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Abstract Browser extensions are small applications executed in the browser context that provide ad-
ditional capabilities and enrich the user experience while surfing the web. The acceptance of extensions
in current browsers is unquestionable. For instance, Chrome’s official extension repository has more
than 63,000 extensions, with some of them having more than 10M users. When installed, extensions are
pushed into an internal queue within the browser. The order in which each extension executes depends
on a number of factors, including their relative installation times. In this paper, we demonstrate how
this order can be exploited by an unprivileged malicious extension (i.e., one with no more permissions
than those already assigned when accessing web content) to get access to any private information that
other extensions have previously introduced. We propose a solution that does not require modifying
the core browser engine, since it is implemented as another browser extension. We prove that our ap-
proach effectively protects the user against usual attackers (i.e., any other installed extension) as well
as against strong attackers having access to the effects of all installed extensions (i.e., knowing who
did what). We also prove soundness and robustness of our approach under reasonable assumptions.

Keywords Web Security · Privacy · Browser Extensions · Malware · Chrome

1 Introduction

Web browsers have become essential tools that are installed on nearly all computers. The most popular
browsers as of this writing (April 2018) are Chrome (77.9%), Firefox (11.8%), Internet Explorer/Edge
(4.1%), Safari (3.3%) and Opera (1.5%) [35]. Most browsers allow users to install small applications,
generally developed by third parties, that provide additional functionality or enhance the user experi-
ence while browsing. Such plug-ins are known as browser extensions and they interact with the browser
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by sharing common resources such as tabs, cookies, HTML content or storage capabilities. As of May
2017, the Chrome Web Store1 (the official repository where all Chrome extensions are stored and
distributed) contains more than 135,000 extensions, whereas for the case of the second most popular
browser (Firefox), its extension store contains almost 70,000 items.2

When an extension is installed, the browser often pops up a message showing the permissions this
new extension requests and, upon user approval, the extension is then installed and integrated within
the browser. Extensions run through the JavaScript event listener system. An extension can subscribe
to a number of events associated with the browser (e.g., when a new tab is opened or a new bookmark
is added) or with the content (e.g., when a user clicks on a HTML element or when the page is loaded).
When a JavaScript event is triggered, the event is captured by the browser engine and all extensions
subscribed to this event are executed.

In this paper we focus on Chromium [23], which is an open source browser and the basis for Chrome,
Opera, Brave, Edge Chromium or Yandex browsers. Extensions installed in Chromium can also run
in all mentioned browsers. The execution engine is exactly the same in all the browsers and follows
the same pipeline model that will be explained in some detail later (Section 3.1). For this reason, we
will refer to Chrome and Chromium interchangeably. Extensions in Chromium can be of three types:
content scripts, background pages, or both. In what follows, our main focus is on content scripts, which
are JavaScript files that run in the context of the loaded web page. It is important to emphasize that
the main aim of content scripts is to access and interact with the Document Object Model (DOM). This
fact alone raises a fundamental privacy question, since it is explicitly assumed that extensions will have
full access to any (sensitive or not) content that the user is accessing. Browsers (including Chromium)
dodge this issue by assuming that the user should trust the extension before installing it. In this paper
we do not address this problem, which is essentially related to determining if an extension’s behavior
is benign or malicious, but a related one described in what follows.

1.1 Extension order attacks

When analyzing the security and privacy implications of browser extensions, one question that has been
largely overlooked is the potential leakage of information among extensions. In nearly all browsers, each
content script uses its own wrapper of the DOM to read and make changes to the page loaded by the
browser. They also run in a dedicated sandbox that the browser provides for security reasons. However,
there is no isolation in terms of privacy, since all changes an extension performs in its own DOM are
automatically synchronized with the main DOM. One straightforward—but nonetheless important—
consequence of this is that a malicious extension could eavesdrop on other extensions (i.e., it can
get access to the data they put on the DOM and observe their actions) and even manipulate their
behavior by acting on their DOM elements (e.g., clicking on elements introduced by another extension).
An attacker can exploit this using two different strategies:

1. Exploiting the order. The way Chromium manages extensions (see Section 3.1) introduces a
default execution order among extensions with undesirable consequences. One key issue is that the
n-th extension in the pipeline can learn all contents introduced by the first n− 1 extensions in the
HTML document. Thus, extensions located at the end of the pipeline enjoy more privacy than ones
installed earlier. More importantly, the order could be explicitly exploited, eventually producing
privacy leaks and security problems.

2. Order-independent attacks. Some attacks enabled by the absence of effective isolation among
extensions’ actions do not require exploiting the execution order (i.e., getting the malicious ex-
tension to be placed at the end of the execution pipeline). However, exploiting the order provides

1 https://chrome.google.com/webstore/category/extensions
2 https://addons.mozilla.org/
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the attacker with a privileged position that facilitates such attacks, which will result in a simpler
code for the malicious extension that will increase the chances of passing the analysis performed by
official stores [17]. Furthermore, not all attacks might involve adding event handlers, since access
to information put in the DOM will only be possible once the attacked extension has executed.

We have experimentally verified the previous attacks and demonstrated, for instance, that an
extension with no privileges can learn which pictures a user likes in Pinterest or change the picture a
user wants to share; that it can tamper with the notes and events provided by the popular Evernote
Web Clipper; or that it can profile the user’s video browsing preferences in YouTube (see Section 3.3
for details.) This lack of effective isolation is not only inherent to Chromium’s extension model, but
also explicitly acknowledged. Browsers such as Chrome do not even attempt to guarantee some form
of “non-interference” among extensions. On the contrary, developers are encouraged to implement
appropriate mechanisms to protect any sensitive information that ends up in the DOM, since it is
assumed that other extensions could simply read or manipulate it. Even if browsers do not factor this
into their threat model, we believe that this is a serious vulnerability that has not been discussed
before. More importantly, it can be easily exploited by a malicious extension, regardless of the fact
that it is explicitly assumed in the browser’s extension model or not.

1.2 Our contributions

In this paper we make the following contributions:

1. We discuss a vulnerability inherent to the way extensions are handled in Chromium. The problem
originates in the fact that extensions can effectively interfere with each other, which can be exploited
by an attacker to access sensitive information injected by other extensions, and also to manipulate
their implemented event handlers. To the best of our knowledge, this is the first work that discusses
this security and privacy threat.

2. We formalize this problem in terms of knowledge gained by the attacker. In particular, we establish
what the default knowledge any extension has is, and then define what an attacker might get to know
based on her attacking capabilities. A usual attacker is basically any other installed extension just
taking advantage of its position in the execution pipeline, while a strong attacker has the capability
of knowing the effect of the execution of each extension.

3. We propose a solution that provides practical security isolation among extensions and does not
require altering the core browser engine. The key idea is to replace the extension pipeline by a
(simulated) parallel execution model in which all extensions receive the same input page (see Figure
1). An additional component identifies the changes introduced by each extension and applies all of
them to the original input page. We prove properties (soundness and robustness) of our solution
and also discuss limitations of this approach.

4. To facilitate the reproducibility of our results, we make our implementation freely available3.

The rest of this paper is organized as follows. A brief background on browser extensions and the
architecture is given in Section 2. In Section 3 we describe Chromium’s extension model in some detail,
characterize the threat posed by a pipeline-based execution model for extensions and discuss attacker
models. Section 4 describes our solution and discusses the main advantages, properties, and limitations
of our approach. Section 5 reports the experimental results obtained with our implementation. Finally,
Section 7 discusses related work and Section 8 concludes the paper.

3 https://github.com/Pica4x6/Ghost_Extensions

https://github.com/Pica4x6/Ghost_Extensions


4 Pablo Picazo-Sanchez et al.

E3E2E1
X

<latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit><latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit><latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit><latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit>

E3

E1

E2

X
<latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit><latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit><latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit><latexit sha1_base64="VfYnBWr0qNp/vf1hBmmNQpZpI84=">AAAB5XicbZDNSsNAFIVv6l+tf1WXbgaL4KokIuiy6MZlBfsDbSiT6U0zdCYJMxOhhD6CrkTd+UK+gG/jpGahrWf1zT1n4J4bpIJr47pfTmVtfWNzq7pd29nd2z+oHx51dZIphh2WiET1A6pR8Bg7hhuB/VQhlYHAXjC9LfzeIyrNk/jBzFL0JZ3EPOSMmmI01Jkc1Rtu012IrIJXQgNKtUf1z+E4YZnE2DBBtR54bmr8nCrDmcB5bZhpTCmb0gkOLMZUovbzxa5zchYmipgIyeL9O5tTqfVMBjYjqYn0slcM//MGmQmv/ZzHaWYwZjZivTATxCSkqEzGXCEzYmaBMsXtloRFVFFm7GFqtr63XHYVuhdNz21695eN1k15iCqcwCmcgwdX0II7aEMHGETwDG/w7kycJ+fFef2JVpzyzzH8kfPxDR+Di+g=</latexit>

HTML0

HTML’

HTML1

HTML0

HTM
L3

Fig. 1: Modified extension execution pipeline in our solution.

File Type Number File Type Number
JSON 173564 MIN 46810
PNG 167831 SVG 29394
JS 137325 GIF 27771
HTML 106383 TTF 24885
CSS 86772 WOFF 24761

Table 1: Files frequency in Chrome extensions

2 Chrome Browser Extensions

A browser extension is basically a collection of packaged files which can perform specific operations
in the client browser and that can interact with the HTML file accessed by the user. In Chrome, it is
mandatory for browser extensions to have a JSON file named manifest.json that contains information
about the extension such as its name, permissions and capabilities that it is allowed to use, and meta-
data, among others. Browser extensions may consist of one or more JavasScript or HTML files, as
well as of additional resource files such as Cascading Style Sheets (CSS), text, fonts or images. Table
1 shows the most used file types in Chrome extensions. This statistic has been obtained by running a
static analysis over 173,553 extensions and some of their versions found in Chrome’s official repository
(Chrome Web Store).

Browser extensions may be formed by background scripts, content scripts, or both. Roughly speak-
ing, the main difference between background pages and content scripts is that the former is not allowed
to directly interact with the DOM but it can use the chrome API to interact with the browser events,
e.g., get the number of installed extensions, the user’s history, retrieve the browser cookies, be able to
know when the user opens/closes tabs. In contrast, content scripts are focused on the final representa-
tion and basically interact with the content (content scripts can also use a small subset of the chrome
API). In content scripts, extensions can modify the DOM and be run when some events are fired such
as clicks on elements, when the page is loaded or when a form is sent, among others.

Extensions that follow a background page architecture means that there is an HTML file that
implements the extension behavior. It is worth noting that it is mandatory to have at least one HTML
file, which may eventually contain JavaScript code (or links to other JavaScript files that can be
stored in the same extension or allocated in external servers). Moreover, there are two different types
of background page extensions: persistent background pages and event pages. Persistent background
pages are extensions that are always running as soon as the browser is opened, while event pages
are extensions than run only when needed, i.e., extensions can subscribe to some JavaScript events
(addListener), and they remain idle until any of those events is fired.
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Fig. 2: Browser Extension Taxonomy

On the other hand, extensions that follow a content script architecture are aimed for an explicit
interaction with the DOM. This means that such extensions can access all the information of the
HTML and, thus, they might interact (alter, delete, insert, etc.) with the page contents. This kind of
extensions, however, cannot directly modify the DOM of the extension (the background part). So, a
content script is some JavaScript file(s) injected in the context of a page that has been loaded into the
browser, and it may be seen as part of that loaded page, not as part of the extension it was packaged
with (its parent extension).

Content scripts and background extensions work in two different worlds where direct communication
between them is banned to avoid possible Cross-Site Scripting (XSS) attacks and information leakages.
Nevertheless, they are not totally separated from each other. Both kind of architectures can share
information and collaborate through some predefined extension message passing. Figure 2 illustrates
the architecture of browser extensions that can work as a background to interact with the browser, as
a content script to interact with the content, or both at the same time and communicate with each
part by using message passing.

Events order in JavaScript. In JavaScript, the event propagation mechanism determines in which
order an event is received by HTML elements. For instance, when two nested elements are subscribed
to the same event (e.g., div1 and div2 subscribes to click in Figure 3), and this event is fired, there are
basically two ways to propagate the event in the DOM: bubbling and capturing. By using capturing,
the event is initially handled by the root element and propagated to its children. In contrast, with
bubbling the event is initially captured and handled by the children (leaves nodes in the DOM tree)
and then propagated to their parents.
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1 <!DOCTYPE html>
2 <html>
3 <body>
4 <div id="div1" style="border:1px solid red; width:10px;height:10px" >
5 <div id="div2" style="border:1px solid black;width:5px;height:5px">
6 </div>
7 </div>
8 </body>
9 <script >

10 capturing = true;
11 document.getElementById(’div1’).addEventListener(’click’,function (){alert

(’1’)},capturing)
12 document.getElementById(’div2’).addEventListener(’click’,function (){alert

(’2’)},capturing)
13 </script >
14 </html>

Fig. 3: JavaScipt Event Flow

In JavaScript, extensions subscribe to events by using the addEvenListener() function. In our
example above we use capturing, so the first alert() will correspond to the <divid="1">. In case of
using bubbling, then the first alert() will correspond to the <divid="2"> element.

Apart from the JavaScript event propagation mechanism, extensions developers can define one
additional order level through a property named run_at in the manifest.json file that allows them
to control at which moment the extension will be injected. That property has three possible values:
document_start, document_end and document_idle. When the value is set to document_start, the
extension is injected when the document element is created. Setting it to document_end would cause the
extension to be injected when the DOM is completed but before any other subresources are loaded, such
as e.g., images, iframes, etc. Internally, Chromium loads the extension when the DOMContentLoaded()
is triggered. Finally, the document_idle value would cause the extension to be injected after document_
start and before document_end, that is, once the page has been created and after the DOM is loaded.
Internally, Chromium loads the extension after the window.onload() is fired.

Additionally, Chrome currently works by delegating to the HTML parser the way the content
scripts are inserted when they are tagged as either document_start or document_end. Thus, if the
HTML parser schedules document_start or document_end as tasks, then content scripts are inserted
in separate tasks. However, content scripts tagged as document_idle are always injected in separate
tasks.

Despite of the existence of the aforementioned strategies to control the execution order of extensions,
explicitly writing them does not unequivocally determine the order in which they will be executed.
Whenever two or more extensions have the same configuration parameters, the Chrome extension
engine decides which one will be executed based on the extensions’ installation date. This behavior
follows a FIFO policy: the oldest installed extension will be the first to be executed whereas the newest
will be the last one to be executed.

Apart from the event management mechanism explained above, it is worth mentioning how Chrome
manages tasks and microtasks. A task—a click event, for instance—is run in its own thread and is
composed of a set of JavaScript sentences, actions to handle the event, which belong to the event loop.
All tasks are queued and executed sequentially. Moreover, when a setTimeout is used in the event
loop, the callback function that is executed asynchronously is queued as a new task. This is specially
useful for monitoring delayed functions in browser extensions.

Nevertheless, some operations can be also executed in the middle of a task execution, e.g., to make
something asynchronous without being scheduled as a new task and queued in the tasks queue. Those
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operations are called microtasks (composed of promises and mutation observers) and are executed
intermediately after the task execution. The main reason for this new types of queues is to enrich the
user experience. However, microtasks are not executed when the event loop is not empty, e.g., if two
click events are fired using JavaScript code and the function that handles the click event uses promises,
those microtasks will not be run until both clicks events are executed. We refer the reader to [8] for
more information and practical examples about how tasks, microtasks and how their execution queues
work. In this work however, we are not taking microtasks into consideration and they are left as future
work as it is mandatory to modify the Chromium’s source code to take them under control.
Extensions in Chromium’s source code. The security model of browser extensions in Chromium
is based on isolated worlds in (JavaScript) V8. Its main purpose is to isolate the execution of different
untrusted content scripts (with a wrapper of the original DOM) while keeping the main DOM structure
synchronized.

Essentially, a world is a “concept to sandbox DOM wrappers among content scripts” [12]. Each
world has its own DOM wrapper, yet there might be different instances from one particular world and,
thus, all of them would share the same Blink C++ DOM object. The main reason for this partition is
that instances belonging to the same world cannot share DOMs but can share C++ DOM objects, i.e.,
no JavaScripts can be shared between different worlds but C++ DOM objects can be, thus permitting
to run untrusted content scripts on shared DOM.

Roughly speaking, in terms of browser extensions this world concept means that the content scripts
of each extension will run its own JavaScripts over different DOMs. However, all these DOMs are
synchronized so that all changes made by each individual JavaScript will automatically be sent to
other DOMs (other wrappers and the main DOM the user sees).

According to the official documentation, V8 has three different worlds: a main world, an isolated
world and a worker world. A main world is where the original DOM with all its original scripts are
executed. An isolated world is where the content scripts of the extensions are executed—all of them can
access the main DOM through Blink C++ shared objects. Finally, a worker world is associated with
threads in such a way that each isolated world is associated with one worker, i.e., the main thread is
the main world plus each of the content scripts. Figure 4 represents how Chrome manages and isolates
content scripts of browser extensions.

Overall, this isolation mechanism prevents Chrome from being vulnerable to attacks such as the
one recently demonstrated in [26] against Firefox, whose security model lacks isolation. Nevertheless,
Chrome’s security model has not considered privacy between extensions as part of its architecture. This
allows, for instance, that if the Pinterest extension inserts a <span> element on each picture contained
in the DOM, then all these changes will automatically be visible to the rest of the extensions, regardless
of whether they run in isolated worlds. This observation is the basis for the attack discussed in this
paper.

3 Attacker Model

In this section, we describe how the extension engine that Chromium implements introduces both
privacy and security risks by default. In particular, we show how a simple malicious browser extension
can exploit those issues with no more privileges than having access to the DOM. We then introduce a
formal model for the execution pipeline of extensions and describe our threat model.

3.1 Chromium’s extension execution model

Chromium manages all installed extensions through the class ExtensionRegistry implemented in exten-
sion_registry.cc and the associated header file extension_registry.h. This class implements methods to
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Fig. 4: Browser Extensions Architecture in Chromium

add, remove or retrieve all extensions that for a particular browser context have been enabled, disabled,
blocked, blacklisted, etc. Each set of extensions is internally managed through the ExtensionSet class
implemented in extension_set.h and extension_set.cc. This is just a standard C++ map to manage
sets with methods to insert, remove and retrieve items. Importantly, it also provides a standard C++
iterator to enumerate all set elements. Overall, this means that installed extensions in Chromium are
placed in a pipeline and are called sequentially to inject the content script(s) in the DOM. Apart from
that, the position at which the browser injects content scripts is determined by a number of factors:

1. First, by the implicit order declared in the run_at property in the manifest.json file.
2. If two or more extensions have the same run_at value, the browser tries to determine their execution

order using the JavaScript event propagation mechanism [18].
3. Finally, if the event propagation order is the same, extensions are executed according to their

installation time: A executes before B if B was installed after A.

This pipeline works as illustrated in Figure 5. The content script of the first extension is inserted and
then it is executed in an isolated world by using the method executeScriptInIsolatedWorld (see [12] for
more details about worlds in Chrome). The output of an extension is automatically synchronized with
the shared DOM, so when the next extension is executed its wrapper DOM already contains all the
changes that previous extensions have made.

3.2 Manipulating the execution pipeline

We assume that the attacker gets one malicious extension at the end of the execution pipeline. Even if
the extension is not the last to be installed, Chromium’s extensions model provides various mechanisms
that an attacker can exploit to modify the order in which parts of the extension code will run. For
example, a malicious extension can be marked to run once the DOM is loaded. This is achieved by
setting the run_at property to document_end in the manifest.json file. Additionally, the extension can
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Fig. 5: Chromium’s execution model for extensions.

use the capturing JavaScript event propagation property to force that the fired event would execute
the extension in the return journey of the event propagation (check [18] for further details about this).
Moreover, modifying the default execution order could be done by following two different approaches:
1. Through another extension’s management permissions, similarly to what the Extensity extension

does [11]. Essentially, this extension enables and disables extensions automatically in the browser.
The attacker will disable all installed extensions and then re-enable them again, but putting the
malicious extension at the end. For this to work in practice, the user must explicitly approve the
malicious extension requirement to extend its permissions (namely, management). Since many users
do not pay attention to requested permissions, this could guarantee success for the attacker.

2. Modifying the Secure Preferences file. This is a JSON configuration file that was initially thought
to be modified only by the browser [6]. However, Chrome allows developers to distribute extensions
as part of other software so this file could also be externally modified by other processes. This is
the basis for most of the malware installed in the browser because of its deficient security [15].
The attacker can thus modify the install_time property in the Secure Preferences file, and put
her extension at the end of the pipeline. See [32] for a detailed explanation on how to modify the
manifest file.

3.3 Attack examples

To exemplify the problem, we tested the attack in a Chrome browser with four extensions already
installed: Pinterest, Evernote, vidIQ Vision for YouTube and our custom extension. Our malicious
extension subscribes to all possible JavaScript events in the browser (i.e., in the web page context).
This guarantees that the extension will always be executed whenever any event is fired.

The official extension of Pinterest, which has more than 10M users, parses the entire content and
adds hidden <span> elements on each picture it finds in the DOM, as well as some CSS elements.
When the user triggers the onmouseover() event by passing the mouse pointer over a picture, the
span becomes visible in the form of a button and, if the user clicks on it, the picture is automatically
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shared on her Pinterest board. Assume now that the user has some “secret boards” defined in her
Pinterest account to avoid sharing pictures with all the world. Our malicious extension can carry out
the following actions:

1. It can add a listener to the same onclick() JavaScript event to know which pictures the user adds
to her account, and thus the photos will no longer be private.

2. It can learn what pictures the user likes and it could share that information to an advertisement
company [37].

3. It could generate a click JavaScript event on each picture, automatically sharing all pictures in the
user’s account without any confirmation pop-up.

4. It can replace the picture the user wants to share by another one.

Evernote Web Clipper has currently more than 4.5M users. The extension parses the web page
and inserts some CSS code and hidden <span> elements on each picture contained in the DOM.
Additionally, it adds a contextual menu when the user performs a right click either on a single tag or
in the whole document. Using this contextual menu, the user can add items such as meetings, personal
notes, or any other information to her calendar. Our malicious extension can subscribe to the click
events and, in addition to the attacks described for the Pinterest scenario, it could also learn all details
about the notes or calendar entries added by the user.

Finally, we tested it against vidIQ Vision for YouTube. This extension has more than 500,000 users.
Among other actions, it inserts a <div> element in the right banner of the screen when a user visits
Youtube in order to provide her with richer information and track her viewed videos. When the user
visits Youtube for the first time, this extension asks her for her username and password (as a matter of
fact, all extensions subscribed to either onkeydown(), onkeypress() or onkeyup() events may get both
the username and password). Our malicious extension, apart from getting the username and password,
could also get all viewed videos and profile the user’s habits.

3.4 Modeling extension effects

Before formally defining our attacker model, we first introduce some notation and definitions. In what
follows, E = 〈E1, . . . , Ei, . . . , En〉 (n > 0)4 will denote the “set” of extensions already installed in the
browser, where the index indicates their default execution order (i.e., E1 is the first to be executed).

When extensions are executed, they have an effect. For our purposes, we split such effects into two
parts: a functional effect that is reflected on the changes done to the DOM the extension acts on, and
some side-effects that are not directly reflected in the DOM (e.g., sending information to other servers,
interacting with the browser, executing external scripts, etc.). The functional effect of an extension Ei

when applied to a DOM will be denoted by fi(DOM) = DOMi. In this paper we are only concerned
about the functional effect of DOMs, so all the results that follow only apply to what extension can
do on the DOMs and, thus, no claim is done concerning extensions’ side-effects.

Extensions can perform four different types of high-level operations while being executed: insertions,
deletions, updates, and simply doing nothing. An extension Ei does nothing when the result of its
execution is the same as the inputAs expected, the effect of the other operations (insertions, deletions
and updates) implies that the new DOM is modified by the corresponding change.

Definition 1 Let E = 〈E1, . . . , Ei, . . . , En〉 with n > 0, be the set of extensions that a browser has
already installed and DOM0 the original content provided as input. We define the execution pipeline
as the result of the execution of the n extensions as composite functions: fn ◦ . . .◦f1(DOM0) = DOMn.

4 All the discussion below assumes that there is at least one extension installed.
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DOMs can be seen as trees [7]. We will use this fact to define the above operations in terms of
operations on trees. Thus, if extension Ei only inserts elements in the DOM, then, DOM ⊆ fi(DOM).
In case Ei only deletes something from DOM, then, fi(DOM) ⊆ DOM. Finally, if Ei only updates
DOM, then fi(DOM) = DOMi where DOM is equal to DOMi except for the field that has been
updated.5

We assume a tree operation that allows us to compare DOMs and give us the difference between
them: DOM−DOM′. Moreover, we say that DOM is smaller or equal than DOM’ (denoted DOM ≤
DOM’) if and only if DOM is a subtree of DOM’.6

Finally, we say that the default knowledge of an extension is the amount of information it can get
from the DOM at the moment of its execution. Note that the actual knowledge of an extension might
not be equal to the default knowledge.

Note that the real knowledge of an extension might not be equal (and neither a subset nor a
superset) of the default knowledge. The reason is that, as we will see, this knowledge might be affected
by attacks or by a solution to those attacks. The concept is in any case useful as it characterises what
the extension knows by default, if no external interference is added to the expected behavior of how
the browser works.

If an execution pipeline is such that the overall functional effect of all extensions is only insertions
or doing nothing, we say that the execution pipeline is monotonic with respect to the structure of the
DOM (or simply, that it is monotonic). Conversely, if any extension Ei in the execution pipeline deletes
or updates information, then it is generally impossible to make any statement about whether any other
extension knows more or less than Ei. For instance, an extension Ei−1 could delete something while
extension Ei adds it back, in which case any other extension Ej (j > i) will not be able to detect that
there has been a deletion in the past.

3.5 Attacker model

We consider two different types of attackers: strong and usual attackers. Intuitively, a strong attacker
is a malicious extension that has access to the output of all executions in the pipeline. Note that this
provides the attacker not only with the effect of all extensions, but also with knowledge about which
extension did what. Alternatively, a usual attacker is a browser extension that only has access to the
corresponding DOM that the extension receives as input when it is executed (plus the original DOM).
More formally:

Definition 2 A strong attacker (As) is an extension EAs
that is interleaved in the execution pipeline

such that fAs ◦fn◦fAs ◦· · ·◦fAs ◦f1◦fAs(DOM) = DOMn. This is the strongest attacker because it can
know all the changes that all extensions have performed. A usual attacker (Au) is an extension EAu that
is executed in the j−th position of the pipeline (j ≤ n) such that fn◦. . .◦fAu

◦· · ·◦f1(DOM0) = DOMn,
having the default knowledge any other extension in position j could have. Note that j > 1 as otherwise
the attacker would learn nothing.

A strong attacker has definitively more knowledge than any other in the pipeline and can thus take
advantage of that. Note that, in particular, a strong attacker gets to know which extension did what
changes since it can calculate the effect of each extension. The usual attacker can only infer partial
information about the other extensions by diffing DOM0 and the DOMAu that it receives as input.
However, this attacker will know neither the number of extensions nor which operations they have

5 Note that, to avoid over-formalization, we are not giving formal definitions for these operations in terms of trees as
they are rather intuitive.

6 We define <, >, and ≥ as expected.
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performed over the content. Note that the gain of knowledge is not much over previous extensions
except if DOMAu

is part of a monotonic subsequence.
An interesting consequence of our threat model is that all extensions which are installed on the

browser are potential usual attackers because they might have access to the original DOM and to the
input DOM received from the previous extension in the execution pipeline.

Remember that despite our proposed attack might be performed without exploiting the order, i.e.,
a malicious extension could subscribe to all possible events in the DOM, the amount of needed source
code to tackle all possible privacy attacks would be incredibly huge and infeasible due to the amount
of possible extensions and attacks.

In this work, we remark the existence of this security threat which is transparent even for the
automatic static analysis of the source code that official repositories perform [17]. Notice that by
using our attack, the simplest dummy extension installed just after, for instance the official Pinterest
extension, would detect the existence of the former one and thus, it can communicate to an external
server to retrieve the customized exploit performing thus an adaptive attack.

Additionally, our scenario can handle situations where, two browser extensions developed by the
same person/company but placed for instance at the beginning and at the end of the execution queue
will actually access to different information and thus, collaborate to perform attacks like browser
hijacking [25,27,37], or fingerprinting [21,31] attacks.

4 Our solution

In this section, we describe our solution to address the non-isolation problem among extensions de-
scribed previously. We first provide a general overview that sketches the main ideas behind our ap-
proach. We then describe in more detail our approach and discuss its main advantages, properties and
limitations.

4.1 Approach

Our solution introduces the notion of a monitor extension, whose goal is to prevent regular extensions
from learning from each other. Intuitively, monitor extensions are used to detect all changes that an
extension makes; log those modifications; delete them from the DOM passed on to the next extension
in the execution pipeline; and, at the end of the pipeline, merge all changes to produce a final DOM.
Figure 6 shows the four main components of our scheme:
– The Diff module takes a pair of DOMs (namely, (DOMi−1, DOMi) and performs the difference

between them (Diff = DOMi −DOMi−1).
– The Store module is shared between all monitor extensions and collects all changes in a table.

This table can be seen as a patches table with the following format: <Operation>, <Position>,
<Action>.

– The Del module removes all changes from DOMi, that is, DOMi = DOMi−1 −Diff .
– The Apply module, which is placed at the end of the pipeline, takes all stored differences and

patches the DOM by applying them in order.
Note that our solution could be simplified by removing the Del method. Thus, once the difference

has been computed, the DOM passed on to the next extension would be just the original DOM (DOM0).
However, by implementing a Del module, our approach is more general since it allows to introduce
some policies to share limited amounts of information among extensions. This point, however, is not
further explored in this work.
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Fig. 6: Architecture of our solution and its four main modules.

4.2 Extension-based implementation

Our extension-based implementation is slightly different from the architecture described above. This
is due to some constraints related to the scope of the information that can be filtered out (i.e., diffed)
and to issues on how to isolate extensions without modifying the browser’s source code. Because of
that, we need to differentiate between four types of extensions:
1) A special initial extension that must be placed in the first place of the execution pipeline to get

the original content (DOM0). This extension might be forced to be in the first place by using the
capturing event handler and “run_at”:“document_start” in the manifest.json file. Since we cannot
guarantee that this special extension will be placed in the first position, we can then force it to be
first by manually modifying the order, i.e., disabling all extensions and start enabling them in the
order we want them to be executed.

2) Official extensions, i.e., those extensions that the user can install from the Chrome Web Store.
3) Monitor extensions which are interleaved between each pair of official extensions. They are in charge

of performing the diff/store and del operations.
4) A special final extension that must be placed in the last position of the execution pipeline to merge

(patch) all changes that all official extensions have performed previously.
More formally, this solution implements the following transformation over the input DOM : fEfinal

◦
fEn
◦fEmonitorn−1

◦ . . .◦fEmonitor1
◦fE1

◦fEinitial
(DOM0) = DOMn. The information flow is as follows.

Assume that Alice accesses a web page. The browser requests the URL and, once the DOM0 tree is
retrieved, the first isolated world corresponding to the initial extension (Einitial) is executed. This first
extension is not part of the general solution (see Figure 6), but we found out that, when we tried to
implement it in a real setting, it is needed because Chrome—and other browsers in general—do some
pre-processing to the DOM (e.g., closing forgotten open HTML tags, adding some mandatory HTML
tags or changing everything into lower case). This initial extension does not add any changes to the
DOM. We note that an extension can request the same content directly by using the XMLHttpRequest
JavaScript object, but the received DOM could be completely different from the current DOM because
of that browser pre-processing.

After that, the output of the initial extension DOM0 and the rest of the DOMs wrappers are
synchronized. At this point, the first official extension is run and may perform some actions over
the content. The resulting (DOM1) is the input to the next monitor extension, plus the initial DOM
(DOM0) needed to get the difference between both DOMs: Diff = DOM1 − DOM0. All the possible
resulting values of this operation are stored (Store) for the final post-processing (patch operation),
and the difference Diff is then removed from the output of the extension DOM1. It is worth noting
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1 "content_scripts ": [{
2 "matches ": ["<all_urls >"],
3 "js": ["content.js"],
4 "run_at ": "document_start"
5 }],

(a) Manifest.json

1 $(function () {
2 var new_element = document.createElement(’textarea ’);
3 new_element.setAttribute("id", "Ghost_html_ori");
4 new_element.style.display = ’none’;
5 new_element.value = document.documentElement.innerHTML
6 document.body.appendChild(new_element)
7 });

(b) ContentScript.js

Fig. 7: Manifest and content script of the initial extension.

1 "content_scripts ": [{
2 "matches ": ["<all_urls >"],
3 "js": ["content.js"],
4 "run_at ": "document_end"
5 }],

(a) Manifest.json

1 $(function (){
2 window.setTimeout(function (){
3 var html = document.getElementById(’Ghost_html_ori ’).value;
4 // Compare the htmls here and add all changes from extensions
5 document.body.removeChild(html);
6 },0);
7 });

(b) ContentScript.js

Fig. 8: Manifest and content script of the final extension.

that this new DOM will be equal to the original DOM in most cases, i.e., our solution will be valid
whenever the execution pipeline follows a monotonic sequence. This process is repeated until the last
official extension eventually produces the final DOMn output. This last DOM is then provided as input
to the final extension (Efinal), which will take all stored changes and will apply them to the DOMn,
thus generating the final document.

We have produced two different implementations of this architecture. In our first simple approach,
in order to check which operation each extension performs over the content, we insert a <textarea>
element in the DOM to keep track of all changes. It also shows all sensitive information that extensions
have access to. This <textarea> is only available to gather meta-information during the experimen-
tation and should be removed from the deployed version. For the second implementation we created
an extension which communicates with an external server to store all differences between two DOMs.
This was needed to emulate what an adaptive attack could achieve by analyzing externally (i.e., out
of the browser) the information gathered locally from other extensions. For this, we used the simplest
version of a Flask server—a lightweight server written in Python—and a library named difflib [10],
which is part of the standard Python library. Alternatively, we could have implemented a full client-
based solution by using JavaScript libraries such as jsdiff [19], though our implementation proved to
be enough for a proof-of-concept prototype.

The source code of the initial extension can be seen in Figure 7. Note that the property run_at
of the manifest.json file is set to document_start (see Figure 7a) whereas the original content, i.e.,
DOM0, is retrieved in line 5 of the ContentScript.js file of the extension (see Figure 7b). Once the
<textarea> area is created, each monitor extension simply checks the current content against the
original one to extract what official extensions do, delete such changes (if any) and stores them in
the <textarea> for the final extension to include them. Similar to the initial extension, we include a
simplified version of the source code we use to execute the final extension at the end of the pipeline
(see run_at property set to document_end in Figure 8a) and our JavaScript (see Figure 8b). Our aim
was to to extract the effects that the execution of the extensions generate to the DOM and thus, the
knowledge the extensions have. Additionally, recall that the order in which extension are executed can
be easily modified by using existing proposals [33]. Our proof-of-concept implementation is used for
experimental purpose only and should not be considered as a final solution for deployment.
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5 Experimental results

We next discuss the experimental results obtained after evaluating our solution. We have focused on
the first proposed solution where a <textarea> is used in the client side instead of using an external
server. We have studied the following performance indicators according to [16] and the W3C consortium
[34]: 1. memory consumption; 2. time needed to parse the HTML; 3. when the onLoad event is fired
(many JavaScript files wait for this event); 4. the processing time which means that all resources have
been loaded (DOM is completed i.e., the loading spinner has stopped spinning), and; 5. a final test
to show the total time that Chrome needs to generate the onLoad event, i.e., the page is ready. All
the experiments but the memory consumption were carried out accessing the Alexa’s Top 30 web sites
and averaging the results over 50 runs. Additionally, in order to measure all the time-based metrics,
we have used the DevTools profiling tools provided by the browser.

Our extension based solution inserts a middle monitor extension between every two original exten-
sions, plus the initial and the final ones. Thus, the number of total extensions is 2n + 1 (n original
extensions plus n+ 1 added monitor extensions, including the initial and final ones). In order to test
what impact these additions have on both Chrome’s performance and the user experience, we have
installed a set of original extensions in a MacBook Air with 2.2 GHz Intel Core i7 CPU and 8 Gb of
RAM. The Chrome version where all test have been run is 60.0.3112.78 (Build official) (64 bits). We
used the 10 most downloaded browser extensions from the Chrome Web Store, since according to [5],
the average number of installed extensions per user is 5.

All figures related to the monitor extensions depend on the number of original extensions installed in
the browser (2n+1). In our experiments, the number of extensions is related to the original extensions
installed. This number varies if the experiment is performed by using the original extensions or our
proposed solution. For instance, when we say that with 5 extensions it takes 1.3 seconds to load all
the scripts of a entire page, it means that in reality there are 11 extensions installed in the browser:
5 original extensions, plus 4 middle extensions, plus 1 final extension, plus 1 initial extension. On the
contrary, 5 extensions on the original extension experiment means that only the 5 original extensions
are installed in the browser. Additionally, for all the experiments we have measured times without the
browser’s cache and by launching one new, fresh instance per experiment, i.e., we have closed and
opened Google Chrome each time we added a new browser extension to measure RAM consumption
and user experience times.

5.1 RAM Consumption

To measure memory consumption, we have used the developer tools provided by Chrome. Table 2
shows the impact on the browser performance in terms of RAM consumed in KB. We have isolated
the execution of the original extensions and the monitor extensions in order to show that the impact of
our proposed solution is almost negligible in comparison to the performance of the original extensions.
Moreover, both the initial and the final extension consume 13 KB of RAM each, whereas our monitor
extensions consume 11 KB of RAM on average. These extensions differ considerably from extensions
such as AVG Web TuneUp, AdBlock or Ad Block Plus, which consume 27.6 KB, 190.3 KB, and 11.3
KB of RAM on average, respectively. Note that the size of such extensions depends in fact on the
content of the web page. For instance, a page containing a substantial amount of advertisements would
make Ad Block to consume much more memory. From the results we can conclude that the impact
of our solution is approximately linear in the number of extensions. More concretely, our proposed
solution decreases performance by a factor of 1.15 per installed extension in terms of RAM.
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#Extensions Originally Solution #Extensions Originally Solution
2 217,9Kb 255,0Kb 7 420,9Kb 513,1Kb
3 331,6Kb 379,7Kb 8 492,0Kb 595,2Kb
4 348,7Kb 407,9Kb 9 504,3Kb 618,5Kb
5 374,1Kb 444,2Kb 10 527,1Kb 652,3Kb
6 392,1Kb 473,3Kb

Table 2: RAM Consumption
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Fig. 9: Evaluation of our proposal according to W3C parameters

5.2 Impact on user experience

Figure 9a shows the time that Chrome needs to parse the HTML. At this point, Chrome has already
parsed the entire HTML file and creates the DOM. We can observe that, in the worst case (for 10
original extensions), our solution introduces a delay of 5000ms. Similarly, Figure 9b shows the time
needed for the browser to fire the event onLoad. This event is critical because most of the extensions,
jquery, and all libraries based on jquery wait for that event to be executed. From the results it is
remarkable that the inclusion of our solution does not introduce undesired delays in the execution of
this event in comparison to the default behavior.

The processing time measures when all resources have been loaded. Currently, the way the user
knows when a given page has been totally loaded is when the spinner at the core of most browsers stops
spinning. There are a bunch of external parameters that directly affect this time, such as the network
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overhead or the number of resources previously stored in the cache, among many others. All in all, we
can conclude that the number of installed extensions has a potentially large impact on performance
and, therefore, in the processing time as it is depicted in Figure 9c. This, however, is only relatively
critical as the average number of installed extensions is very low for most users.

Finally, Figure 9d shows the time needed to load the whole web page. The total time is calculated
from the sum of processing and load times. This plot, together with the ones discussed before, show
that content scripts of browser extensions are not totally decoupled from the rendering process and,
therefore, they directly impact performance and user experience.

From the above results, we can confirm that the bottleneck of the browser extensions is, in general,
the processing time, i.e., all HTML resources that web pages have. One possible consequence of this
is the non-monotonic behavior that can be seen in all subfigures of Figure 9. However, despite this
non-monotonic behavior, we can see how our proposed solution adds some delay (in average) with
respect to the default browser.

In general, our solution increases very moderately the amount of time Chrome needs to render the
content. This problem might be solved by modifying the browser’s source code.

6 Advantages, properties and limitations of our approach

The primary aim of this paper is demonstrate the feasibility of a lightweight solution to avoid extensions
getting sensitive information about the user due to the order execution, while still (substantially)
preserving the main functionality of the extensions. We next address a number of natural questions
related to its main properties. In particular, we show that our approach does have some intruding
effects, that in fact mitigates both usual and strong attacks, and that our approach is robust against
strong attacks under certain reasonable assumptions.
How intrusive is our solution? That is, how much of the extensions’ (good and expected) behavior
do we modify while achieving our goal of preserving privacy? Our solution always preserves the behavior
of the original browser execution model (i.e., the final output with or without our solution is exactly
the same). In some sense, we do want to make sure that the order of execution is irrelevant with
respect to the knowledge the extensions should get (i.e., not accessing sensitive information they are
not allowed to as an effect of this information being passed by other extensions), but we also know
that the outcome of the executions of such extensions might be modified by our approach eventually
modifying some of the expected output. Let us consider an example showing the possible effects of our
solution. Let Ei be an extension that changes the DOM’s background color to black (let us assume
the original color was white and that there is text both in black and blue). Let us consider that a
later extension in the execution pipeline, Ej (1 ≤, i < j ≤ n) changes the background color to white.
It is clear that in the current order, the final outcome is that the DOM’s background color is white
and all the text is readable. That being said, it is clear that in case the extensions were executed in
different order (first Ej and then Ei) the outcome will be very different: not only the background will
be black (instead of white), which by itself does not seem to be a big deal, but more importantly there
will be some text not visible to the user. This not only affects the usability of the DOM (the black
background will hide all the black text so the user will not be able to see it), but may introduce some
security issues (the hidden text might be clicked accidentally producing undesired effects).

This is however, an inherent behavior of the browser and our proposed solution does not modify
the default behavior of the browser, i.e., a given HTML content looks the same with a set of extensions
enabled and with the same set and the proposed solution. Moreover, JavaScript periodical tasks such
as setInterval(callback, delay) are not covered in detail with our solution. This method automatically
enqueues the function defined in the callback in the task queue. For instance, if the extension A uses this
method to get all password fields from the page the user is visiting each 2 seconds. This is a completely
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different scenario because the execution of this task cannot be controlled through JavaScript code
alone.
Does our solution indeed mitigate possible attacks? According to the definitions given in
Section 3, the knowledge of an extension executed in position j (1 < j ≤ n) is the same knowledge
as the previous extension (Ej−1) in the pipeline plus the actions that Ej−1 performs over the DOM
(DOMj−1∪DOMj). On the contrary, when we measure the knowledge of an extension with our solution,
it is thus decreased to DOM0 (given that our solution only passes the original DOM to each extension).
Our solution also mitigates a strong attacker by limiting what she gets to know in the same way as for
the usual attacker: our interleaving guarantees that a strong attacker only gets to know the original
DOM. The reduction in knowledge is of course more significant than in the usual attacker (Section 3).
How robust is the approach? That is, can we guarantee that a strong attacker cannot bypass our
solution? One may think that a strong attacker could attack our solution by interleaving extensions
between our monitor extensions (before and after) thus bypassing our protection in order to get access
to the effects of the installed extensions before being modified by our monitor extensions, and then
restoring it after our modification. To do so, the attacker must create an extension with themanagement
privileges. That, however, would only be possible if the user explicitly grants that permission to the
attacker. The best we can do is then to show a warning message to the user as soon as we detect the
presence of such malicious extension and rely on that the user blocks the attacker. If the user grants
the permission, we are thus vulnerable to the attack. In order for our proposed solution to be able
to detect the presence of such attacks our extension would need to have management privileges. This
could only be granted by the user at installation time.

Proposition 1 Our extension-based solution is robust against strong attackers under the assumption
that our (initial, middle and final) monitor extensions are given management privileges, and that the
user does not explicitly give management privileges to the attacker.

In case the user (accidentally or consciously) gives the needed privileges for a strong attacker to
install his extensions, our solution would be able to detect that and communicate it to the user. Indeed,
a strong attacker would need to install n + 1 extensions interleaved between any two extensions, and
our monitor extensions would be able to detect that. So, we have a way to detect this issue, notify it,
and ask the user to uninstall the extension. Besides, by identifying this we would be able to keep a
black list of malicious extensions.
Extension-based or part of Chromium’s source code? Most of the aforementioned questions
would be solved by modifying the Chromium’s source code. Note that an attacker might insert as many
extensions as desired and could even alter the execution order. By modifying the source code, all exten-
sions receive a fresh copy of the original HTML and, thus, no-one will learn about the actions executed
by other extensions. This solution uses a similar approach but requires modifying (and recompiling)
Chromium’s core to achieve isolated execution. At a logical level, it works exactly the same as the
general solution depicted in Figure 6. The same original DOM is passed on to each browser extension,
but we do not allow automatic synchronization between isolated worlds (see Figure 4). Instead, a final
module takes all the changes performed by the official extensions and adds them to the final HTML.
However, this does not mean that page rendering is necessarily delayed until the last extension is done.
In fact, with our solution directly implemented on the source code, the rendering time of the initial
DOM will remain exactly as it is right now, i.e., the webpage is rendered to the user as soon as it is
received from the server. However, the DOM the user is reading is automatically updated whenever an
extension finishes its execution. Note that extensions do not have the last updated copy of the content
but the one provided by the server.

Nevertheless, with this last approach there is an inherent problem: the order still matters. Let us
use the same example described before, there are (at least) two browser extensions that modify the
same property of the CSS—the background color. In this solution, we decided to keep the same order
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as if it were executed in the original pipeline so the user will not find any differences with our proposal
and the non-modified browser. This is just a coding decision and could be easily modified in our apply
method.

Note that the main limitation that our proof-of-concept based on extensions has is the ability of
attackers to modify the order of the monitor extensions and thus, bypass our solution. This issue
is solved by directly deploying our solution as part of the source code of Chromium, making thus
impossible to bypass.

Finally, we demonstrate that our extension-based solution does not increase significantly the time
needed to render a web page (see Section 5).

7 Related Work

Security and privacy aspects of browsers have received much attention in recent years [24]. Compar-
atively, the number of research papers published on browser extensions is negligible. This might be
attributed to the lack of clarity of the actual security model of extensions in most browsers and how
they work in practice. For instance, Bauer et al. in [4] presented a model of Chrome where each content
script runs in the same process as the web page into which it is injected. However, this is not sound
due to the existence of isolated worlds where each content script is executed in dedicated sandboxes
and the modifications of the DOM are automatically synchronized through the C++ shared objects
in Blink. To the best of our knowledge, our work is the first paper that discusses attacks induced by
the lack of isolation among extensions (in particular, exploiting their relative execution order) and
proposes a countermeasure for it.

As it has been recently demonstrated, users are not aware of the privacy leakages and the conse-
quences that extensions can generate [14,28]. An experiment was conducted with 24 people to check
whether they were aware of privacy issues while they were using the browser. To do so, they used
browser extensions to alert users when some privacy issues were on-going, but they conclude that
users do not know the real implications of those privacy leakages. In our proposal, we minimise the
effect of the order that the browser includes by default and thus decrease the sensitive information
that other extensions might acquire.

In [17], Jagpal et al. explored the problem of detecting malicious extensions. They show how by
performing a static analysis over a set of 45 Gb of extensions within 5 days they are able to catch
70% of the malicious ones. However, their analysis does not consider the fact that the execution order
may cause privacy leakages. Several other works have focused on static analysis to classify extensions
as benign or suspicious [2,13,38], while others have explored dynamic analysis techniques to monitor
their execution [9,20,22,30,36], or a combination of both [39].

Contrarily to other proposals, this work does not modify the browser core, while the performance
remains at a reasonable level. To cite a recent example—even though in this case the authors address a
different problem—Arshad et al. propose in [1] a modification of the Chromium’s core to protect users
from malicious code while browsing. Their proposed solution generates a 12.2% overhead in browsing
time on average, though they claim that the trade-off between security and performance is acceptable
for many users. Bauer et al. [3] proposed a taint analysis model that also modifies the browser’s source
code to track components that access sensitive information. The work shows some promising results,
though at a performance overhead of 55%. In addition, they only fired one javascript event (onload)
out of more than 279 existing events. Additionally, their security assumptions are at least questionable
due to two main reasons: 1) They use the manifest.json file to assign labels for both the content scripts
and the background files, and; 2) Content Security Policies (CSPs) are used to assign the permissions
the HTML resources have. It is worth remembering that according to [29] only 1.17% of the Alexa
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Top 1 Million rank use CSP. For those reasons, they had to manually include CSPs and permissions
to test their experiments.

8 Conclusions

In this paper we have discussed one important security and privacy implication of Chromium’s exten-
sion model: the effects of one extension are visible to others in the execution pipeline. This can be
exploited by a malicious extension that can, for example, get access to sensitive information or manip-
ulate the DOM elements introduced by other extensions. We call this a usual attacker, in contrast to a
strong attacker who has access to the effect of each single extension in the execution pipeline. A strong
attacker may, in particular, install itself as the last extension in the pipeline and produce many copies
interleaving itself in between all other extensions. In this way, it could be possible to get to know what
all other extensions are doing and exploit this fact. We have shown examples on how to perform both
a usual and a strong attack.

We have provided a proof-of-concept to address this problem which relies on replacing the pipeline
execution model by one in which each extension executes in isolation, and then combine all individual
effects to create the final DOM. Our implementation does this through a set of monitor extensions. As
a first approach we decide to take the effect of the last extension in the pipeline. We could, however,
easily provide a solution based on user intervention (asking the user to decide) or to apply a different
policy (choose the first one, or non-deterministically). A more refined way to do so is left as future
work (e.g., one could gather information on how harmful the effects are, rank them and choose the
less harmful using machine learning algorithms). We have open sourced the proof-of-concept and we
are close to having a fully operational version based on the modification of Chromium’s source code,
which will be also open sourced.
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