e�e�� It�s not di cult to see that Succ� " Id and that Succ�e���� " �# �
�as before� there is a reset function from edge e�� while c � �� to edge e�� but that
increments � instead of decrementing it�

�� Location 
��i is de
ned as 

�
i with the only di�erence that transition tr� it�s from 
��i to


k that will be in general di�erent from location 
j and that f
����� will be also di�erent

of f �����

x � �e� ��� In this proof we will use � instead of �x� y��
�By the above considerations about local coordinates� a reset of the form ��e�� �� � �e�� ���� for instance�

corresponds in fact to the reset ��e�� x� y� � �e�� 
� x� ���



���

�a� tr� " �

��
i � g�� ��� 
h� where g� � �e� � c � ��� 
h " 
��i and ���e�� �� c� " �e�� � #

�� c� ���
�b� tr� " �


��
i � g�� ��� 
k� where g� � �e� � c " �� and ���e�� �� c� " �e�� f

������ �� c� �
k
and f ����� will be de
ned later��

Remember that string wLwR can be represented as a positive rational number z as follows�
Let wL " � � � ai� � � � � a�� a� and wR " a��� a��� � � � � a�j � � � w�l�o�g� we suppose thatM has at
least one ����� Then we de
ne�

z "

�X
i	��

ai�
i

We encode z as a point� in H� x " �e�� �� on location 
�
Thus� a TM�con
guration �wLi � qi� wRi

� is encoded as follows� qi is encoded as the � locations

i� 


�
i and 


��
i as described above and the string wLiwRi

is encoded as a point xi " �e�� �i� on
location 
i�

Before explaining how to encode each TM�instruction we show that for a given x " �e�� ��
�on location li� we reach a point xf " �e�� �f � on location lj �on location lk� if frac
 � �

�
�frac
 � �

��� Initially� c �" ��

Let � " e�e�e
e�� �i " Succ���� the i�th time a trajectory starting at x " �e�� �� visit edge
e� and �i " Succ�e���� " �i � � idem for edge e�� Then �� " Id��� " � and after taking
transition tr� we have �� " Succ�e���� " � � � and c " �� We have then that �� " � � �
and �� " Succ�e��� � �� " � � � and c " �� In general �by an easy induction proof�� we
have that �i " �� �i� ��� �i " �� i and c " i� but whenever �i � � then Succi���� " �� We
prove that Succi���� " � after int
 iterations� let i " int
� then �i " � � int
 " frac
 and
�i � �� hence Succ

i
���� " �� Notice that at this moment we reach edge e� or e� depending

on whether frac
 � �
� or frac
 � �

� and c " int
� If edge e� is reached� then guard g� is
satis
ed and the system jumps to edge e� on location 


�
i with �

� " frac
 and c " int
� At 

�
i�

�� is incremented at the same time c is decremented and whenever c " � �and hence �� " ��
a jump to edge e� on location 
j is produced where c " � and �f " f ������ The proof is
similar for edge e� on location 
i� arriving at location 
k with c " � and �f " f �������

We show now how to encode each TM�instruction by some computation onH� Let s � f�� �g�
Notice that in order to simulate each TM�instruction we need to obtain the current symbol
and depending on its value to take an action� In fact we have already shown that testing
whether the current symbol is � or � is done just testing frac
 and then the only things that
remain to de
ne are functions f � and f ���

qi s �� s qj R� Take f ���� " f ����� " ���

qi � �� � qj R� De
ne f ����� " ��# ��

�wL and wR can be obtained by taking intz �the integer part of z� and fracz �its fractional part�� If
fracz �

�

�
then the current symbol is 
� otherwise it is ��
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qi � �� � qj R� In this case we take f ���� " ��� ��
qi s �� s qj L� Take f ���� " f ����� " �

���

qi � �� � qj L� De
ne f ����� " �
��� �

� �

qi � �� � qj L� Take f ���� " �
��#

�
� �

Thus� �f encodes zf �

From the above results we have that Reach�H�x��xf � i� a TM stops in a con
guration
�wLf � qf � wRf

� starting at a given con
guration �wL� � q�� wR�
�� �



Appendix C

Main Utilities of SPeeDI

The following is more detailed description of the tools� All the utilities described next takes
a h
le�spdii as input� We describe brie�y the di�erent utilities of SPeeDI �see Figure !����

getmafs� It takes an edge list and it returns a list of the MAFs corresponding to pairs of
successive edge in the list� as well as the accumulated MAF �accumulated composition
of the edge�to�edge successors��

looptype� Given a list of edges �a cycle signature� and an exit edge� it returns the �qualita�
tive� type of the cycle �DIE� STAY� EXIT�BOTH� EXIT�RIGHT or EXIT�LEFT��

reachable� Given an input interval �I��� a source edge �e��� an output interval �If � and a

nal edge �ef �� it answer to the question� Is If � ef reachable from I� � e�& If it is
the case� then the answer is Yes and it gives a signature that realizes it� otherwise it
says No�

showsigs� It takes a source and a destination edge �e� and ef respectively� and it gives a
list of all the feasible type of signatures from e� to ef �

simSIG� Given an input interval �I��� an output interval �If � and a signature it returns a
concrete signature� list of pairs of edges and intervals� that is the concrete execution
of the signature for the input I�� It leaves a cycle as late as possible�

simsig� Idem simsignature but it leaves a cycle as soon as possible�

trysig� It gives the reachable interval for a given input interval and signature�

simsig��g� It generates a picture in FIG format �
le�
g� from the simulation execution of
simsig�

simSIG��g� It generates a picture in FIG format �
le�
g� from the simulation execution of
simSIG�

�!�
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spdi�ps� It generate a postscript 
le that is the graphic representation of the input SPDI

le�

sig�ps� Generate a PostScript 
le with the type of a signature . a plain arrow showing the
path followed�

sig��g� As sig�ps� but generates a FIG 
le�

path��g� Given a path �a sequence of edges to be followed sequentially� produce a FIG 
le
showing the explored regions�



Appendix D

File Syntax for SPeeDI

As shown in Figure !��� the input 
le consists of three parts� The 
rst part is the description
of the regions vertices that starts with the keyword �Points��� The syntax is the following�

�point�label�� �x�coordinate�� �y�coordinate�

White spaces are allowed anywhere and each point description is written ina separate line�
The same is valid in general for the other parts that follow�

The second part starts with the keyword �Vectors�� and corresponds to the description of
the di�erential inclusions vectors�

�vector�label�� �x�coordinate�� �y�coordinate�

The last part begin after the keyword �Regions�� where the regions are described as a
sequence of vertices separated by �&� or �	� depending on the character of the edge de
ned
by the two successive vertex� If the edge is of Input� then a �&� is used as separator of the
corresponding vertices� If it is an Output edge� then �	� is written� The di�erential inclusion
of the region is input as a pair of vectors �de
ned in the Vector part�� Syntax�

�list�of�edges�� �a�vector�� �b�vector�

Where �a�vector� and �b�vector� are �vector�label�s and they correspond to the dif�
ferential inclusion given by �ba � �list�of�edges� is given by the following syntax�

�point�label� �inout� �point�label� ��� �inout� �point�label�

where �inout� can be �&� or �	� and the 
rst �point�label� must be equal to the last
one�

�!�
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Input File

input��le ��" Points� �EOL�
point�list
Vectors� �EOL�
vector�list
Regions� �EOL�
region�list

comment ��" -/� line
line ��" string

int�constant ��" $�� �%

point ��" point�label -�� x�coordinate -�� y�coordinate

point�list ��" point �EOL� point�list j �
vector ��" vector�label -�� x�coordinate -�� y�coordinate

vector�list ��" vector �EOL� vector�list j �
region ��" region�def -�� a�vector -�� b�vector

region�def ��" point�label inout region�def
j point�label

region�list ��" region �EOL� region�list j �
inout ��" -&� j -	�

a�vector ��" vector�label
b�vector ��" vector�label

x�coordinate ��" coordinate
y�coordinate ��" coordinate
coordinate ��" rational -�� rational
rational ��" int�constant -�� int�constant

point�label ��" string
vector�label ��" string

Table D��� Syntax of the Input 
le for SPeeDI�

Comments are written as lines starting with an asterisk -/� and can be put at any moment
on the input 
le�

In Table D�� we present the syntax of SPeeDI input 
le and in Table D�� the syntax of the
command�lines� We denote a blanc space by -��� We de
ne string to be the sequenece of any
character with the exception of the ones in the following set� f-��� -��� -��� -&�� -	�� - �g� �EOL�
is the end
of
line character�

In table D�� �
le� � will denote the name of the input
output 
le� where  � f
g�ps� spdig�



�!�

Commands

command�line ��" getmafs
j looptype
j path��g
j reachable
j showsigs
j sig��g
j sig�ps
j simsig
j simSIG
j simsig��g
j simSIG��g
j spdi�ps
j trysig

getmafs ��" getmafs -
le�spdi� edge�list
looptype ��" looptype -
le�spdi� edge�list edge
path��g ��" path��g $�o -
le�
g�% �le�spdi interval edgelist

reachable ��" reachable -
le�spdi� initial�interval �nal�interval
initial
edge �nal�edge

showsigs ��" showsigs -
le�spdi� initial
edge �nal�edge
sig��g ��" sig��g $�o 
le�
g% -
le�spdi� -�� signature -��
sig�ps ��" sig�ps $�o 
le�ps% -
le�spdi� -�� signature -��
simsig ��" simsig -
le�spdi� initial�interval �nal�interval -�� signature -��

simSIG ��" simSIG -
le�spdi� initial�interval �nal�interval -�� signature-��
simsig��g ��" simsig��g $�o 
le�
g% -
le�spdi� initial�interval

�nal�interval -�� signature -��
simSIG��g ��" simSIG��g $�o 
le�
g% -
le�spdi� initial�interval

�nal�interval -�� signature -��
spdi�ps ��" spdi�ps -
le�spdi� $-
le�ps�%
trysig ��" trysig -
le�spdi� initial�interval �nal�interval -�� signature -��

edge ��" point -�� point
initial�edge ��" edge
�nal�edge ��" edge
edge�list ��" edge -�� edge�list j �

initial�interval ��" interval
�nal�interval ��" interval

interval ��" left�extremity rational -�� rational right�extremity
left�extremity ��" -$� j -��

right�extremity ��" -%� j -��
signature ��" sequential loop signature j �

loop ��" -$� edge�list -%� j �
sequential ��" edge�list j �

Table D��� Syntax of the command�lines�
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Appendix E

Input 	le for Example 
��

The input 
le� example��spdi is shown in what follows�

�!�



�!! Input 
le for Example !��

Points�
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�� ������ �����


� ������ �����

�� ������ ����

�� ������ ���

�� ������ ����

�� ������ ����

�� ������ 
���

�� �
���� �
���

��� �
���� �����

��� �
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Complete output of Example 
��

F�� Output of spdi�ps

Executing -spdi�ps example��spdi� we obtain a �� pages poscript 
le in ����� sec �CPU use�
���� 0� with the partition of the plane and the vertex number of each region in the 
rst
page� In the following pages of -example��ps�� each region is highlighted and some additional
information about the edges �input and output edges and their ordering� as well as its vectors
�the di�erential inclusion� are shown� In Figure && the 
rst and second pages of the 
le are
shown�

F�� Output of getmafs

The application of -getmafs example��spdi ����������������������������!�����������!����������
���������� gives as output�

The requested MAFs�

Show MAFs from SPDI file v���

The requested MAFs�

From edge �� �����	 to edge �� ������	�

MAF is ���������������
���x����� ��������������
���x�����

�accumulated MAF is

���������������
���x����� ��������������
���x�����	

From edge �� ������	 to edge ��
 �����
	�

MAF is ����x� ���x�

�accumulated MAF is

���
�
��

����
��
�
x����� ����
��
�����
���
x������	

From edge ��
 �����
	 to edge �� ������	�

MAF is ����x� ���x�

���
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�accumulated MAF is

����������������
���x������ ���������
���������x�������	

From edge �� ������	 to edge �� �
��
�	�

MAF is �x����e��� x����







��������

�accumulated MAF is

����������������
���x������ ���������
���������x������





��������	

From edge �� �
��
�	 to edge �� �
����	�

MAF is �x� x�

�accumulated MAF is

����������������
���x������ ���������
���������x������





��������	

From edge �� �
����	 to edge �� �
����	�

MAF is �x� x�

�accumulated MAF is

����������������
���x������ ���������
���������x������





��������	

From edge �� �
����	 to edge �� �
��
�	�

MAF is �x� x�

�accumulated MAF is

����������������
���x������ ���������
���������x������





��������	

From edge �� �
��
�	 to edge �� �����
	�

MAF is �x� x�

�accumulated MAF is

����������������
���x������ ���������
���������x������





��������	

From edge �� �����
	 to edge ��� ������	�

MAF is �x� x�

�accumulated MAF is

����������������
���x������ ���������
���������x������





��������	

User time� ���� sec�

CPU percentage� �
�� � �

F�� Output of showsigs

showsigs example��spdi ���� �!���

Closure loops which may be added to the end of signatures�

�� �������������������
���������������������������������������

�� �������������������
���������������������������������������


� �������������������
����������������������
���������������������
�

����������������������������������

Generating normal signatures from edge ���� to ����� ���

�� �����������	�����
�������
��
��
�����
�����
��
������
������	�
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R�ESUM�E � Les syst�emes polygonaux �a inclusions di��erentielles �SPDIs� sont des syst�emes planaires non
d�eterministes qui peuvent �etre repr�esent�es par des inclusions di��erentielles constantes par morceaux� Cette
th�ese porte sur les aspects th�eoriques et pratiques des SPDIs tels que le probl�eme de l�atteignabilit�e et
de la construction du portrait de phase� Nous montrons que le probl�eme de l�atteignabilit�e est d�ecidable
pour les SPDIs� Notre proc�edure est bas�ee sur le calcul des limites des trajectoires individuelles � l�id�ee
sous�jacente est l�utilisation de fonctions de Poincar�e unidimensionelles� pour lequelles on peut facilement
calculer les points 
xes et qui permettent dans la plupart des cas d�acc�el�erer les cycles� Nous avons implant�e
cet algorithme d�atteignabilit�e dans l�outil SPeeDI� Ensuite� nous construisons le portrait de phase des
SPDIs� Nous savons identi
er les noyaux de viabilit�e des boucles simples� Il s�agit des ensembles de points
initiaux de trajectoires restant dans la boucle� Nous introduisons la notion de noyau de controlabilit�e de
boucles simples comme l�ensemble des points atteignables les uns �a partir des autres par des trajectoires
qui restent dans le noyau� Nous proposons un algorithme non it�eratif pour calculer ces deux noyaux� qui
nous permet ensuite de construire le portrait de phase des SPDIs� En
n� nous �etudions la d�ecidabilit�e du
probl�eme de l�atteignabilit�e pour d�autres classes de syst�emes hybrides �a deux dimensions � les syst�emes
hi�erarchiques constants par morceaux �HPCDs� et les syst�emes constants par morceaux� d�e�nis sur les
surfaces� Nous montrons que le probl�eme de l�atteignabilit�e pour ces deux classes de syst�emes est �equivalent
�a l�atteignabilit�e pour des syst�emes a nes par morceaux� dont la d�ecidabilit�e est un probl�eme ouvert�
Nous montrons en
n que le probl�eme de l�atteignabilit�e pour quelques extensions de HPCDs est ind�ecidable�

MOTS CLES � SPDI� Inclusions Di��erentielles� Syst�emes Hybrides� V�eri
cation� D�ecidabilit�e� Analyse
d�atteignabilit�e� Portrait de Phase� Controllabilit�e� Viabilit�e�

TITLE� Algorithmic Analysis of Polygonal Hybrid Systems

ABSTRACT� A polygonal di�erential inclusion system �SPDI� is a non�deterministic planar hybrid
system which can be represented by piecewise constant di�erential inclusions� In this thesis we are
concerned with several theoretical and practical questions related to SPDIs such as reachability analysis
and phase portrait construction� First we show that the reachability question for SPDIs is indeed decidable�
Our procedure is not based on the computation of the reach�set but rather on the computation of the limit
of individual trajectories� A key idea is the use of edge�to�edge one�dimensional a ne Poincar�e maps� the

x�points of which are easily computed� By taking advantage of this information� cycles can be accelerated
in most cases� The above reachability algorithm has been implemented in a tool called SPeeDI� We next
build the phase portrait of such systems� In particular� we identify the viability kernels of simple cycles�
Such kernels are the set of starting points of trajectories that can keep rotating in the cycles forever�
We also introduce the notion of controllability kernel of simple cycles as the set of points such that any
two points of the set are reachable from each other via trajectories that remain on the set� We give
non�iterative algorithms to compute both kernels� We obtain the SPDI phase portrait computing all the
viability and controllability kernels� We 
nally study the decidability of the reachability problem for other
��dimensional hybrid systems� We introduce hierarchical piecewise constant derivative systems �HPCDs�
and �
dimensional manifolds with piecewise constant derivative systems� We show that the reachability
problem for the above two classes of systems is as hard as the reachability problem for piecewise a	ne maps
that is known to be an open problem� We also show that the reachability question for slight extensions of
HPCDs are undecidable�
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