
Variability and Architecture
SPLE Course, DAT165, L2 & L3

Robert Feldt - robert.feldt@gmail.com



Acronyms used

DE = Domain Engineering

AE = Application Engineering

RefArch = Reference Architecture

TTM = Time To Market

SW = Software

SPL = Software Product Line

SPLE = SPL Engineering (and course book!)

Dev = Development



Lectures - Overview (BAPO Model)

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Roles
Responsibilities

Relationships

People
Structures



Lectures - Overview (BAPO Model)

Business Organisation

Process

Architecture

Economics
Planning

Strategy

Techn.

Roles
Responsibilities

Relationships

People
Structures

2&3



Definitions
Variability subject - a var 
item of the real world

Var object - particular 
instance of a subject

Var point - represents a 
var subject + contextual 
info

Variant - represents a var 
object

For SPL, having 10 
variation points with 3 
possible variants, gives 
310 (59,049) configs



Definitions



Domain and Application Engineering



Domain and Application Engineering



Domain and Application Engineering

Analyse



Domain and Application Engineering

Analyse
Common

Specific



Domain and Application Engineering

Analyse
Common

Specific

Future var



Domain and Application Engineering

Ref Arch



Domain and Application Engineering

Ref Arch

Var points



Domain and Application Engineering

Ref Arch

Var points Reuseable 
Component



Domain and Application Engineering

Ref Arch
Rules for 
App Dev

Var points Reuseable 
Component



Domain and Application Engineering

Components



Domain and Application Engineering

Components

Configurable



Domain and Application Engineering

Components

Configurable

Loose 
coupling



Domain and Application Engineering

Components



Domain and Application Engineering

Components

Unit or Partial 
Integration



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Variability is a 
first-class 
concept!



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variability is a 
first-class 
concept!



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variation, 
supported in SPL

Variability is a 
first-class 
concept!



Variability Management

SPL = Commonality + Explicit Variability

Variability is explicitly managed, i.e.

Defined, represented, discussed, exploited, implemented, 
evolved etc.

Feature Prod. 1 Prod. 2 Prod. 3

Game engine 3D, C++ 3D, C++ 3D, C++

Score upload No Yes Yes

Lead 
character

Mario Ferrari None, puzzle

Commonality, 
part of SPL

Variation, 
supported in SPL

Product-specific, 
not supported (now)

Variability is a 
first-class 
concept!



Types of Variability



Variability Documentation

What varies?

Variation points

Why does it vary?

Context, Reasons

How does it vary?

Variants, Dependencies, Constraints

For whom is it documented?

Internal & External Stakeholders

Improves: Decision Making, Communication & 
Traceability



Feature-Oriented Domain Analysis [Kang98]



Feature-Oriented Domain Analysis [Kang98]



Feature-Oriented Domain Analysis [Kang98]



Graphical Variability Modeling



Graphical Variability Modeling

Separate Model!



Graphical Variability Modeling (in OVM)



Same variability notation throughout



Packages of variants



Variability in packages/sub-systems



Architecture



Reference Architecture

Single, shared architecture, common to all products

Normal architecture for commonalities

Variation points, variants etc for rest

Not always there in practice, too plan-driven

Extract the reference architecture gradually



Time for a paper...





Industry example: Meantime Game Company

Brazilian company developing mobile games

60 games, 400 devices, 6 languages, 40 developers

Critical requirement: Portability (Many mobiles)

User interface differences

CPU, memory and size constraints

Support API differences (J2ME, BREW & proprietary)

Carrier-specific requirements

Internationalization



Industry example: Meantime Game Company

Developed MG2P = Meantime Game Porting Platform

Mobile Domain Database (MDD)

Meantime Base Architecture (MBA)

Meantime Build System (MBS)

MDD captures basic Commonality + Variability

Variations: Device-specifics, Game types/APIs, Known issues, 
Language, Game features

Families of similar MobApps and Games (in porting context)

Typical device for each family chosen (least powerful, most 
issues)



Configuration knowledge in MDD



Industry example: Meantime Game Company

Meantime base Architecture

Same code base and file structure for all games

J2ME does not allow libraries => MBA copied for each new 
game

Pre-processing tokens from MDD handles variability

Meantime build system

Built on Antenna pre-processor and Ant, more flexible



Architectural Concerns

Architecturally significant requirements

Key requirements affecting the whole architecture

Conceptual architecture

Key concepts of architecture

Architectural structure

Decomposition into components and relations

Architectural texture

Rules for using, instantiating and evolving architecture



Architecturally Significant Requirements

Central to the purpose of the products, or,

Technically challenging / Technical constraints

Examples:

The system must encrypt all network traffic

The game must deploy on all mobile phones by the top 5 manufacturers 
that are released after 2007

The system must always give responses to user queries within 3 seconds

The system must provide a visual overview of the current flow of resources 
in the factory being managed

Quality/Non-func. requirements often decisive



Conceptual Architecture

Most important concepts + their relations

Mental model of of domain to understand and simplify 
the problem

(Related to “System Metaphor” in Extreme Programming)



Architectural Structure

Division into components

Sub-systems/units with clear interfaces

Connections between components



Architectural Texture

“Manual” for the Reference Architecture

Guidelines, rules, “Philosophy” for

Using and

Evolving the RefArch

Examples:

Coding standard

Design patterns

Architectural styles



Creating a Reference Architecture

“Normal” architecting methods can be used

Attribute-Driven Design, ..., OO, ..., Design Patterns, ...

Differences:

More products, often more Stakeholders => Communicate

Also more Requirements conflicts => Resolve (elicited)

Three basic ways to support variability:

Adaptation

Replacement

Extension



Variability Mechanisms



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific

Generic interface for 
adding components



Variability mechanisms



Variability Mechanisms



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific



Variability Mechanisms

Only 1 component 
implementations

Adaptable behavior

Multiple component 
implementations

Choose one, or develop 
product-specific

Generic interface for 
adding components



Adaptation mechanisms 

Inheritance

subclass changes/overrides behavior

Patching

partial behavior change with little maintenance

DE: component, AE: patch

Compile-time config

Pre-processors or macros, Makefiles

Configuration

Interface to choose between multiple implementations

Parameters or configuration file to make choice



Replacement mechanisms 

Code generation

Generates code from high-level description (model, script)

Glue code or whole components/sub-systems

Component replacement

Default component is replaced with another one

Often 3rd party components

Wrappers may be needed



Extension mechanisms 

Plug-ins

Architecture has interface to “plug in” components

Example: CORBA, COM, etc

Example: Strategy Design Pattern (functionality can be selected 
at runtime)



Variability & Commonality SPL Motivations

Increase in the number of products that can be released

Manage multiple, diverse products in one portfolio

Improve product commonality

Not only for complexity management,

also for marketing (same look-and-feel)


