
Software Product Line

Engineering
L4:Processes and SPL

L4:Processes and SPL

Business
Organisati

on

Process

Architect

ure

Economics

Planning

Strategy

Techn.

Roles
Responsibilities

Relationships

People
Structures

L4

Processes

Software Engineering Process: the total set of software

engineering activities needed to transform requirements

into software

Product Development Process: the total set of

engineering activities needed to transform requirements

into products

Software (product) engineering refers to the disciplined application of

engineering, scientific, and mathematical principles and methods to the

economical production of quality software (products).

Process examples

Requirements Engineering (Main Process Area)

Elicitation (Sub-process Area)

Task observation (Activity/Action)

Configuration Management

Configuration Item Identification

Risk analysis

Volatility (change Prone) analysis

Process examples

Requirements Engineering (Main Process Area)

Elicitation (Sub-process Area)

Task observation (Activity/Action)

Configuration Management (MPA)

Configuration Item Identification (SPA)

Risk analysis (Action), Change Prone analysis (Action)

Elicitation Documentation etcNegotiation

RE

Observation

Interviews

Legacy system

etc

Natural

language

Use-cases

etc

SPL Process
Coordination and

Control

Predictability

Quality

Delivered

functionality

Commonality

of

engineering

Dependency

heavy

engineering

Requirements Engineering (RE)

Elicitation

Documentation

Analysis and Negotiation

Validation and Verification

Management

Domain RE Application RE

reference

architecture

particular

product

Gap btw platform (domain)

and application

requirements is analyzed

Satisfaction by

domain/platform

requirements

Satisfaction by

application specific

assets

Trade-off

Satisfaction vs. e.g.

pricing

Dismiss/postpone

Elicitation

Domain (Understanding it)

Problem (application) domain

What’s the problem(s) and who

can explain it to you

History

Previous systems / current

systems

Documentation

Old requirements/design etc.

Competitors

Have they solved the problem and

how?

Surrounding environment

Other systems, processes which

the system should support (and/or

processes which the system

influences)

Stakeholders

(management, users, future users,

system managers, partners, sub

contractors, Law and Policy,

customer’s customers, domain

experts, developers etc)

Finding them (Stakeholder

Identification)

Getting access to them (Cost,

Politics)

Domain Application

- internal (development org.) stakeholders (e.g. PM,

developers, architects, support, STRATEGIES)

- external (customer, domain, environmental,

regulatory)

need vs. want

stakeholder weights (politics) and access

PREPARATION

Elicitation techniques

Interviews

+ Getting to know the present (domain, problems) and ideas for future system

- Hard to see the goals and critical issues, subjective

Group interviews

+ Stimulate each other, complete each other

- Censorship, domination (some people may not get attention)

Observation (Look at how people actually perform a task (or a combination of

tasks) – record and review…)

+ Map current work, practices, processes

- Critical issues seldom captured (e.g. you have to be observing when something

goes wrong), usability issues seldom captured, time consuming

Task demonstrations (Ask a user to perform a task and observe and study what is

done, ask questions during)

+ Clarify what is done and how, current work

- Your presence and questions may influence the user, critical issues seldom

captured, usability problems hard to capture

Elicitation techniques 2

Questionnaires

+ Gather information from many users (statistical indications, views, opinions)

- Difficult to construct good questionnaires, questions often interpreted differently,

hard to classify answers in open questions and closed questions may be to

narrow…

Use cases and Scenarios (Description of a particular interaction between the

(proposed) system and one or more users (or other terminators, e.g. another

system). A user is walked through the selected operations and the way in which

they would like to interact with the system is recorded)

+ Concentration on the specific (rather than the general) which can give greater

accuracy

- Solution oriented (rather than problem oriented), can result in a premature design

of the interface between the problem domain and the solution

Prototyping

+ Visualization, stimulate ideas, usability centered, (can be combined with e.g. use

cases)

- Solution oriented (premature design), “is it already done?!”

Documentation

Natural Language (NL) Specification

(most common in industry)

+ Everyone can do it/understand

+ NL is a powerful notation (if used

correctly)

- Imprecise and Quality may vary

Use of attributes can improve accuracy

ID, Title, Desc, Rationale, Source(s),

Conflict, Dependencies, Prio. etc

Context Diagrams

Event Lists

Screens & Prototypes

Scenarios

Task Descriptions

Standards

Tables & Decision Tables

Textual Process Descriptions

State Diagrams

State Transition Matrices

Activity Diagrams

Class Diagrams

Collaboration Diagrams

Sequence Diagrams

Modeling (where use-cases most common)

+ Relatively easy to do

+ Structure

+ Reuse of effort (e.g. code generation)

- Imprecise and Quality may vary

- Solution oriented, don’t catch non

functional aspects (Quality Requirements)

- Cost/time

Complete

Correct

Feasible

Necessary

Prioritized

Unambiguous

Verifiable

Documentation 2
variability has to

be mapped to

requirements

Decision support: Domain

or Application

Influences priority, risk,

timeline, cost

Analysis and Negotiation

Aims to discover

problems with

requirements and

reach agreement

that satisfies all

stakeholders

- Premature design?

- Combined requirements?

- Realistic within Constraints?

- Understandable?

- Conformance with business goals?

- Ambiguous?

- Necessary requirement?
Customer Value
Gold Plating?

- Testable?

- Complete?

- Traceable?

- Consistent Terminology?

- Fit Criteria
Relevant?
Measurable?

- Requirement or Solution?

Techniques

Interaction Matrices

Requirements Classification

Requirements Risk Analysis

Boundary Definition

Analysis

Negotiation

Verification and Validation (quality

assurance)
Verification is the process of determining

that a system, or module, meets its

specification

Validation is the process of determining that

a system is appropriate for its purpose
are we building the

right system

check if we have elicited and

documented the right requirements

Reviews
Inspections
Checklists
Goal-Means Analysis
Req. Classifications
Prototyping
Simulation
Mock-Up
Test-Cases
Draft User Manual

Reviews/Inspections

Perspective based reading

Checklist based reading

Test Case Based Inspections

Two Man Inspection

(perspectives and checklist may

include product line specific items

like variability checks)

the earlier you find a problem...

errors introduced in the RE process

are the most resource intensive to

fix

(50x more costly to fix defects

during test than during the RE)

RE Management
Definition of the RE process and its

interfaces and management of

requirements and the requirements

process over time

Configuration Management (!)

Tool support

Traceability policies(!)

Reuse (!)

Standards and policies (e.g.

documentation)

Criteria for when to ignore policies

change

management
version handling

tool that supports your process

source, forward, backward (pre-

requisite for reuse)

the artifacts you are creating may be reused =

quality and cost implications

least common denominator (what is good-enough)

for RE you have to see beyond your role/needs

what to put under

control

Focal Point, CaliberRM,

Serena, Rational Req. Pro

Domain Design

Based on the reference requirements (delivered by PM

and RE) create a reference architecture

(variability and design covered in different lecture)

Domain Realization

Make (assets built in-house)

Buy (bought off-the-shelf)

Mine (reuse)

Commission (3rd party)

control technical but also from a business

perspective - is the asset a competitive

(innovative asset)

often resource intensive assets (e.g. OS,

middleware) but also infrastructure like RUP or

CMMI

reuse of existing assets (e.g. other products) - often requires

a lot of reengineering

BUT application specific assets can be used and turned into

a common asset

specification in-house as a order to 3rd party

(adherence to specification, specification

quality, use of e.g. implementation proposals to

assure common understanding)

Domain Testing

“Test” (QA) of

non-executables

is !critical!

Variability makes

brute force test

impossible
Test suitable configurations (selected for best ROI)

alt.

Use of e.g. stubs (fill on for absent/future plug-ins)

BUT COST for creating and maintaining tests and

e.g. stubs has to be weighed in (not to mention

defects in test artifacts themselves)

the earlier you find a problem...

errors introduced in the RE process

are the most resource intensive to

fix

(50x more costly to fix defects

during test than during the RE)

Testing Strategy

BFS=Brute Force

PAS=Pure Application Strategy

SAS=Sample Application Strategy

CRS=Commonality and Reuse

Strategy

