
Variability and Architecture
SPLE Course, DAT165, lecture 2&3, 081029

Robert Feldt - robert.feldt@gmail.com

1Wednesday, October 29, 2008



Lectures - Overview (BAPO Model)

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Roles
Responsibilities

Relationships

People
Structures

2Wednesday, October 29, 2008



Lectures - Overview (BAPO Model)

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Techn.

Roles
Responsibilities

Relationships

People
Structures

2&3

2Wednesday, October 29, 2008



Domain and Application Engineering

3Wednesday, October 29, 2008



Variability Management

SPL = Commonality + Explicit Variability

Variability is Explicitly Managed, i.e.

Defined, Represented, Discussed, Exploited, Implemented, 
Evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

4Wednesday, October 29, 2008



Variability Management

SPL = Commonality + Explicit Variability

Variability is Explicitly Managed, i.e.

Defined, Represented, Discussed, Exploited, Implemented, 
Evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Variability is first-
class concept!

4Wednesday, October 29, 2008



Variability Management

SPL = Commonality + Explicit Variability

Variability is Explicitly Managed, i.e.

Defined, Represented, Discussed, Exploited, Implemented, 
Evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variability is first-
class concept!

4Wednesday, October 29, 2008



Variability Management

SPL = Commonality + Explicit Variability

Variability is Explicitly Managed, i.e.

Defined, Represented, Discussed, Exploited, Implemented, 
Evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variation, 
supported in SPL

Variability is first-
class concept!

4Wednesday, October 29, 2008



Variability Management

SPL = Commonality + Explicit Variability

Variability is Explicitly Managed, i.e.

Defined, Represented, Discussed, Exploited, Implemented, 
Evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variation, 
supported in SPL

Product-specific, 
not supported (now)

Variability is first-
class concept!

4Wednesday, October 29, 2008



Types of Variability

5Wednesday, October 29, 2008



Variability Documentation

What varies?

Variation points

Why does it vary?

Context, Reasons

How does it vary?

Variants, Dependencies, Constraints

For whom is it documented?

Internal & External Stakeholders

Improves: Decision Making, Communication & 
Traceability

6Wednesday, October 29, 2008



Graphical Variability Modeling

7Wednesday, October 29, 2008



Graphical Variability Modeling

Separate Model!

7Wednesday, October 29, 2008



Same variability notation throughout

8Wednesday, October 29, 2008



Packages of variants

9Wednesday, October 29, 2008



Variability in packages/sub-systems

10Wednesday, October 29, 2008



Reference Architecture

Single, shared architecture, common to all products

Normal architecture for commonalities

Variation points, variants etc for rest

Not always there in practice, too plan-driven

Extract the reference architecture gradually

11Wednesday, October 29, 2008



Industry example: Meantime Game Company

Brazilian company developing mobile games

60 games, 400 devices, 6 languages, 40 developers

Critical requirement: Portability (Many mobiles)

User Interface Differences

CPU, Memory and Size constraints

Support API differences (J2ME, BREW & Proprietary)

Carrier-specific requirements

Internationalization

12Wednesday, October 29, 2008



Industry example: Meantime Game Company

Developed MG2P = Meantime Game Porting Platform

Mobile Domain Database (MDD)

Meantime Base Architecture (MBA)

Meantime Build System (MBS)

MDD captures basic Commonality + Variability

Variations: Device-specifics, Game types/APIs, Known issues, 
Language, Game features

Families of similar MobPs and Games (in porting context)

Typical device for each family chosen (least powerful, most 
issues)

13Wednesday, October 29, 2008



Configuration knowledge in MDD

14Wednesday, October 29, 2008



Industry example: Meantime Game Company

Meantime Base Architecture

Same code base and file structure for all games

J2ME does not allow libraries => MBA copied for each new 
game

Pre-processing tokens from MDD handles variability

Meantime Build System

Built on Antenna pre-processor and Ant, more flexible

15Wednesday, October 29, 2008



Architectural Concerns

Architecturally Significant Requirements

Key requirements affecting the whole architecture

Conceptual Architecture

Key concepts of architecture

Architectural Structure

Decomposition into components and relations

Architectural Texture

Rules for using, instantiating and evolving architecture

16Wednesday, October 29, 2008



Architecturally Significant Requirements

Central to the purpose of the products, or

Technically Challenging / Technical Constraints

Examples:

The system must encrypt all network traffic

The game must deploy on all mobile phones by the top 5 manufacturers 
that are released after 2007

The system must always give responses to user queries within 3 seconds

The system must provide a visual overview of the current flow of resources 
in the factory being managed

Quality/Non-func requirements often decisive

17Wednesday, October 29, 2008



Conceptual Architecture

Most important concepts + their relations

Mental model of of domain to understand and simplify 
the problem

(Related to “System Metaphor” in Extreme Programming)

18Wednesday, October 29, 2008



Architectural Structure

Division into components

Sub-systems/units with clear interfaces

Connections between components

19Wednesday, October 29, 2008



Architectural Texture

“Manual” for the Reference Architecture

Guidelines, rules, “Philosophy” for

Using and

Evolving the RefArch

Examples:

Coding standard

Design patterns

Architectural styles

20Wednesday, October 29, 2008



Creating a Reference Architecture

“Normal” architecting methods can be used

Attribute-Driven Design, ..., OO, ..., Design Patterns, ...

Differences:

More products, often more Stakeholders => Communicate

Also more Requirements conflicts => Resolve

Three basic ways to support Variability:

Adaptation

Replacement

Extension

21Wednesday, October 29, 2008



Variability Mechanisms

22Wednesday, October 29, 2008



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

22Wednesday, October 29, 2008



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific

22Wednesday, October 29, 2008



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific

Generic interface for 
adding components

22Wednesday, October 29, 2008



Adaptation mechanisms 

Inheritance

subclass changes/overrides behavior

Patching

partial behavior change with little maintenance

DE: component, AE: patch

Compile-time config

Pre-processors or macros, Makefiles

Configuration

Interface to choose between multiple implementations

Parameters or configuration file to make choice

23Wednesday, October 29, 2008



Replacement mechanisms 

Code generation

Generates code from high-level description (model, script)

Glue code or whole components/sub-systems

Component replacement

Default component is replaced with another one

Often 3rd party components

Wrappers may be needed

24Wednesday, October 29, 2008



Extension mechanisms 

Plug-ins

Architecture has interface to “plug in” components

Example: Corba, COM, etc

Example: Strategy Design Pattern

25Wednesday, October 29, 2008



Variability & Commonality SPL Motivations

Increase in the number of products that can be released

Manage multiple, diverse products in one portfolio

Improve product commonality

Not only for complexity management,

also for marketing (same look-and-feel)

26Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

16000 employees, €10Billion turnover (1/3 is TVs)

250 developers

Single SPL for mid- and high-range TVs

SPL developed 1996-2000, in use since then

Trends, more complex SW: 

More features (MPEG4, Sound processing, HW->SW)

Globalized market

Shorter product cycles and TTM

Product convergence

27Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

Hundreds of Variability parameters -> Hierarchy

Evolution rules: What can be changed without affecting 
other parts? (HW dependencies)

Compositional approach technically

Describe which components to combine into new 
product

Simplified convergence (DVD+TV, TV+VCR, ...)

28Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

Koala Component Model

Component = Specification + Implementation

Hierarchical - group of components can be one 
component at higher level

Implemented in C, interfaces in separate files

Component descriptions to generate build/make files

Interface Description Language + Tools to work with it

No extra run-time costs (resource-constrained HW)

29Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

30Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

Variability

Compound components can have “Diversity 
parameters”

Switches to choose sub-components

Packages group components and interfaces to larger 
units

Also the packages are hierarchical

Product is a selection of packages

31Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

Reference architecture?

What are the Variability mechanisms? (Adaptation, 
Replacement, Extension)

Documentation of variability?

32Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

Reference architecture?

No, since it would not help for creating combi-
products

Maybe for small line of TVs, not for whole range over 
multiple years

What are the Variability mechanisms? (Adaptation, 
Replacement, Extension)

Documentation of variability?

Only: Component & Interface data sheets + sub-system 
design notes

33Wednesday, October 29, 2008



Industry Case: Philips Consumer Electronics

Results / Lessons learned

Diversity of products produced on time, Variability not a problem

Late-joining architects don’t understand Koala’s motivation

Architecture has lasted longer than any previous

Took 3 years to be successful

Config Management system fails at sub-file level variability

Better to solve variability in arch & use traditional CM

34Wednesday, October 29, 2008



Evolving a Reference Architecture

Evolution is a must:

Market changes

Features or products become redundant

Company mergers

3rd party component updates

New technology

Unintentional evolution:

Software/documentation rot, Maintenance, Erosion

Refactoring can counter

35Wednesday, October 29, 2008



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

36Wednesday, October 29, 2008



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

Variation point

36Wednesday, October 29, 2008



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

Variation point

Variation 1

36Wednesday, October 29, 2008



Requirements Variability - Textual

The game should support

... either 32-bit color output...

... or 16-bit color output...

... from the graphics engine.

Variation point

Variation 1

Variation 2

36Wednesday, October 29, 2008



Requirements Variability - Use Cases

37Wednesday, October 29, 2008



Scoping

Defining the scope of the product line

Which products are within the boundaries of the SPL?

Which products are not supported by the SPL?

Product Portfolio Scoping

Technical, Marketing and Strategic Decision 

Other levels (built on PPS):

Domain scoping = Identify major domains relevant för SPL

Asset scoping = Define functionality for reusable components

Active research area

38Wednesday, October 29, 2008



Example scoping: Philips Consumer Elec.

Main SPL Scope = “Mid- and High-range TVs”

Support convergent/combi products

Not low-end TVs

Less features => less variability

Less product-to-product changes => less variability

HW+SW mainly bought from 3rd party

Flexible and Ongoing Domain Scoping

Convergence & short cycles requires new domains

Asset scoping built into component framework

39Wednesday, October 29, 2008



Product Portfolio Scoping

1. Define Product Line Market

2. Determine relevant Product Types

Product Map = List of example products/types with their 
main features = Defines the Portfolio

3. Analyse Market Position & Define Products

KANO Model

4. Analyse interrelations between products

Competition - PL Cannibalisation

Support - Entry-level sells premium-level

40Wednesday, October 29, 2008



Product Portfolio Scoping

1. Define Product Line Market

2. Determine relevant Product Types

Product Map = List of example products/types with their 
main features = Defines the Portfolio

3. Analyse Market Position & Define Products

KANO Model

4. Analyse interrelations between products

Competition - PL Cannibalisation

Support - Entry-level sells premium-level

Identifying Commonality 
and Variability is natural 

in scoping => 
SPL good fit

40Wednesday, October 29, 2008



KANO Model

41Wednesday, October 29, 2008



Domain Requirements Engineering & Analysis

Normal RE and Analysis but Precise Variability Defs

Commonality Analysis

Variability Analysis

Variability Modeling

Methods

App-Req Matrix

Priority-based Analysis (KANO)

Checklists

42Wednesday, October 29, 2008



Acronyms used

DE = Domain Engineering

AE = Application Engineering

RefArch = Reference Architecture

TTM = Time To Market

SW = Software

SPL = Software Product Line

SPLE = SPL Engineering (and course book!)

Dev = Development

43Wednesday, October 29, 2008



References

V. Alves, T. Camara, C. Alves, “Experiences with Mobile Games 
Product Line Development at Meantime”, SPLC’08, Limerick, 
Ireland, 8-12 Sept, 2008.

44Wednesday, October 29, 2008


