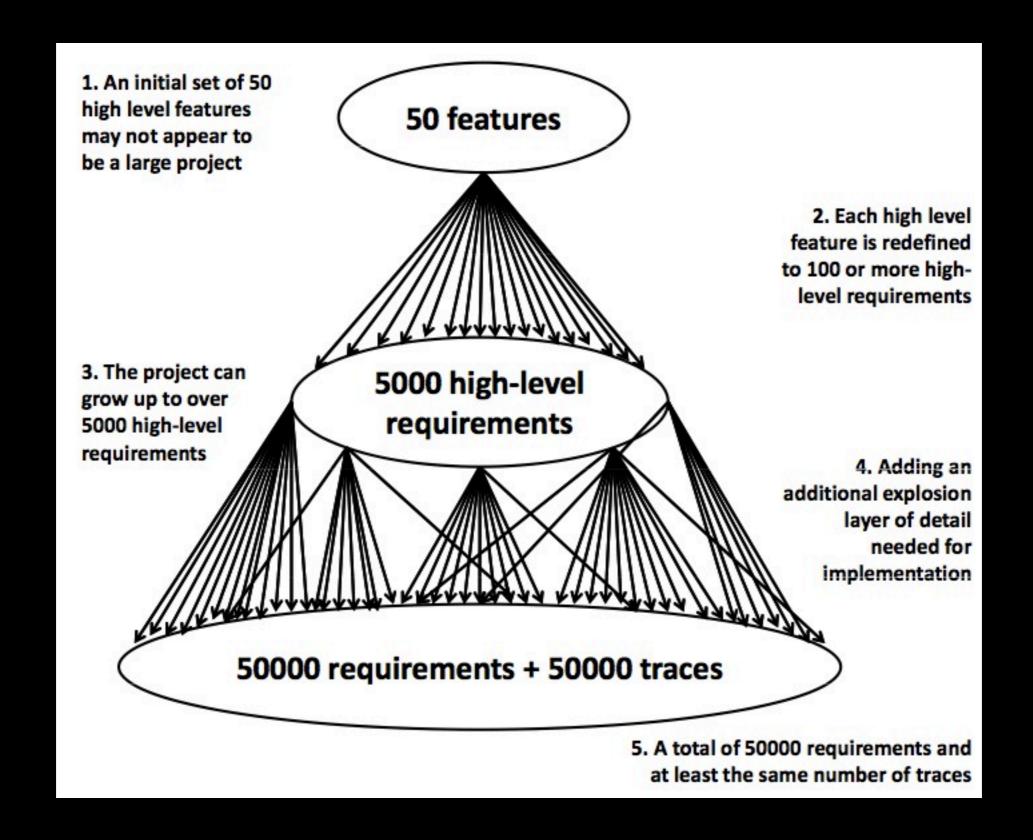
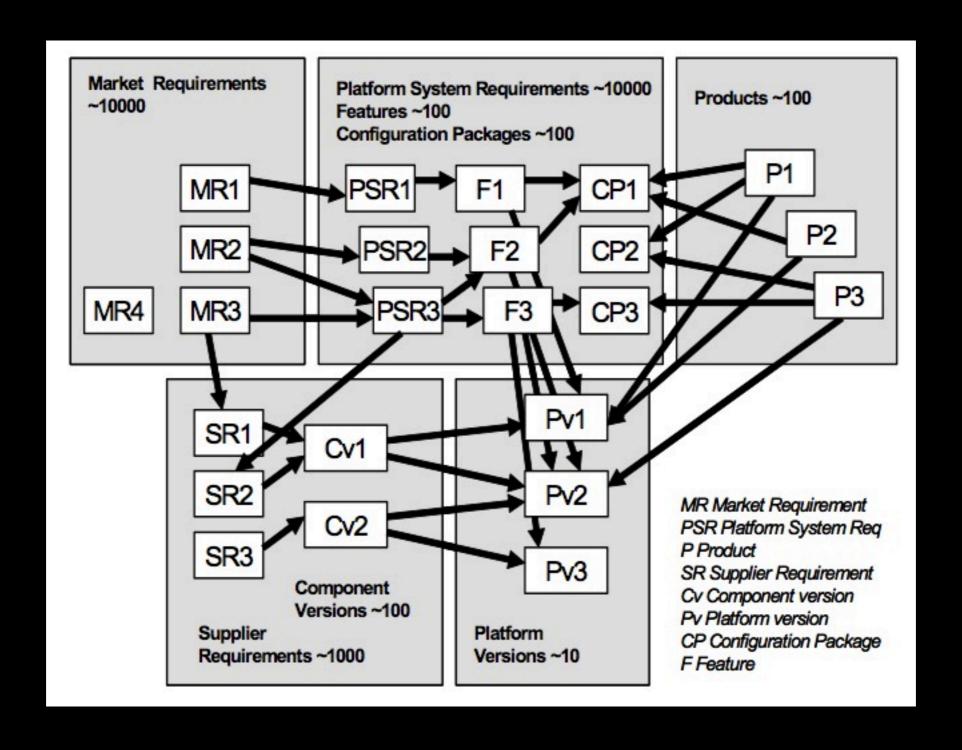
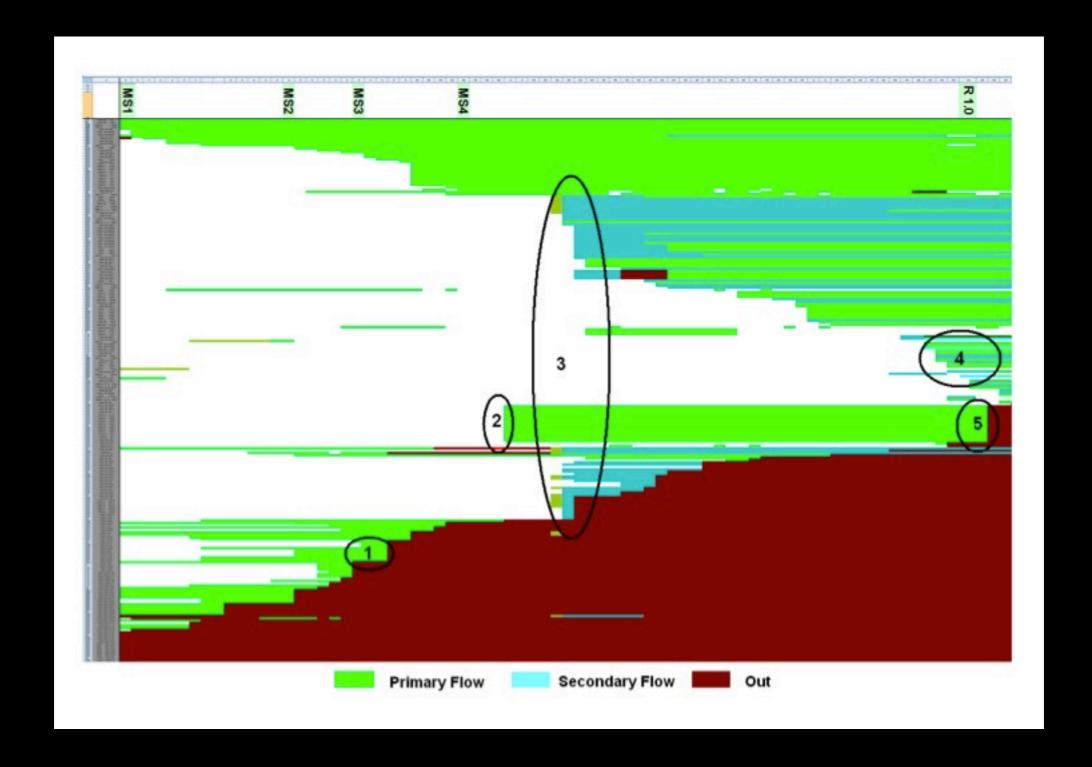
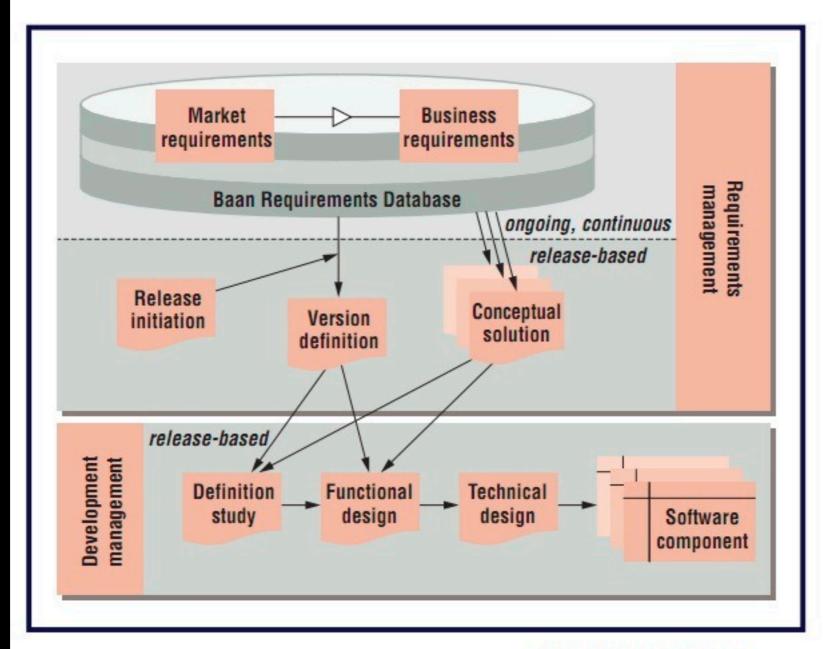
Large-Scale RE, Creativity & Emotion in RE


Lecture 9, DAT230, Requirements Engineering Robert Feldt, 2012-10-09


Table 1: Orders of magnitude in requirements engineering , based on Paper VI.


Abrev.	Level	Order of magnitude	Sample empirical evidence	Interdependency management conjectures with current RE technology
SSRE	Small-Scale Require- ments Engineering	10 requirements		Managing a complete set of interde- pendencies requires small effort.
MSRE	Medium-Scale Require- ments Engineering	100 requirements	(Feather et al. 2000)	Managing a complete set of interde- pendencies is feasible but requires large effort.
LSRE	Large-Scale Require- ments Engineering	1000 require- ments	(Park and Nang 1998)	Managing a complete set of interde- pendencies is practically unfeasible, but feasible among small bundles of requirements.
VLSRE	Very Large-Scale Re- quirements Engineering	10000 require- ments	(Regnell et al. 2006)	Managing a complete set of interde- pendencies among small bundles of requirements is unfeasible in prac- tice.

LSRE Challenges


- Large number of customer requirements
- Formal interface to customer
- Management of customer expectations
- Changing technology
- Traceability
- Scope change and creep
- Resource fluctuation
- Prioritization

"Linguistic" LSRE

time a new MR arrives into the BRD, they first check it by searching to find out whether one

Figure I. The Baan requirements management process.

[NattoDag2005]

"Linguistic" LSRE

Stage 1: Flattened

Pricing and Containerization
Specifically what I am interested in is containerization and pricing.
For a prospect I am working with (pretty much a distributor of electonic components) I need pricing by type of package by cusotmer type(wholesale or retail).

Stage 2: Tokenized

pricing and containerization
specifically what i am interested
in is containerization and pricing
for a prospect i am working
with pretty much a distributor
of electonic components i need
pricing by type of package
by cusotmer type wholesale
or retail

Stage 3: Stemmed

price and containerization
specifically what i be interest
in be containerization and price
for a prospect i be work with
pretty much a distributor of
electonic component i need pricng
by type of package by cusotmer
type wholesale or retail

Stage 4: Stop words removed

price containerization
specifically containerization
price prospect pretty distributor
electonic component pricng
type package cusotmer type
wholesale retail

Figure A. Preprocessing part of our example market requirement.

[NattoDag2005]

"Linguistic" LSRE

The Vector-Space Model and the Cosine Measure

The vector-space model is a standard way of representing texts through the words they comprise. Each text is represented as a vector in the high-dimensional space corresponding to the vocabulary used, where each dimension represents a word. Parts of the market and business requirements in Table 1 would be represented by the word space and corresponding vectors shown in Table A (where the values represent the number of occurrences of each word).

Table A

Word space and vectors

$$r_{m} = (1, 2, 2, 0, 0, 1, 3, 0, 7, 0, 0, 0, 0, 2)$$

$$r_{b} = (6, 0, 5, 4, 2, 0, 1, 2, 0, 1, 1, 0, 8, 1)$$

The Cosine measure then takes the two vectors as input and returns a similarity value between 0 and 1, corresponding to the cosine of the angle between the vectors:

$$\sigma\left(r_{m}, r_{b}\right) = \frac{r_{m} \cdot r_{b}}{\left|r_{m}\right| \cdot \left|r_{b}\right|}$$

The $r_m \cdot r_b$ denotes the dot product of r_m and r_b , which is calculated by multiplying the corresponding frequencies of each word and then adding them together. However, as the number of times a word occurs is relevant, its relevance decreases as the number gets larger. One common approach is therefore to weight the term frequencies using the formula $1 + \log_2(term\ frequency)$. Thus, for the business and market requirements in our example, the similarity becomes

$$\sigma(r_m, r_b) = \frac{\sum_{i} [1 + \log_2 r_m(i)] \cdot [1 + \log_2 r_b(i)]}{\sqrt{\sum_{i} [1 + \log_2 r_m(i)]^2} \cdot \sqrt{\sum_{i} [1 + \log_2 r_b(i)]^2}} \approx 0.32.$$

[NattoDag2005]

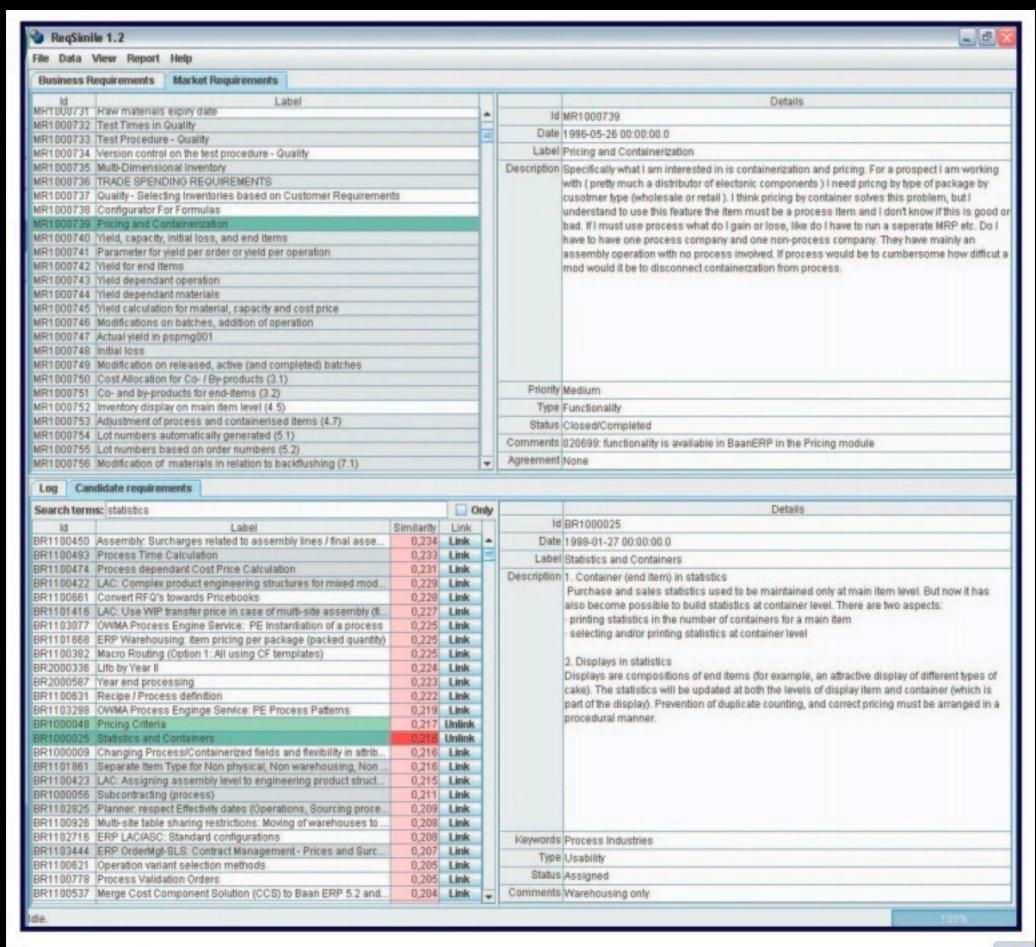
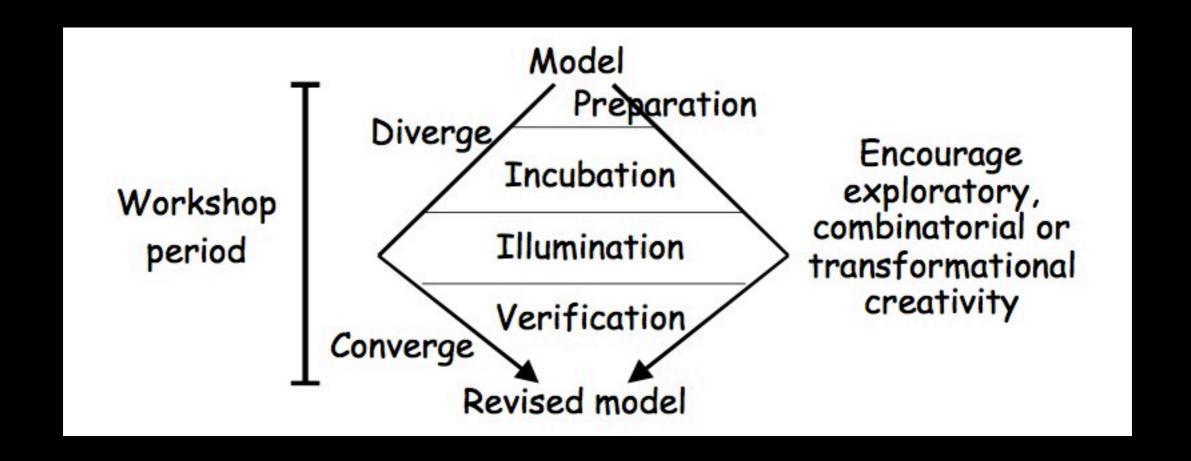


Figure 3. ReqSimile, an open source tool in Java.



Creativity in RE

Creativity = ability to produce work that is both novel (original, unexpected) and appropriate (useful, adaptive concerning task & constraints)

[Sternberg&Lubart1995]

Creativity Workshops for RE

[Maiden2007]

Divergent & Convergent Thinking

Divergent & Convergent Thinking

Divergent thinking = generate creative ideas through exploring multiple alternatives/ possibilities

Divergent & Convergent Thinking

Divergent thinking = generate creative ideas through exploring multiple alternatives/ possibilities

Convergent thinking = select "correct" ideas among many alternatives

Divergent thinking

- Not correlated with IQ, but with:
 - nonconformity, curiosity, risk taking, persistence, musicians
- Can be promoted through:
 - creating lists of questions
 - time "off" to think and meditate
 - brainstorming
 - bubble mapping
 - keeping a journal, free writing ("stream of thought")
 - artwork

Exploratory = explore new ideas within a given conceptual space (accepts constraints/ assumptions of given space)

Exploratory = explore new ideas within a given conceptual space (accepts constraints/ assumptions of given space)

Transformational = deliberate transformation or transcendence of a conceptual space (rejects some constraints/assumptions of given space)

Exploratory = explore new ideas within a given conceptual space (accepts constraints/ assumptions of given space)

Transformational = deliberate transformation or transcendence of a conceptual space (rejects some constraints/assumptions of given space)

Combinatorial = novel combination of existing ideas as search through space

Four steps of creativity

- Preparation research = collect information/data
- Incubation percolation = milling over collected info
- Illumination light bulb = aha moment
- Verification/Implementation creation = check realism

Maiden Case Study

- Two-day workshop to create new reqs/ideas
- Product: Air Traffic Management system
- Process:
 - 2 system engineers + domain experts: 4 months to establish high-level spec with scope and goals
 - 2-day Creativity workshop = 2 facilitators + 2 scribes + 2 external experts + 19 stakeholders
 - Focus on use case models and texts + I* models

Maiden Case Study

- 4 half-day session in 2 days
- All ~20 people in one room
- Models & text printed on Im2 pin boards around room
 - Physical and logical structure of ideas and reqs
- Rules: No criticism during divergent periods, time-boxing different topics strictly
- Post it notes, colored pens, idea cards at hand

Maiden Case Study

Day I morning	Day I afternoon	Day 2 morning	Day 2 afternoon
Brainstorming (system wide & use case specific)	Expert pres: Design of museum exhibitions	Reflection Expert pres:TV program	Created Storyboards for high-prio use cases
Constraint identification & removal	Analogy mapping to ATM & idea	scheduling Analogy mapping & idea	Combining ideas
Brainstorming given removed constraints	creation Reporting back	creation Reporting back	Revised use cases, models & texts

Analogical mapping/reasoning

- Can help Exploratory creativity
- Steps:
 - Find similar domain (source) to target domain
 - Identify and list mappings between
 - Agents, Objects, Actions, Constraints, Goals
 - Use each mapping in turn to create new idea by transforming solution between domains

Constraint removal

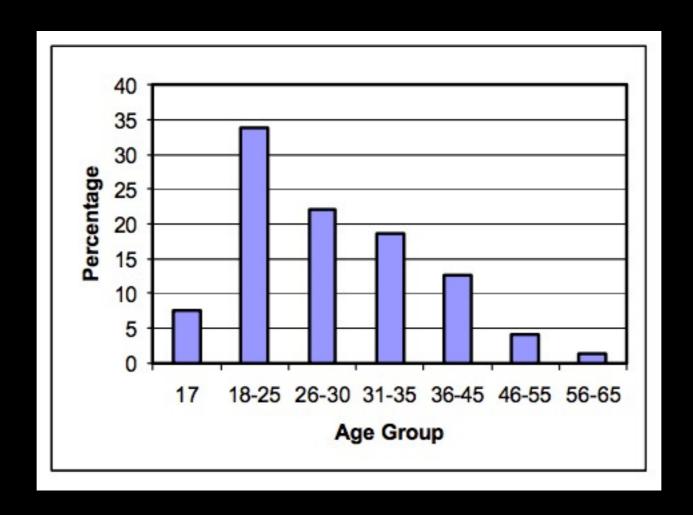
- Can help Transformational creativity
- Steps:
 - Identify constraints through brainstorming
 - Divide in small groups
 - Groups consider new ideas by consecutive removal of constraints until none remains
 - Report back and put on boards

Storyboarding

- Can help Combinational creativity
- Steps:
 - Divide in small groups
 - Groups have I AI paper with I6 cartoon boxes to describe a scene of a use case
 - Report back

Case study results

Deliverable type		Number use case-	
	wide	specific	
Brainstormed ideas	16	12	
EASM constraints	34	0	
Ideas from EASM constraints	94	0	
Ideas from analogical reasoning with museum exhibition	0	15	
Ideas from analogical reasoning with TV program scheduling	0	8	
Workshop1 storyboards	0	4 storyboards	


Technique	Novelty			Impact			
	1	2	3	1	2	3	
Brainstorming	1	10	16	11	10	7*	
Science Museum Analogy	0	7	8	7	5	3	
Programme Scheduling Analogy	0	2	6	2	3	3	
Constraint Removal	1	21	67	8	60	21	
Totals	2	40	97	28	78	34	

Summary of results

- Captured both novel and unoriginal ideas
 - that were useful and affected SRS
 - 106 of 140 ideas was useful
 - 42 of 139 ideas was novel
- More effect on abstract goals and concepts than actual reqs
- Constraint removal effective but needs more structure
- Sometimes hard to record all ideas ("idea blizzards")
- Analogy techniques not very cost-effective

Survey on emotions in games

- [Bentley2002]
- 303 respondents recruited from gaming mailing lists and from post-grad alumni (no difference between groups)
- Younger people than who (in general) play games

Predictors of Enjoyment in games

	Unstandardized Beta	Standardized Beta	Sig.	Meaning
(Constant)	.452		.000	
Ability to Concentrate	.005	.013	.808	
Computer Competition	010	031	.542	
Clear Goals	023	072	.203	L initial workley
Learnability	.047	.166	.002	Less learnable predicts increased enjoyment
Feedback	071	171	.001	More feedback predicts increased enjoyment
Distraction Element	021	059	.246	
Control over actions	029	085	.113	
Efficiency	009	029	.614	
Computer Recognition	.030	.104	.108	
Self Image	070	217	.000	Increased self image after use predicts increased enjoyment
Self Competition	.014	.049	.461	
Loss of Time	.029	.101	.043	Less 'Loss time' predicts increased enjoyment
Effectiveness	014	042	.396	
Curiosity	048	146	.004	More curiosity predicts increased enjoyment
Attribution	.003	.010	.850	
Fantasy	019	049	.342	
Challenge	031	059	.228	
Cooperation	034	117	.047	More cooperation predicts increased enjoyment
Peer Recognition	.000	.000	.999	

Table 2: Results of standard linear regression

Further analysis: Affect

- Harder to learn => more enjoyment!??
 - Real-time strategy+skill games => requires high levels of coordination+reaction speed => pride themselves with it => enjoy harder
 - Other games: Easier to learn => more enjoyment since mastery depends more on cognitive ability
 - So depends on system type, goals etc
- "When I lost time in a computer game it is a game that I really enjoy. However I recognise losing time as 'bad' and therefore losing time itself does not increase my enjoyment, it is a side-effect of my enjoyment".

How to elicit affective reqs?

Contrasting concepts relating to user experience:

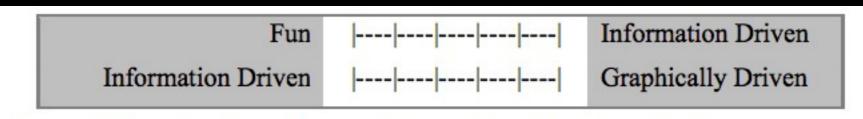
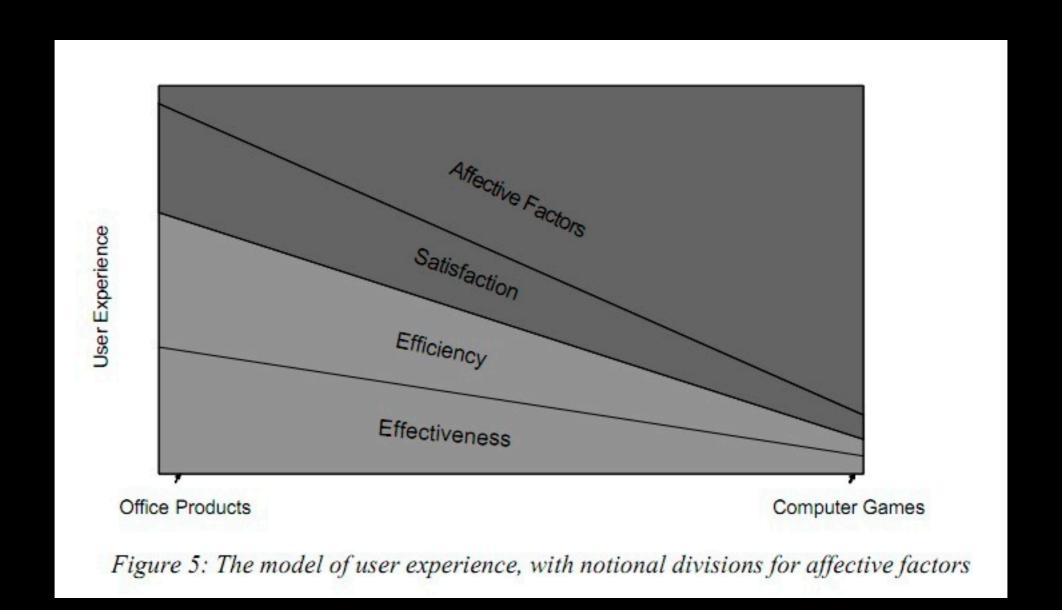



Figure 4: Example of pseudo-repertory grid technique for affective requirement gathering

Emotion in RE

