

Eureka Σ! 2023 Programme, ITEA project ip02009

Family Evaluation Framework
overview & introduction

Frank van der Linden

Partner: Philips Medical Systems
 Veenpluis 4-6
 5684 PC Best, the Netherlands
Date: 29 August, 2005
Number: PH-0503-01
Version: 1.0
Status: Final
Level: Consortium-wide
Contributors: Philips
work prod-
uct:

Management

Topic:
work product
Leader:

 Accepted: vY

B

A

O

P B

A

O

P B

A

O

P

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 1

Table of Contents

Table of Contents ...1
Abstract ..2
1 Introduction..1

1.1 Related approaches ...2
1.2 Example ...3

2 BAPO Dimensions...3
2.1 Example ...4

3 FEF framework..5
3.1 Connection to other approaches ..5
3.2 Example ...6

4 Business Dimension ..6
4.1 Levels...6

4.1.1 Level 1: Project based...7
4.1.2 Level 2: Aware ..7
4.1.3 Level 3: Managed..7
4.1.4 Level 4: Measured...8
4.1.5 Level 5: Optimised ..8

4.2 Summary..8
4.3 Example ...9

5 Architecture Dimension ...9
5.1 Levels...10

5.1.1 Level 1: Independent product development ..10
5.1.2 Level 2: Standardised domain independent infrastructure10
5.1.3 Level 3: Software platform...10
5.1.4 Level 4: Derivable variant products ...11
5.1.5 Level 5: Automated product derivation..11

5.2 Summary..11
5.3 Example ...12

6 Process Dimension..12
6.1 Levels...13

6.1.1 Level 1: Initial ..13
6.1.2 Level 2: Managed..13
6.1.3 Level 3: Defined ..14
6.1.4 Level 4: Quantitatively managed ...15
6.1.5 Level 5: Optimising..16

6.2 Summary..16
6.3 Example ...16

7 Organisation Dimension ..17
7.1 Levels...17

7.1.1 Level 1: Project ...17
7.1.2 Level 2: Re-use ...18
7.1.3 Level 3: Weakly connected ...18
7.1.4 Level 4: Synchronised...18
7.1.5 Level 5: Domain engineering...19

7.2 Summary..19
7.3 Example ...19

8 Applicability ...20
8.1 Assessment..20
8.2 Benchmark ...21
8.3 Improvement ..21
8.4 Connection to other approaches ..21
8.5 Example ...21

9 Complex organisations ..22
9.1 Example ...22
9.2 Structured architecture ...23

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 2

9.3 Example ...24
10 Conclusions ...25
11 Literature..25

Abstract

This document gives an overview and introduction of the Family Evaluation Framework. It is
meant to assess organisations in their effectiveness of software product family engineering.
The framework is built on the four BAPO concerns: Business, Architecture, Organisation and
Process. Each of these concerns has a separate dimension in the FEF. This allows evalua-
tion of the organisation for each of these software engineering concerns separately. It gives
insight where the organisation best can improve itself. Especially for the process dimension,
which is based on CMMI®, there is a separate report available giving more details of amplifi-
cations to the existing CMMI®, which are used within the FEF.

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 1

1 Introduction

Software product family engineering is a strategic approach that impacts on business, organi-
sation and technology. Software product family engineering has proven to be the way to de-
velop a diversity of software products and software-intensive systems at low costs, in short
time, and at the same time with high quality. Numerous experience reports document the sig-
nificant achievements gained by introducing product families in software industry.
Within 1995 and 2005, a series of cooperation projects were performed on the topic of soft-
ware product family engineering. This document reports one of the consolidated results of this
series of projects. The series started with the ESPRIT project ARES [8]. Between 1995 and
1998, three European companies and three Universities worked together on software family
architecture. Between 1998 and 2000, the ESPRIT project PRAISE [22] investigated the
process issues of software product family engineering. Based on these results, a group of
European industries, together with a collection of research institutes and small and medium
enterprises collaborate on the topic since 1999 in a series of projects within the ITEA [21]
framework. These are the, ESAPS [9][19], CAFÉ [10][18] and FAMILIES [11][20] project.
Companies within these projects are working on a large variety of mainly embedded systems
including medical imaging, mobile phones, flight control software, utility control, supervision
and management, financial services, and car electronics.
The two main differences of software product family engineering with single system software
engineering is managed reuse facilitated through a separation of the development into do-
main and application engineering and the explicit management of variability. Domain engi-
neering produces domain assets, with variability for reuse. Application engineering produces
systems by reusing variants of the domain assets.
The ESAPS project investigated the development process, and variability management from
an architecture and quality viewpoint. The CAFÉ project introduced more business concerns,
requirements, asset management and testing. The FAMILIES project consolidated the results
and exploits the ESAPS results, improve and automate them through model driven family en-
gineering and reuse over family borders.

B

A

O

P B

A

O

P B

A

O

P

Figure 1: Use of the FEF

The Family Evaluation Framework (FEF) is one of the consolidation results of the FAMILIES
project. It combines in a single framework the results of the experiences with software product
families in the ESAPS, CAFÉ and FAMILIES projects. The purpose of the FEF is to evaluate
the performance in software product family engineering of larger or smaller parts of compa-
nies including business units, divisions, and even complete companies. The evaluation is
based on the best practices and other experiences of the companies cooperating in the pro-
jects. There are several reasons why such an evaluation is useful; see Figure 1. For instance,
it can be used as an assessment to find out how a department is doing software product fam-
ily engineering. Alternatively, it may be used as a benchmark tool, to compare the company’s
software product family engineering capabilities with others. It can be used as a decision tool,

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 2

to find out what have to be done to start, or improve, software product family engineering
within a single department.
This document gives an overview of the FEF. There are four different dimensions that each
can be evaluated independent of the others. Within each dimension, there is a set of evalua-
tion aspects, and a set of levels. The document describes the levels in terms on the way the
aspects are dealt with. In the remainder of this chapter, we give an overview of related ap-
proaches, and how the FEF relates to these. In addition, there is a section covering the differ-
ences of software product family engineering with single system software engineering. Finally,
we introduce an introduction of a small example that is the basis of a running example in the
document. The next chapters treat the main elements of the FEF, the BAPO model (chapter
2) the framework (chapter 3) and the different dimensions (chapters 4-7). Chapter 8 deals
with the applicability of the FEF for different purposes in an organisation, Chapter 9 deals with
special issues of complex organisations, where software product family engineering is distrib-
uted over several departments. Finally, in chapter 10 some conclusions are drawn.

1.1 Related approaches
The FEF is not the fist model to evaluate or assess software development. In particular, in the
area of software development processes there are several capability evaluation models. The
model gives an abstract view of the software development process. Actual activities in an or-
ganisation are mapped to the abstract ones, and gaps and differences are used to plan im-
provement. The most prominent process improvement framework is the Capability Maturity
Model (CMM), which was developed by the Software Engineering Institute (SEI) and pub-
lished in 1993 [12], later integrated to be applicable for systems engineering in CMMI®
[16]?[17].
In the field of software product family engineering, the SEI published a Framework for Soft-
ware Product Line PracticeSM [4] that distinguishes 29 practice areas, which are divided into
three categories.

• Software engineering practice areas are necessary to apply the appropriate technol-
ogy to create and evolve both core assets and products.

• Technical management practice areas are those management practices necessary to
engineer the creation and evolution of the core assets and the products.

• Organisational management practice areas are necessary for the synchronisation of
the entire software product family activities.

The SEI’s Product Line Technical Probe (PLTP) allows to examine an organisation's compli-
ance to adopt a software product family approach. The PLTP is based on the SEI's Frame-
work for Software Product Line PracticeSM as a reference model in collection and in analysis
of data about an organisation. The results of applying the PLTP include a set of findings,
which characterize an organisation's strengths and challenges relative to its product family
effort, and a set of recommendations.
In addition, there exist several initial economic models measuring the success of software
product family engineering; see e.g. [7][14]. These methods try to evaluate the business value
in several ways. Jan Bosch, both proposed an initial model on software product family archi-
tectures in [3], and an initial investigation on organisational structures in [2].
All these approaches are used in different ways in the FEF. The CMMI® is used as a basis for
the process dimension within FEF. The Framework for Software Product Line PracticeSM, the
economic and architecture models are used to check to see if everything that is necessary for
software product family development is included. The economic and architecture models were
used as an inspiration for the FEF dimensions dealing with these matters. The FEF adds
more structure to the whole, aiming to guarantee a more complete picture.
The main differences of software product family engineering with single system software en-
gineering are the separation of the development into domain and application engineering and
the explicit management of variability [11].
The management of variability introduces the notions of variation, through variation points and
variants. Introducing these notions in software development has mainly, but not exclusively,
impact in the requirements and architecture where they have to be represented in all kinds of
development models. In addition, the process, organisation and business reflect the availabil-
ity of the variability. As stated above, the process is split into two parts domain and application

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 3

engineering and the explicit management of variability; see Figure 2. Domain engineering
produces domain assets, with variability for reuse. Application engineering produces systems
by reusing the domain assets.
The FEF focuses on these differences with single system software engineering. Organisa-
tions that need to improve, or evaluate themselves, in the traditional way of software engi-
neering, have to rely on other sources, since this is not covered by the FEF.

Asset base

Figure 2: Software product family Engineering

1.2 Example
The example in this document is an imaginary company, ProtAct, providing security systems
for office buildings and business plants. It delivers observation rooms, camera’s, intrusion, fire
and water sensors, and all kinds of alarms. It provides door locks operated by keypads and
other kinds of authentication mechanisms. Since the systems are sold in many countries,
many languages are supported. Each client has his own configuration of the system, and
there are many possible configurations available. Therefore, ProtAct has organised its soft-
ware development as a family development. ProtAct wants to assess itself, to find the best
ways to improve this development in future in order to reduce software cost to a minimum
level, and keep lead times of new developments as short as possible.

2 BAPO Dimensions

The main concerns of software engineering are captured in BAPO [1][15]. It separates the
concerns on Business, Architecture, Organisation and Process.

• Business, how to make profit from your products
• Architecture, technical means to build the software
• Process, roles, responsibilities and relationships within software development
• Organisation, the actual mapping of roles and responsibilities to organisational struc-

tures
The four BAPO concerns are all interlinked. Applying changes in one concern induces
changes in the others. The BAPO acronym denotes a natural order to traverse the concerns.
The Business is the most influential factor. This has to be set up right in the first place. The
architecture reflects the business concerns in software structure and rules. The process en-
ables the building of the software, based on architecture according to business rules. Finally,
the organisation should host the process, assigning units and people that are responsible for
business, architecture responsibilities. Note that the ease and speed of changing a concern
decreases from Business over Architecture, Process to Organisation.
We use this separation of concerns to provide four dimensions of the family evaluation
framework. An organisation will have a separate evaluation level for each of the BAPO con-

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 4

cerns. The interdependence between the BAPO concerns becomes obvious as soon as one
studies the effects of changes. Changes in one dimension virtually always have conse-
quences for the other dimensions as well. However, in many cases improvements the dimen-
sions can be addressed separately. In the end, all BAPO aspects have to be treated to get
improvements. A low score in one dimension may hamper the achievement of reaching a high
score at another dimension. Actions to improve the evaluation result for one concern may
give rise to a lower evaluation result for some of the others. Therefore, improvement actions
have to consider all BAPO concerns.
Since BAPO applies to software engineering, it also applies to software product family engi-
neering. Consequently, the FEF has a dimension for each of these concerns, involving as-
pects and levels. In each dimension is evaluated how much software product family engineer-
ing is incorporated. For each dimension, there are many specific ways to perform software
product engineering. Similar to the philosophy of CMMI®, the FEF evaluation does not deal
with specific ways to perform a certain activity, modelling, structuring, responsibility or task.
The ESAPS, CAFÉ and FAMILIES projects have delivered a large amount of such methods,
tools & techniques. These are best practices, and can be applied in software system engi-
neering. They provide a good insight of what is necessary in the different BAPO dimensions.
However, none of them is obligatory. Often the specific methods, tools and techniques
change over time.
Applying the four BAPO dimensions to software family engineering, we get the following as-
pect to consider:

• B, The business concern additionally has to deal with the business relationships be-
tween domain and application engineering and the costs, profits, market value and
planning of variability.

• A, The architecture is split over domain and application architectures, related via
variability. Important architecture concerns deal with the right mechanisms for
variability and how the software product family architecture (Domain-engineering)
influences the corresponding application architectures (Application-engineering), and
vice versa.

• P, Processes can be distinguished between domain, application and collaboration
and coordination processes, they all have can be evaluated against a maturity model
such as CMMI®

• O, Organisation has structures and responsibilities for domain and/or application en-
gineering and for collaboration and coordination roles. In particular, the organisation
distributes responsibilities between platform (domain engineering), corresponding ap-
plications (application engineering) and collaboration and coordination, and deter-
mines the relative importance between them.

2.1 Example
Viewing ProtAct with respect to the different BAPO concerns, we see the following elements
in software engineering, and software product family engineering.
Business: The ProtAct company has an internal tax system that deducts money from de-
partments that get income, to fund serving departments. The departments that do domain
engineering are examples of such departments that get funding. The business has a fixed
amount of about 40% of the profit to be used for domain engineering. Product management
uses a road map that plans the future variants of the product. It involves when new variants
are to be built, and gives feedback to marketing and sales when these variants are available.
The road map is prepared in agreement with development that gives feedback on the distribu-
tion of new requirements over generic and specific software. The management of ProtAct is
forcing to make as much as possible generic, and tries to reduce the cost of specific devel-
opments, since they are aware that that costs too much. In particular, the management put
limits on development budgets to reduce the total development cost.
Architecture: ProtAct has a reference architecture for the complete family of products. The
reference architecture determines a layered structure. Each layer has a framework of compo-
nents that have to be present in each product. The lower layer consists of the single operating
system and database that is used in all applications. Variants are to be built by adding plug-in
components at interfaces that are specially designed for them. Thus, a single application ar-

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 5

chitecture consist of the collection of fixed framework components and a configuration of plug-
ins. A plug-in component may be specifically built for the application, but many plug-in com-
ponents are shared by several applications, and are therefore part of the domain architecture.
Process: The development departments within ProtAct have separate processes for domain
and application engineering. Domain engineering follows several iterative developments for
separate parts of the architecture. A separate development is available for keeping the archi-
tecture in shape. Application-engineering departments usually follow a waterfall model to pro-
duce a single application. Collaboration and coordination processes deal with:

• Selection of reusable domain artefacts in the application
• Feedback of problem reports and application priorities from application engineering

towards domain engineering
• Determination of the standard interfaces between domain-engineering frameworks

and the plug-in components
• Promotion of specific (application) components and interfaces towards domain engi-

neering
Organisation: Domain engineering is performed in a department separate from several ap-
plication-engineering departments. Collaboration is supported through many cross-
departmental groups that have the responsibility for one or more of the collaboration subjects,
such as road maps, global architecture issues, interfaces, problem reports and maintenance,
and promotion of assets from application to domain.

3 FEF framework

The FEF evaluates the software product family engineering performance of a company or a
department in a company. It does not aim to evaluate single system software engineering
practices. It only focuses on the aspects that are specific for software product family engineer-
ing. In particular, it has an emphasis on the separation in domain and application engineering
and the management of variability.
The FEF framework is built on BAPO. Each BAPO concern is of importance for software fam-
ily engineering, and therefore it needs its own attention. The FEF framework has a dimension
of each of the four BAPO concerns. In each dimension, the performance of a company, or
department, can be measured separately. The result of an FEF evaluation is a profile consist-
ing of four values, one for each BAPO dimension. On purpose, the framework allows for di-
verse results in the different dimensions. This may be the case in companies where one or
more BAPO concerns get more attention than the other concerns.
For each BAPO dimension a collection of evaluation aspects is identified, that comprise the
main influential factors for the evaluation. The evaluation values per dimension are summa-
rised in five levels, each determining a certain extent to which the aspects cover software
product family engineering. The business dimension measures the business involvement in
software family engineering, and the business consequences of managed variability. The Ar-
chitecture dimension mainly deals with the relationship between domain and application archi-
tectures. This takes into account how variability is modelled in the architecture. The Process
dimension measures which family process are there, and what is their maturity. Finally, the
organisation dimension measures the effectiveness of the distribution of domain and applica-
tion engineering over the organisation.

3.1 Connection to other approaches
The process maturity model, CMMI®, has been an inspiration for the complete framework. In
each dimension, we have used some characteristics of the CMMI®. Each dimension has five
levels, where the initial level represents the state that everybody achieves. Moreover, in each
dimension it is measured what has to be done to reach a level, but specifics on how to do it
are not given. This allows improvements, which are presently not envisioned. In contrast to
CMMI®, we have not a single scale, but keep a separation of the different BAPO concerns, an
assessment leads to four values. Differences in values may indicate that specific attention
has to be paid for a specific BAPO concern.
In case of the process dimension, the levels are the CMMI® levels. The software product fam-
ily aspects are reflected in amplifications of CMMI® practices, mainly to the levels 2, 3 and 4.

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 6

Amplifications deal with the separation of domain- and application-engineering, and to coordi-
nation activities.
As the FEF does not describe specific details of how things are done, the Framework for
Software Product Line PracticeSM, the economic and architecture models are mainly used as
a check to see if everything that is necessary for software product family development is in-
cluded. They can be used as examples of how to proceed with an improvement plan, but they
are not used to prescribe ways to behave in each dimension. Similarly, the economic and ar-
chitecture models were used as an inspiration for the FEF dimensions dealing with these mat-
ters. The FEF adds more structure to the whole, aiming to guarantee a more complete pic-
ture.

3.2 Example
ProtAct is interested in seeing how well they are doing in software product family engineering.
They want to know what are the best improvement actions to be taken. Initially the expecta-
tion is that the architecture and organisation dimensions are satisfactory, but that the busi-
ness and process may need improvement. The FEF will indicate whether they are right.
The result of execution of the FEF is the following profile: B3, A4, P2, O3. This means that
their ideas about the business were not completely right, but some improvement in that di-
mension is still possible. However, the process indeed needs a lot of attention. In addition, the
organisation has room for improvement.

4 Business Dimension

The business dimension deals in general with how to make profit from your products. In doing
so, the business has several techniques to influence the development process, and improve
marketing and sales of the products. Most of the business issues hold in any organisation
making (embedded) software, and will not be regarded here. However, for software product
family engineering the business concern additionally has to deal with the business relation-
ships between domain- and application-engineering, involving investment decisions measur-
ing the costs and profit of these activities and the means to use the sales of the product to
pay the different activities. Finally, the business dimension deals with the managed variability.
It measures and uses costs and profits of the amount of variability in the products. It also uses
this to plan prices, and marketing strategies for family products.
The following aspects play a role in the business dimension of software product family engi-
neering.

• Sales, marketing, product management involvement
How much is marketing, sales and product management involved in and influenced
by the software product family.

• Budgeting and investment
How much are budgets influenced by software product family engineering

• Vision and business objectives
How well does the organisation aim for a future involving software product family en-
gineering

• Strategic planning
How well does the organisation plan the software product family business and devel-
opment?

4.1 Levels
The following levels are recognised for the business dimension of software product family en-
gineering.

1. Project based
2. Aware
3. Managed
4. Measured
5. Optimised

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 7

In the following sections, each of these levels is discussed in more details.

4.1.1 Level 1: Project based
This is the basic level. The business is arranged for project based single system engineering.
Domain-engineering results and variability are not visible at the business level. None of the
aspects covers software product family engineering. With regard on the business concerns,
we see the following typical situation:

• Sales, marketing, product management involvement
There is no, or little, involvement in of software product family engineering, nor is
there much understanding of it. Systems are planned, sold and marketed on a single
system basis.

• Budgeting and investment
There are no specific budgets for domain engineering. Instead, budgeting is done on
a per system basis.

• Vision and business objectives
The vision and the business objectives do not mention the existence of software
product family engineering

• Strategic planning
The business planning does not consider relations among systems

4.1.2 Level 2: Aware
At this level, the business is aware of the benefits of software product family engineering for
the company. It provides some context in which software product family engineering can be
done. However, a clear management of software product family engineering is not available.
This level shows following typical situation

• Sales, marketing, product management involvement
By the selling force, marketing and product management there is an awareness of the
opportunities of software product family engineering in marketing, sales and product
planning. It is expected that managed variability will lead to more variability in the sold
systems, and that production cost will be lower. The mere fact of supporting more
variants is seen as an additional benefit for the customer. However, there is no clear
strategy available for using the software product family in marketing, sales and prod-
uct planning.

• Budgeting and investment
The business invests in domain-engineering activities to support a repository for re-
usable assets. There are budgeting consequences to encourage the use of the do-
main-engineering results.

• Vision and business objectives
There is a commitment from top management to do software product family engineer-
ing. However, there is no clear vision on its use for the company.

• Strategic planning
The planning is still committed to single system development. However, the results of
domain engineering are taken into account in an opportunistic way in product road-
maps.

4.1.3 Level 3: Managed
At this level, software product family engineering is part of business strategy. It takes control
on the execution of the corresponding activities, the benefits and the drawbacks.

• Sales, marketing, product management involvement
The expected return on investment drives the marketing, sales and development of
software product family products. Marketing addresses the user values of having a
large amount of variability for low costs.

• Budgeting and investment
Software product family engineering influences the investment decisions. There is a
well-defined budget for domain and for application-engineering activities. There is an
institutionalised mechanism to generate budget for domain engineering by the sales
of systems produced by application engineering. There is an awareness of the costs
and profits of variability, and how that generates a return on investment.

• Vision and business objectives

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 8

The top management strongly supports software product family engineering. The or-
ganisation's vision and business objectives incorporate in a qualitative way the soft-
ware product family, its value for the organisation, and its evolution. The software
product family engineering strategy is visible to the organisation.

• Strategic planning
There are separate plans and roadmaps for domain and application engineering. The
plans are related, and commonalties in applications provide the basis of the domain-
engineering plan.

4.1.4 Level 4: Measured
At this level, the business measures software product family engineering to improve the strat-
egy.

• Sales, marketing, product management involvement
The costs, profits and return on investment of software product family products and
managed variability are measured to determine the marketing and sales strategy. In
addition, the product management strategy is guided by measured return on invest-
ment.

• Budgeting and investment
The costs and savings of reuse and variability and software product family engineer-
ing is measured, and reflected in the budgets.

• Vision and business objectives
The top management measure the effects of software product family development.
The business objectives incorporate in a quantitative way the software product family,
its value for the organisation, and its evolution. The advantages of software product
family appear in the vision and business objectives. The drawbacks are recognised,
and measures are planned to diminish their effects. The software product family en-
gineering strategy is visible outside the organisation (clients, investors, …).

• Strategic planning
The plans and roadmaps are coordinated to get the best business value out of soft-
ware product family engineering.

4.1.5 Level 5: Optimised
At this level, the business strategy involves optimisation of software product family engineer-
ing.

• Sales, marketing, product management involvement
Marketing, sales and development has an understanding of software product family
engineering and use its value in the strategy. Marketing and sales use the costs, prof-
its and return on investment of software product family engineering. These costs,
profits are also applied to improve the business strategy.

• Budgeting and investment
There is an accurate integration of budgeting and investment with the forecast of
sales, costs and savings of software product family products.

• Vision and business objectives
The vision and business objectives are influenced by software product family devel-
opment upon a well-understood basis.

• Strategic planning
The plans and roadmaps are used strategically to get the best business value out of
software product family engineering.

4.2 Summary
The evaluation levels for the business dimension are: Project based, Aware, Managed,
Measured and Optimised. At the initial level, there is no real business involvement in software
product family engineering. The business deals with a project based organisation, and all pro-
jects are treated in a similar way by the management. The business dimension of the FEF
deals with the following aspects

• Sales, marketing, product management involvement
From starting in an unaware state, product management, marketing and sales force
gets aware of the possibilities of dealing with managed variability. In the higher level,

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 9

the marketing and sales grow to use variability management in such a way that the
product planning supports the expected sales, and marketing supports the variants
that are available in the family.

• Budgeting and investment
Initially there are no specific budgeting or investments available for software product
family engineering. At the next level, the management is aware of possible benefits of
software product family engineering, but the best way to deal with this is still to be de-
cided. Initial investments are made to fund domain engineering, is supported by the
top management. In the higher level, budgets, and funding of domain engineering
gets more sophisticated, and supports the position of domain engineering within the
organisation. Domain engineering earns its own budget through a good internal busi-
ness model.

• Vision and business objectives
Initially, the vision is only by the people doing software product family engineering.
Next, the management gets aware and incorporates the managed variability in their
vision and objectives for the future.

• Strategic planning
From an initial stage, where software product family engineering is not visible in the
plans, at the higher levels, it becomes an important driving force in the planning.

4.3 Example
The ProtAct company has the following business evaluation:

• Sales, marketing, product management involvement
Marketing and sales is aware of the software product family. Product management
keeps an eye on features that are needed in future and it is in contact with develop-
ment to determine when such features may be available. The marketing department
uses this information to determine which features can easily be supported and which
are difficult to build, or take some time to be finished. The former ones are priced
lower than the latter ones. As there is no specific measurement of the costs and prof-
its of variability, this aspect is satisfied at level 3: Managed

• Budgeting and investment
An internal tax system deducts money from departments that sell products, to fund
domain engineering. The business has a fixed amount of about 40% of the profit to
be used for domain engineering. The costs and savings of product family engineering
are not yet measured, therefore also for this aspect the evaluation is satisfied at level
3: Managed.

• Vision and business objectives
The management of ProtAct is forcing to make as much as possible generic, and tries
to reduce the cost of specific developments, since they are aware that costs are too
high. There are limits on development budgets to reduce the total development costs
and the management advocates this to the organisation. Again, product family engi-
neering is not yet measured, therefore also for this aspect the evaluation is satisfied
at level 3: Managed

• Strategic planning
Product management uses a road map to plan the future variants of the product. It in-
volves new variants that are to be built, and it gives feedback to marketing and sales
when these variants are available. The road map is prepared in agreement with de-
velopment that gives feedback on the distribution of new requirements over generic
and specific software. Coordination among different roadmaps is still to be done.
Thus, also for this aspect the evaluation is satisfied at level 3: Managed

Combining the results, the ProtAct company is evaluation for the business dimension at B3:
Managed.

5 Architecture Dimension

The architecture dimension deals with the technical means to build the software. It involves
more than what is traditionally known as architecture, it also involves requirements, domain

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 10

modelling, detailed design and testing. However, the architecture is the main topic of this di-
mension. It determines the technical realisation of the product in the family. The architecture
is split over domain and application architectures, related via variability. The evaluation in the
architecture dimension mainly deals with the relationship between domain and application
architectures. It takes into account how variability is modelled in the architecture. Important
architecture concerns deal with the right mechanisms for variability and the relationship be-
tween software product family architecture (Domain-engineering) and corresponding applica-
tion architectures (Application-engineering).
The following aspects play a role in the architecture dimension of software product family en-
gineering.

• Asset reuse level
The extent of the use of domain assets in products

• Software product family architecture
The extent of the software product family architecture determining the application ar-
chitectures

• Variability management
The explicit use of variation points and supporting mechanisms

5.1 Levels
The following levels are recognised for the architecture dimension of software product family
engineering.

1. Independent product development
2. Standardised domain independent infrastructure
3. Software platform
4. Derivable variant products
5. Automated product derivation

In the following sections, each of these levels is discussed in more details.

5.1.1 Level 1: Independent product development
This is the basic level. There are only architectures for single systems. Reuse is not visible in
the architecture. None of the aspects covers software product family engineering. With regard
on the architecture concerns, we see the following typical situation:

• Asset reuse level
There is no or only unsystematic reuse.

• Software product family architecture
There is no software product family architecture.

• Variability management
There is no variability to manage.

5.1.2 Level 2: Standardised domain independent infrastructure
At this level, reuse is focussed on third party infrastructure. Common software infrastructure
(such as middleware or COTS) is defined. Nevertheless, there is no formal reuse of domain
specific assets.

• Asset reuse level
There is a common third party infrastructure defined and in use. There is only ad hoc
reuse, mainly based on the repository of the third party products.

• Software product family architecture
The software product family architecture is derived from the third party infrastructure.
It only enforces the use of this infrastructure.

• Variability management
Only variability offered by the third party infrastructure is somewhat limited. The re-
mainder of the variation is open to be determined by the application architect.

5.1.3 Level 3: Software platform
At this level, domain commonality is captured and implemented in a software platform. There
is a common reference architecture available for all applications, mainly determining the use

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 11

of the common platform. This platform is used for the different products. The platform could
be configured. Nevertheless, there is no variability support for product derivation

• Asset reuse level
There is a common platform defined as a collection of common assets in a domain
repository. Reuse is restricted to this platform, and it is restricted by architectural con-
straints.

• Software product family architecture
The common reference architecture contains common rules, and determines the use
of the common platform. This incorporates the common use of certain quality solu-
tions offered by the reference architecture. The common reference architecture is in
use for the applications.

• Variability management
The reference architecture determines which configurations of domain assets are al-
lowed within applications. It determines explicit variation points, where application
specific variants may be bound.

5.1.4 Level 4: Derivable variant products
At this level, the domain commonality and variability is captured and a reference architecture
is specified for the complete software product family. Domain assets include support for deriv-
ing products. Variability management is explicitly addressed in the software product family
architecture.

• Asset reuse level
There is systematic and managed reuse based on an asset repository, with explicit
variability in the assets

• Software product family architecture
There is an explicit reference architecture determining explicitly where application ar-
chitectures may vary. Many quality solutions are incorporated in the software product
family architecture.

• Variability management
The software product family architecture determines which configurations are allowed
for application architectures. The reference architecture determines variation points
and restricts the allowed variants for most of these variation points. It determines
rules that application specific variants have to obey.

5.1.5 Level 5: Automated product derivation
At this level, the domain engineering is dominant and application engineering is only marginal.
Products can be derived automatically from the domain without product specific development.
The reference architecture supports the automated configuration of products.

• Asset reuse level
There is systematic reuse based on an asset repository, with explicit variability in the
assets plus automated product derivation mechanisms.

• Software product family architecture
The reference architecture determines the application architectures completely, with
automated configuration support, to derive specific applications. Quality is supported
through the managed use of specific variation points.

• Variability management
Variability management is fully integrated in the architecture. Variability is described
in models and/or semantic and syntactic locally standardised languages. Variants are
derived automatically.

5.2 Summary
The evaluation levels for the architecture dimension are: Independent product development,
Standardised domain independent infrastructure, Software platform, Derivable variant prod-
ucts and Automated product derivation. At initial level, there is no domain architecture avail-
able, each product gets its own architecture, and reuse is unsystematic and ad hoc.

• Asset reuse level

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 12

From an initial level of unsystematic reuse, this aspect grows via a common infra-
structure to larger parts of the architecture that is reused, ending in a level where re-
use is managed through variation points.

• Software product family architecture
From an initial level of no available domain architecture, this aspect grows to a refer-
ence architecture that governs all applications, leaving not much freedom for the ap-
plication architectures.

• Variability management
From an initial level with no variability management, the aspect grows to a level
where variability is fully integrated in the architecture and variants are derived auto-
matically.

5.3 Example
The ProtAct company has the following architecture evaluation

• Asset reuse level
Important reusable assets are the architecture, the framework components and the
frameworks themselves. A single application consists of a collection of fixed frame-
work components and a configuration of plug-ins. A plug-in component may be spe-
cifically built for the application, but many plug-in components are shared by several
applications, and are therefore part of the domain architecture. The requirements and
generic (regression and integration) test cases are reused over the whole family. As
not all plug-ins in the family are available, and some of them have a complicated
structure, level 5 is not reached, but level 4: Derivable variant products is applicable
for the asset reuse level.

• Software product family architecture
There is a reference architecture for the complete family of products. The reference
architecture determines a layered structure. Each layer has a framework of compo-
nents that have to be present in each product. The lower layer consists of the single
operating system and database that is used in all applications. Variants are to be built
by adding plug-in components at interfaces that are specially designed for them.
Thus, a single application architecture consists of the collection of fixed framework
components and a configuration of plug-ins. A plug-in component can be added only
using specific interfaces. Plug-in components are variants of the variation point em-
bodied in these interfaces. Components have a configuration interface that is used to
select the right variant in the applications. There are explicit variation points that gov-
ern the values offered to these interfaces. As still some parts governing specific plug-
ins are not completely determined by the architecture, the software product family ar-
chitecture is at level 4: Derivable variant products.

• Variability management
Variant systems are to be built by adding plug-in components at interfaces that are
specially designed for them. Variation is governed by variation in requirements, that
determine which configurations have to be built, and which plug-ins have to used, or
built. Reusable components have standard interfaces to select a variant. This is all
determined in the reference architecture that determines where and how variation is
possible. Again, variability management is satisfied at level 4: Derivable variant prod-
ucts.

Combining the results, the ProtAct company is evaluation for the business dimension at A4:
Derivable variant products.

6 Process Dimension

The process deals with the roles, responsibilities and relationships within software develop-
ment. It deals with the ways to perform activities to do the development. For software product
family engineering, the processes can be distinguished between domain, application and col-
laborating processes. The domain and application engineering processes are development
processes, and CMMI® can be applied to each of them separately. Because application-

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 13

engineering processes have to be coordinated with domain engineering, and with other appli-
cation-engineering processes, additional collaboration processes have to be available.
The following aspects play a role in the process dimension of software product family engi-
neering:

• Domain engineering
Those processes that perform the domain engineering work
• Application engineering
Those processes that perform the application engineering work
• Collaboration
Those processes that perform the collaboration activities between domain- and applica-
tion engineering

6.1 Levels
The levels for the process dimension of software product family engineering are based on the
CMMI® levels. The software product family engineering levels contain amplifications for
CMMI® practices at the same level. See the deliverable of task 2.2 [5] for more details for the
process dimension. Processes are separated for domain- and application engineering. Fur-
ther processes are needed for collaboration between domain- and application engineering.
Based on CMMI®, the following levels are recognised for the process dimension of software
product family engineering.

1. Initial
2. Managed
3. Defined
4. Quantitatively managed
5. Optimising

In the following sections, each of these levels is discussed in more details.

6.1.1 Level 1: Initial
This is the basic level, domain and application engineering and collaboration processes are
performed at CMMI® level 1.

• Domain engineering
If present at all, domain-engineering is performed at CMMI® level 1

• Application engineering
Application engineering is performed at CMMI® level 1

• Collaboration
If present at all, collaboration is performed at CMMI® level 1

6.1.2 Level 2: Managed
At this level, basic project-management is in place. For software product family engineering,
domain and application engineering projects are synchronised.

• Domain engineering
Domain engineering is performed at CMMI® level 2. Amplifications are necessary for
the following process areas:

o Requirements Management (RM): Manage software product family re-
quirements. Maintain traceability between variation points and variants.

o Project Planning (PP): Define variability. Involve application engineering as
stakeholder for reusing the domain assets. Define a policy of communication
and cooperation with application engineering.

o Project Monitoring and Control (PMC)
o Measurement and Analysis (MA): Take global product family view into ac-

count.
o Configuration Management (CM): Attention should be paid to baseline cre-

ated and released for reusable assets.
• Application engineering

Application engineering is performed at CMMI® level 2. Amplifications are necessary
for the following process areas:

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 14

o Requirements Management (RM): management of application require-
ments, both as reused domain requirements and as application specific re-
quirements.

o Project Planning (PP): Reuse domain assets and bind variability. Analyse
the risk of dependency on domain engineering. Involve domain engineering
as stakeholder for developing reusable domain assets. Consider influence of
domain engineering to the scope of an application project.

o Project Monitoring and Control (PMC): Monitor the usage of reusable as-
sets.

o Measurement and Analysis (MA): Measure use of common assets by ap-
plication-engineering activities

o Configuration Management (CM): Reusable assets provide a basis for the
identification of configuration items.

• Collaboration
Collaboration is performed at CMMI® level 2. Amplifications are necessary for the fol-
lowing process areas:

o Requirements Management (RM): Maintain bi-directional traceability be-
tween software product family and application requirements. Use it for identi-
fication of inconsistencies.

o Project Planning (PP): Asset life cycles live longer than projects. Synchro-
nise between application- and domain-engineering. Monitor the involvement
between domain- and application engineering.

o Project Monitoring and Control (PMC): Monitor and control the synchroni-
sation points between domain- and application engineering.

o Configuration Management (CM): Change requests regarding reused as-
sets can be relevant for corresponding reusable assets. Synchronise applica-
tion and domain configuration management.

6.1.3 Level 3: Defined
At this level, processes are aligned over the organisation and engineering is performed in a
disciplined way over the organisation. For software product family engineering this means
control over variability and reusable assets, both in creation and in use.

• Domain engineering
Domain engineering is performed at CMMI® level 3. Amplifications are necessary for
the following process areas:

o Requirements Development (RD): Develop for multiple products in a whole
market segment. Define the scope of the family. Identify the products to be
built. Identify commonality and variability.

o Technical Solution (TS): Variability must be included in operational con-
cepts and scenarios for the domain. Develop platform architecture and tech-
nical data package. Consider multiple origins and destinations for interfaces.

o Verification (VE): Ensure that application engineering makes the proper in-
tended use of domain deliverables.

o Validation (VA): Application-engineering is stakeholder of domain validation
process.

o Organisational Process Focus (OPF): Include platform for a given domain,
procedures of use of this platform, methodologies, reusable components and
guidelines. Consider multiple products in a whole market segment. Use the
scope of the family.

o Organisational Process Definition (OPD): Include platform for a given do-
main, procedures of use of this platform, methodologies, reusable compo-
nents and guidelines. Consider multiple products in a whole market segment.
Use the scope of the family.

o Organisational Training (OT): Add training about products, application
processes, and application project groups.

• Application engineering
Application engineering is performed at CMMI® level 3. Amplifications are necessary
for the following process areas:

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 15

o Requirements Development (RD): A single customer is considered. The
software product family’s variability and capabilities are communicated to the
customer. Reuse system-family requirements, bind variability and develop
application specific requirements.

o Technical Solution (TS): Reuse domain assets, bind variability and develop
application specific assets. Specialise platform architecture for the applica-
tion, and use domain technical data package.

o Validation (VA): Validate both domain and application work products. Staff
must be especially trained to know what use they may make of the domain
assets. Domain engineering is stakeholder of application validation process.

o Organisational Training (OT): Add training about platform, asset usage,
domain processes, and domain project groups.

• Collaboration
Collaboration is performed at CMMI® level 3. Amplifications are necessary for the fol-
lowing process areas:

o Requirements Development (RD): Identify application requirements as po-
tential software product family requirements.

o Technical Solution (TS): Determine selection criteria for and coordinate the
inclusion within domain from application. Communicate existing and planned
application and domain assets. Identify application assets as potential do-
main assets. Coordination about make, buy and reuse decisions.

o Product Integration (PI): Maintain a roadmap of future products and product
enhancements. Determine the actual transfer protocol of deliverables and the
timing of the product transfers. Support integration between domain and ap-
plication engineering.

o Verification (VE): Develop the domain verification environment, procedures
and criteria concurrently and iteratively with the application verification envi-
ronment. Communicate verification results and corrective actions between
domain- and application engineering. Share policy of planning between do-
main- and application engineering.

o Validation (VA): Develop the domain validation environment, procedures
and criteria concurrently and iteratively with the application validation envi-
ronment. Share policy of planning between domain and application engineer-
ing.

o Organisational Process Focus (OPF): Determine the organisation’s proc-
ess performance objectives over the whole family. Synchronise action plans
between domain and application engineering.

o Organisational Process Definition (OPD): Assign responsibilities that cover
several projects and products.

o Integrated Project Management (IPM): Communicate existing and planned
application and domain assets. Identify application assets as potential do-
main assets.

o Risk Management (RSKM): Risk management strategy and risk mitigation
plans cover both application- and domain-engineering.

o Decision Analysis and Resolution (DAR): Ensure that alternative solutions
evaluation covers aspects from both the applications and the domain.

6.1.4 Level 4: Quantitatively managed
At this level, processes are managed and engineering is measured within the organisation.
For software product family engineering this means quantitative control over variability and
reusable assets, both in creation and in use.

• Domain engineering
Domain engineering is performed at CMMI® level 4, and software product family
processes of level 3 are performed. Amplifications are necessary for the following
process areas:

o Quantitative Project Management (QPM): Consider in the statistics the re-
lated application engineering sub-processes.

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 16

• Application engineering
Application engineering is performed at CMMI® level 4, and software product family
processes of level 3 are performed. Amplifications are necessary for the following
process areas:

o Quantitative Project Management (QPM): Consider in the statistics the re-
lated domain engineering sub-processes.

• Collaboration
Collaboration is performed at CMMI® level 4, and software product family processes
of level 3 are performed. Amplifications are necessary for the following process ar-
eas:

o Quantitative Project Management (QPM): Measure the dependencies and
the behaviour of the synchronisation activities between application- and do-
main engineering. Communicate influences between application- and domain
engineering. Negotiate improvement actions on project performance depend-
ent on other projects. Coordinate stakeholder identification over application
and domain projects.

6.1.5 Level 5: Optimising
At this level, processes are continuously optimised for their effectiveness for the organisation.
For software product family engineering, this means a collaborated improvement of domain-
and application-engineering.

• Domain engineering
Domain engineering is performed at CMMI® level 5, and software product family proc-
esses of level 4 are performed

• Application engineering
Application engineering is performed at CMMI® level 5, and software product family
processes of level 4 are performed

• Collaboration
Collaboration is performed at CMMI® level 5, and software product family processes
of level 4 are performed

6.2 Summary
The evaluation levels for the process dimension are based on CMMI®: Initial, Managed, De-
fined, Quantitatively managed and Optimising. At the initial level, there are no software family
processes available. Domain engineering and collaboration are almost absent. The process
dimension of the FEF deals with the following aspects:

• Domain engineering
From being absent, this grows to be the dominating process. It starts with the deter-
mination of commonality, variability the reusable platform and ends with the planning
and definition of policies for all application-engineering processes.

• Application engineering
From being the only development process, be it at lower maturity levels this aspect
grows to processes of minor importance, but at a high maturity level, reusing not only
technical assets, but all kinds of policies as well.

• Collaboration
From being absent, this becomes an important set of mature processes supporting
the coordination between the domain and application engineering processes. They
involve activities that align other processes, and that communicate available assets
between the different projects.

6.3 Example
The ProtAct company has the following process evaluation:

• Domain engineering
Domain engineering follows several iterative developments for separate parts of the
architecture. A separate development is available for keeping the architecture in
shape. The domain-engineering department is at CMMI® level 3. In addition, the do-

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 17

main engineering amplifications are performed. Therefore, this leads to an evaluation
of level 3: Defined.

• Application engineering
Application engineering departments usually follow a waterfall model to produce a
single application. As such most departments have CMMI® level 3, although some of
them are still at level 2. Certain level 3 application engineering activities are per-
formed, such as the technical solution and validation activities. In total the evaluation
leads to a level 2: Managed

• Collaboration
The collaboration processes are mainly organised by domain engineering, and they
are performed at CMMI® level 3. They involve the communication of reusable arte-
facts between application and domain. The feedback from application engineering
towards domain-engineering involves problem reports and application priorities. Not
all level 3 collaboration activities are performed, for instance within the requirements
development process area. Therefore, the evaluation leads to a level 2: Managed.

Combining the results to the lowest of the levels measured, the ProtAct company is evaluated
in the process dimension at P2 Managed.

7 Organisation Dimension

The organisation deals with the actual mapping of roles and responsibilities to organisational
structures. Within software product family engineering, the organisation dimension measures
the effectiveness of the distribution of domain and application engineering over the organisa-
tion. The organisation involves structures and responsibilities for domain and/or application
engineering and for supporting and coordinating roles. In particular, the organisation distrib-
utes responsibilities between platform (Domain-engineering), corresponding applications (Ap-
plication-engineering) and internal coordination.
The following aspects play a role in the organisation dimension of software product family en-
gineering.

• Roles & responsibilities
How well does the organisation manage the distinct responsibilities and relationships
occurring in the software product family engineering: undifferentiated or software
product family specific roles for engineering.

• Structure
This deals with the organisation structure that puts the roles and responsibilities into
practice. It involves both the primary structure, as shown in the organisation chart and
the secondary, often virtual, structure not visible in the organisation chart.

• Collaboration schemes
This deals with the extent of shared values. It involves the cooperation in primary and
secondary organisation structures.

7.1 Levels
The following levels are recognised for the organisation dimension of software product family
engineering.

1. Project
2. Re-use
3. Weakly connected
4. Synchronised
5. Domain engineering

In the following sections, each of these levels is discussed in more details.

7.1.1 Level 1: Project
This is the basic level. The organisation is arranged for project based single system engineer-
ing. With regard to the organisation concerns, we see the following typical situation:

• Roles & responsibilities

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 18

Only the application-engineering roles, which are the traditional software engineering
roles, are defined.

• Structure
The structure is organised around project based single system development.

• Collaboration schemes
The organisation is internally focused, human resources may be shared among pro-
jects, but software assets are usually not shared.

7.1.2 Level 2: Re-use
At this level, the projects drive the reuse in an opportunistic way. Reuse is driven by applica-
tion projects. First, certain common assets are identified and then re-factored and/or devel-
oped as re-usable components between projects.

• Roles & responsibilities
There are no explicitly defined domain-engineering roles. The application-engineering
experts collaborate over project borders to identify and share common assets.

• Structure
The structure is focussed on doing projects. Certain senior resources are allocated to
reusable component identification and development.

• Collaboration schemes
Collaboration is based on negotiations and information sharing among projects.

7.1.3 Level 3: Weakly connected
At this level, there are one or more separate domain-engineering organisations and multiple
application-engineering organisations. There are simple interactions between them at early
and late phases of domain and application engineering life cycles.

• Roles & responsibilities
There are both domain and application engineering roles and responsibilities defined.
There are defined responsibilities between separate domain-engineering organisation
(for platform assets) and application-engineering organisations (for application as-
sets).

• Structure
The domain and application roles are distributed over the organisation. There are
separate domain-engineering projects. Both domain and application engineering have
mostly project-oriented structure.

• Collaboration schemes
Collaboration is document-based, mostly in exchanging requirements and shared
management of change requests / problem reports between domain-engineering pro-
jects and several application-engineering projects.

7.1.4 Level 4: Synchronised
At this level, multiple interactions between domain-engineering and application-engineering,
institutionalised secondary structure (for early problem prevention, domain-engineering and
application-engineering coordinated planning)

• Roles & responsibilities
There are coordination roles between domain and application engineering, and
across domain-engineering organisations. Domain engineering has a major role in
software development.

• Structure
There exists a secondary (virtual) structure needed, incorporating cross-functional
teams. The reference architecture identifies the most important development aspects
in the organisation. Especially functional domains, embodies in certain variation
points determine structure in the organisation.

• Collaboration schemes
There is a strong cooperation across domain and application engineering projects,
cross-functional teams, task force groups, etc. There are regular (virtual) meetings of
people carrying collaboration roles

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 19

7.1.5 Level 5: Domain engineering
At this level, domain-engineering and application-engineering separation as secondary struc-
ture and the functional domains determine the secondary structure.

• Roles & responsibilities
Domain and application engineering are integrated. The most important roles are the
domain-engineering roles. Most people are involved in both domain and application
engineering roles

• Structure
The structure is driven by disciplines in domain engineering. They are not fixedly de-
termined by domain and application engineering.

• Collaboration schemes
Persons can assume domain and application engineering roles as needed.

7.2 Summary
The evaluation levels for the organisation level are: Project, Re-use, Weakly connected, Syn-
chronised and Domain engineering. At the initial level, there are no organisation structures
available for doing software product family engineering. If it is done, it is within a single de-
partment, and not visible to the remainder of the company. The organisation dimension of the
FEF deals with the following aspects.

• Roles & responsibilities
From a state where no domain-engineering roles are available, the organisation gets
more domain-engineering roles, up to the point these become the most dominant
roles in the organisation.

• Structure
From a state where the structure is defined by a project based application organisa-
tion, domain engineering defines more of the structure, first mainly in the secondary
organisation, but eventually in the primary organisation.

• Collaboration schemes
From a situation where there is no organised collaboration, the cooperation moves
from an internal focus to a cooperative one.

7.3 Example

The ProtAct company has the following organisation evaluation:

• Roles & responsibilities
The domain and application engineering roles and responsibilities defined, and peo-
ple are assigned to these roles and responsibilities. Although there are coordinating
roles defined between domain and application engineering, they do not play an
important role. In particular, domain engineering has no major role in software
development. As a result, the evaluation for this aspect results in a level 3: Weakly
connected.

• Structure
Domain engineering is performed in a department separate from several application-
engineering departments. A secondary structure is defined through many cross-
departmental groups that have the responsibility for one or more of the collaboration
subjects, such as road maps, global architecture issues, interfaces, problem reports
and maintenance, and promotion of assets from application to domain. As the primary
structure is not driven by domain engineering, the evaluation for this aspect results in
a level 4: Synchronised.

• Collaboration schemes
Collaboration is supported through many cross-departmental groups that have the re-
sponsibility for one or more of the collaboration subjects. However, collaboration
mainly results in reports between domain-engineering projects and several applica-
tion-engineering projects. As a result, the evaluation for this aspect results in a level
3: Weakly connected.

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 20

Combining the results to the lowest of the levels measured, the ProtAct company is evalua-
tion for the organisation dimension at level O3: Weakly connected.

8 Applicability

The FEF evaluation result is a profile consisting of a value between 1 and 5 for each of the
BAPO dimensions; see Figure 3. The optimal profile for a given unit is dependent on the
situation. In general, having the maximum on all axes may not be optimal. There are several
reasons to prefer a less than maximal profile.

B

A

O

P B

A

O

P

Department profileDepartment profile

1

2

3

4

5

1

2

3

4

5

Figure 3: Example company profile

In cases that the domain is not mature enough or the system lifecycle is small, it may be
wrong to be maximal, in at least the B and O dimensions, since flexibility may be more impor-
tant. In case that a company is a business follower, it may afford to have a lower level in the
business dimension, than a company that is a business shaper.
There are three main reasons to use the FEF. It can be used to assess the organisation, to
get information how well the organisation is doing. It can be used as a benchmark tool, in
comparing organisations, and it can be used as an improvement tool, to plan the improve-
ment of the organisation. Each of the three uses has its own characteristics, which are dis-
cussed in the following sections.

8.1 Assessment
In case of an assessment, the organisation, or the assessors, may not know beforehand what
is the score, although some indication of the outcome may be available. This indication may
be used as a target to which the assessment is done. In each of the 4 dimensions the aspects
from level 2 up to the target level the properties assessed. A questionnaire has to be available
to perform the actual assessment for each level. A level is reached in a certain dimension if all
corresponding elements of the questionnaire are satisfied.
The FEF only covers the software product family evaluation of the software development.
This means that single system software engineering practices are not covered. Other means
are to be used for assessing them. For the process dimension, an additional CMMI® assess-
ment will cover the normal software process maturity. In the other dimensions, there is no
generally established evaluation available. This means that the contents of these dimensions
may need improvement, even if a high FEF level is reached. Examples of such practices, not
covered by the FEF, are:

• In the Business dimension: The availability of a good business plan.

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 21

• In the Architecture dimension: The presence of a good architecture. This may be
evaluated through a normal architecture assessment, such as ATAM [6].

• In the Organisation dimension: the presence of training and appraisal schemes for
the personnel.

After the assessment is finished, the organisation is responsible for follow-ups. It may decide
to improve itself in certain, or all, dimensions, but it may also decide that the present situation
is acceptable and that work shall be organised and performed as before.

8.2 Benchmark
In case of a benchmark, an organisation, A, wants to compare itself with other organisations
B, C, …. The FEF can be used as a benchmark tool in cases the evaluation of the organisa-
tions B, C, … is available. For instance, the evaluation result of B and C is made available in
press. However, it may also be the case that A, B and C are parts of the same company. In
that case, the information may only be available within the company itself.
For benchmarking, the FEF assessment can be used with the FEF results for B as target. It
will show the differences, where A may show to be better, equal or worse than B in certain
dimensions. In the dimensions where A has a higher evaluation value, the assessment may
stop at the level of B’s evaluation, since only a benchmark is necessary.

8.3 Improvement
In case of an improvement plan an organisation sets a target where it wants to be at some
future time. It assesses itself against this target, and it gets results where improvements may
be necessary. It may even get feedback to matters where the evaluation is higher than the
target was. This may mean that for the moment less attention can be spent in that dimension,
and effort may be shifted to improve another dimension.
Improvement may be evolutionary. A target may be to reach a certain profile first, and next a
more ambitious profile will be reached. For instance, first go to reach level 3 in all dimensions,
and next to reach level 4 in the architecture and organisation dimension.

8.4 Connection to other approaches
An FEF evaluation is similar to a CMMI® assessment. For each of the dimensions, an incre-
mental questionnaire leads to an evaluation result. However, an FEF evaluation does not
overlap with a CMMI® assessment. Instead, CMMI® is used to evaluate the single system
software engineering process. The process dimension of the FEF only measures the amplifi-
cations that are necessary to do software product family engineering. In addition to the
CMMI® assessments, the FEF also covers the business, architecture and organisation con-
cerns.
The Framework for Software Product Line PracticeSM (PLP) [4] is a list of necessary practices
for software product family development. It does not give a structured framework that can be
used to assess, benchmark or incrementally improve organisations. Most of the practices in
the PLP are crucial in certain parts of the FEF framework. For instance,

• The software engineering practice areas belong to the architecture dimension
• The technical management practice areas mainly relate to the process dimension
• The Organisational management practice areas belong to the business or organisa-

tion dimension.
The Product Line Technical probe (PLTP) and the economic models are mainly useful for or-
ganisations that have an FEF level of B1, A1, P1, O1. These organisation are considering
whether they should move into software product family engineering. The PLTP and the eco-
nomic models gives them insight on how to start and to move in the direction of B2, A2, P2,
O2.

8.5 Example
ProtAct is interested in seeing how well they are doing in software product family engineering.
They want to use the result in an improvement action, and therefore they need to know what
are the best improvement actions to be taken. Initially the expectation is a level of B2, A3, P2,
O3. The result of execution of the FEF is the following profile: B3, A4, P2, O3. This means

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 22

that the business and the architecture are better than expected. Because of this, the company
decides on an improvement plan to reach level B3, A4, P3, O3 first, and next to go to level
B4, A4, P4, O4. This means that first the process has to be addressed, in order to reach level
P3. This means that each application department has to move to CMMI® level 3, and level 3
collaboration amplifications have to be put in place. For instance, the identification of applica-
tion assets as potential domain assets has to improve. For the next goal, the business, proc-
ess and organisation have to be improved to reach level 4. For business this means that sev-
eral measurements have to be introduced, e.g. for costs and profits of variability has to be
measured. For the process dimension this means that CMMI® level 4 has to be reached in the
organisation. In addition, the quantitative project management amplifications have to be intro-
duced. For the organisation, this means an improvement of the secondary structure that deals
with collaboration over the organisation.
In all these improvement actions, care has to be taken that the architecture stays at level 4.
This means that the architecture needs attention to stay healthy and keeps its present quali-
ties. It is expected that this less effort than what is needed in the other dimensions.

9 Complex organisations

Many organisations, which are doing software product family engineering, are complex. The
development is distributed over different departments that are located at different sites and
even in different time zones. Other companies are involved that are specialised in doing a
part of the work, e.g. through outsourcing, or other kinds of agreements between companies.
This situation complicates the evaluation of software product family engineering, but in princi-
ple, FEF evaluation is possible.
To be practical, the FEF cannot be applied to a complex organisation. It takes too much time
to finish the evaluation, and the different parts of the organisation may perform differently,
which makes it difficult to end with an evaluation higher than B1, A1, P1, O1.
Therefore, the evaluation has to be applied upon units of manageable size. Such units may
be departments, divisions, or subcontractors, or even virtual parts of a group of organisations.
Restricting the evaluation to such units mean that only parts of the software product family
engineering can be evaluated, since the unit that is evaluated may cover only a part of the
software product family engineering. Several aspects do not apply completely to certain de-
partments. For instance, it will happen that a single unit is mainly involved in domain, or
mainly in application engineering.
Applying the FEF to parts (units) of complex organisations give rise to the following observa-
tions, with respect to the BAPO dimensions:

• B: Business concerns involve business relations internal to the complex organisation
as well. In particular the business relationships of the department that is assessed
with the remainder of the software product family engineering parts of the organisa-
tion. External business concerns mainly apply if the given part of the organisation is
dealing with that aspect.

• A: Architecture concerns apply to that part of the architecture that the specific unit is
responsible for, either in creating it, or in using it.

• P: Process concerns only apply for those that the unit are performing.
• O: Organisation concerns only apply for internal organisation of the unit, and to its

role in relationships with other parts of the organisation.

9.1 Example
The ProtAct company has development units in several countries. It is decided to do the FEF
assessment to a single department only. It is chosen to first assess a department that is
mainly responsible for the domain engineering.

• In the Business dimension: The department is not directly involved in marketing and
sales. However, instead it has to do marketing and sales internal to the company, for
spreading their solution as the reusable platform that the others should use. Product
management restricts itself to product management of the platform that is developed,
with as clients the other departments of the organisation. In the evaluation of the de-
partment, the following elements will be considered: marketing, sales and product

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 23

management determine the features in coordination with the other departments.
Budgeting and investments mainly deal with the results of marketing and sales, in
getting money for the own organisation to do software family engineering. Of course,
the higher management of the company that is responsible for this department is re-
sponsible that enough money is available to do domain engineering. The tax system
takes into account how many people are working in the domain. It is only a rough
measure that is not able to discriminate in good and bad elements of the platform.
The vision and business objectives of the department mainly deal with a vision of
spreading the platform over the organisation, and how this is communicated to the
higher management and the remainder of the organisation. Strategic planning deals
with the own roadmaps and how the alignment with the road maps of the other de-
partments in coordinated. As a result, the department is evaluated at level B3: Man-
aged.

• In the Architecture dimension: the department is defining the architecture for the
complete company. It is measured how well it succeeds in getting their own results
being reused, how much the architecture is determining the architecture of the other
departments, and whether variability is managed well within the platform. As a total
this may lead to an evaluation of A4: Derivable variant products.

• In the Process dimension: The department is involved in domain engineering, and in
collaboration. These processes can be assessed. As this department is working at
CMMI® level 3, and it performs all level 3 amplifications for domain and collaboration,
it is evaluated to be at level P3: Defined.

• In the Organisation dimension, the department is clearly a domain-engineering de-
partment. This means that part of the structure is already defined. However, the rela-
tionships with other departments determine how the department should be evaluated.
As most of the collaboration is governed by the domain engineering department, in a
weakly connected way, the evaluation of the department leads to level O3.

Product-4
architecture
Product-4

architectureProduct-3
architecture
Product-3

architecture

Product-2
architecture
Product-2

architecture Product-4
architecture
Product-4

architecture

Platform
architecture

Platform
architecture

Product-family-2
architecture

Product-family-2
architecture

Product-family-1
architecture

Product-family-1
architecture

Product-1
architecture
Product-1

architecture Product-3
architecture
Product-3

architecture

Hierarchy Population

Product-2
architecture
Product-2

architectureProduct-1
architecture
Product-1

architecture

Population
architecture

Figure 4: hierarchy and population

9.2 Structured architecture
In many cases, in complex organisations, the software product family is structured (hierar-
chy), or the family is part of a population; see Figure 4. A hierarchy exists if there are several
product families that use a single infrastructure that is modelled as a product family. These
families do not reuse software between themselves, not all use this platform. In a population,
several product families reuse different parts of a very broad platform. Reuse is within the
platform [13]. Usually there are no systems, or not many that use the complete platform.

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 24

In a hierarchical situation, application engineering for the generic platform is domain engineer-
ing for a single software product family. In the case of populations, it may happen that a de-
partment is both responsible for a specific software product family, and for parts of the do-
main. Such a situation complicates the FEF evaluation, but evaluation is in principle the
same. Each unit can be evaluated for each of the different families in which it is involved and
in the interplay between them in the complete family structure.The evaluation has separately
to be applied upon each of the roles of the units in each development separately. These roles
involve parts of domain and/or application engineering. This means that a single organisation
may get a separate evaluation for each of its roles. These evaluations may result in different
profiles. Similar to the situation in complex organisations this may mean that only parts of the
software product family engineering per role can be evaluated. Several aspects do not apply
completely to the role in the evaluated department

9.3 Example
The ProtAct company has a hierarchical architecture for its products. It has a department that
produces a configurable company platform, PlatPA, for several product families. One such
product families, ObserCheap, produces observation rooms and wired camera systems, to be
used in small areas only. It uses the PlatPA platform as a basis of its own development. It has
a department that produces the product-family architecture for ObserCheap products. The
department will be evaluated for it different roles: as application engineering department of
the company platform, and as domain engineering unit for the ObserCheap product family.

• In the Business dimension: in the application-engineering role, it is evaluated in its re-
lationship to the PlatPA platform. It is evaluated whether the internal taxation to the
PlatPA department is in line with the business interest of the ObserCheap software
product family. It is evaluated in its relationship to the PlatPA platform, whether prod-
uct management of ObserCheap is in alignment with the PlatPA product manage-
ment. It measures whether the vision and business objectives incorporate the use of
PlatPA. In this role, the department is doing reasonably well, and it is measured at a
level of B3: Managed.
In the domain-engineering role, it is evaluated in regard of the business relationship
to the departments producing the ObserCheap products. Product management has to
align with the request from these product development departments. In addition, it
has to deal with reimbursing the taxation costs of the use of PlatPA to the develop-
ment departments. The vision and business objectives are measured in respect to the
use of ObserChear platform in the software product family. In this role the department
is doing less well, it is evaluated to be at level B2: Aware.

• In the Architecture dimension: in the application-engineering role, it is measured how
well it reuses the PlatPA platform in its own architecture, and how ObserCheap
PlatPA specific elements are in this platform. As the PlatPA platform fits well, the de-
partment is evaluated to be at level A3: Software platform.
In the domain-engineering role, the department is defining the architecture for the
complete ObserCheap software product family. Since it determines the architecture of
all these products largely, the department is evaluated in this role to be at level A4:
Derivable variant products.

• In the process dimension: The department is assessed to be at CMMI® level 3. In the
application-engineering role, it is measured how well the application engineering and
collaboration amplifications are done. Collaboration is in this case with respect to the
PlatPA department. As such, it performs well, and it is involved in all the amplifica-
tions. Therefore, for this role, the department is evaluated to be at level P3: Defined.
In the domain-engineering role, the domain engineering and collaboration amplifica-
tions are measured. In this case, collaboration with respect to the ObserCheap prod-
uct groups is evaluated. As not all these collaboration activities are performed well,
e.g., the verification and validation are not performed completely, the department is
evaluated to be at level P2: Managed.

• In the organisation dimension: in the application-engineering role, it is evaluated how
the roles and responsibilities with respect to the relationship with the PlatPA depart-
ment are assigned, whether its structure fits well to application use of PlatPA, and

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 25

whether the collaboration schemes are adequate for the relationship. The evaluation
results in level O3: weakly connected.

• In the domain-engineering role, the roles and responsibilities, the structure and the
collaboration schemes with respect to the ObserCheap development are evaluated.
Just as for the other role, the department is evaluated to be at level O3: weakly con-
nected.

This means that the department is evaluated at level B3, A3, P3, O3, for its application-
engineering role. For its domain-engineering role, it is evaluated to be at level B2, A4, P2, O3.
This may lead to different improvement actions for the two roles. In the application-
engineering role, the improvement actions will firstly focus on the architecture dimension. For
the domain-engineering role, the improvement actions will initially consider the business and
process dimensions.

10 Conclusions

This document gives an overview of the Family Evaluation Framework for the evaluation of
software product family development units. The framework is based on a long experience in
software product family development, and a major result of a series of European collaboration
projects in the ITEA framework: ESAPS [9][19], CAFÉ [10][18] and FAMILIES [11][20]. This
framework is improving upon existing approaches in that it systematically distinguishes the
four BAPO concerns: Business, Architecture, Process and Organisation. Each of these con-
cerns is evaluated separately, and each leads to its own evaluation value. In the evaluation,
only software product family development issues are covered. Other software development
issues are treated elsewhere, and are not part of the framework. In particular, the Framework
relies on process maturity models, like CMMI®, for normal software development process is-
sues.
Each dimension of the framework has a collection of aspects that are to be considered in the
evaluation. Dependent on the evaluation in these aspects a level from 1 to 5 can be obtained.
A level 1 means that the aspects are not dealing with software product family engineering. A
level 5 means that all the aspects deal largely with software product family engineering. Note
that the framework is built in such a way that the level 5 is reachable. This level 5 is not an
ideal situation that does not allow improvements any more.
The result of an evaluation is a profile that can be used for several reasons, such as assess-
ing a department, benchmarking with other departments and/or companies or as a starting
point for improvement actions.
As organisations doing software product family engineering are usually distributed over sev-
eral sites, and time zones, the evaluation can be performed for single departments that only
perform a part of the software product family engineering. In addition, when the product family
is structured, the evaluation may be performed for several roles separately.
This document provides a first public version of the FEF. A steering committee will be estab-
lished to guarantee the continuous improvement of the FEF, based on company experiences.

11 Literature

[1] Pierre America, Henk Obbink, Rob van Ommering, Frank van der Linden, “CoPAM: A Component-
Oriented Platform Architecting Method Family for Product Family Engineering”, proceedings
SPLC1, Denver, August 2000, pp. 167-180

[2] Jan Bosch, “Software Product Lines: Organisational Alternatives”, Proceedings of the 23rd
International Conference on Software Engineering (ICSE 2001), pp. 91-100, May 2001.

[3] Jan Bosch, “Maturity and Evolution in Software Product Lines: Approaches, Artefacts and Organi-
sation,” Proceedings of the Second International Conference on Software Product Lines (SPLC 2),
Springer LNCS 2379 pp. 257-271, August 2002.

[4] Paul Clements, Linda Northrop: “Software Product Lines – Practices and Patterns”, Addison
Wesley, 2001.

Eureka Σ! 2023 Programme, ITEA project ip02009 Consortium-wide
Frank van der Linden 5 December, 2005 Final – PH-0503-01– v-1.0

 26

[5] Piergiorgio DiGiacomo, “Families Deliverable 2.2: CMMI-software product family engineering”,
version 0.5, December 2004

[6] Stefan Ferber, Peter Heidl,Pater Lutz, “Reviewing Product Line Architectures: Experience report of
ATAM in an Automotive Context”, proceedings Product family Engineering, PFE-4, Springer LNCS
2290, 2001, pp. 364-382

[7] Claudia Fritsch, Ralf Hahn, “Product Line Potential analysis in Software Product Lines”, Proceed-
ings SPLC 2004, Springer LNCS 3154, 2004, pp. 228--237

[8] Mehdi Jazayeri, Alexander Ran, and Frank van der Linden: “Software Architecture for Product
Families”, Addison-Wesley, Reading, Massachusetts, 2000.

[9] Frank van der Linden, “Engineering Software Architectures, Processes and Platforms for Software
product families”, Proceedings SPLC2, Springer LNCS 2379, San Diego, August 2002, pp. 383-
397

[10] Frank van der Linden, “Software Product Families in Europe: The ESAPS and CAFÉ projects”,
IEEE Software, July/August 2002, pp. 41-49

[11] Klaus Pohl, Günter Böckle, Frank van der Linden, “Software Product Line Engineering”, Springer
Verlag, 2005

[12] M. Paulk et al. “Capability Maturity Model of Software, Version 1.1”. Tech Report CMU/SEI-93-
TR24, Carnegie Mellon University, Pittsburgh, 1993

[13] Rob van Ommering, “Building Product Population with Software Components”, PhD. thesis Uni-
versity Groningen, 2004.

[14] Klaus Schmid, “A Quantitative Model of the Value of Architecture in Product Line Adoption”, in
Software Product-Family Engineering, Proceedings PFE 2003, Springer LNCS 3014, 2004, pp.
32-43

[15] Jan Gerben Wijnstra, “Critical factors for a successful Platform-Based Product software product
family Approach”, Proceedings SPLC2, San Diego, August 2002, Springer LNCS 2379 pp. 68-89

[16] CMMISM for Systems Engineering/Software Engineering/Integrated Product and Process Devel-
opment/Supplier Sourcing, Version 1.1, Continuous Representation (CMMI-software engineer-
ing/SW/IPPD/SS, V1.1, Continuous), Technical Report CMU/SEI-2002-TR-011, Carnegie Mellon
University, Pittsburgh, 2002

[17] CMMISM for Systems Engineering/Software Engineering/Integrated Product and Process Devel-
opment/Supplier Sourcing, Version 1.1, Staged Representation (CMMI-software engineer-
ing/SW/IPPD/SS, V1.1, Staged), Technical Report CMU/SEI-2002-TR-012, Carnegie Mellon Uni-
versity, Pittsburgh, 2002

[18] CAFÉ Web-site at ESI: http://www.esi.es/en/Projects/Cafe/cafe.html

[19] ESAPS Web-site at ESI: http://www.esi.es/en/Projects/esaps/esaps.html

[20] FAMILIES web-site at ESI: http://www.esi.es/en/Projects/Families/

[21] ITEA web-site: http://www.itea-office.org/

[22] Praise Web-site at ESI: http://www.esi.es/en/Projects/Praise/praiseProject.html

