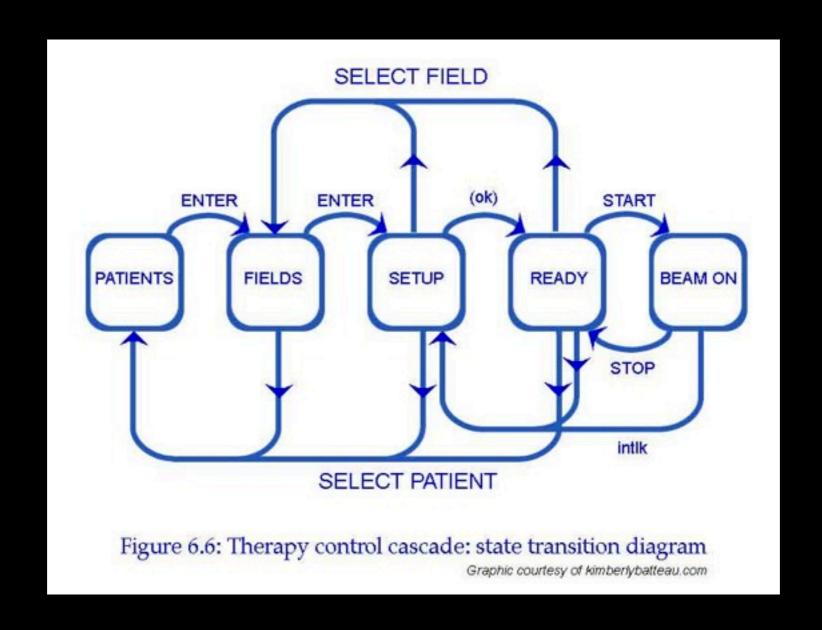

Requirements Specification

Lectures 5b, DAT230, Requirements Engineering Robert Feldt, 2010-09-14

- http://www.cs.toronto.edu/km/istar/
- Models Agents and their Intentions
- Early Req Specification together with Customers
- I. Strategic Dependency Model
 - Actors and Dependencies
 - Certain Actions performed by certain Actors
 - Ex: User depends on system to open door to meet goal to enter building
- 2. Strategic Rationale Model
 - Looks inside actors, what drives them


l* example

Formal languages: Z

- Mathematical language for describing computing system
- Model-based, models abstract data type (ADT)
- ADT = system state and operations on it
 - State = state variables and their values
 - Operation = can change state
- Good match to imperative programming languages
- Also extension for OO languages; form of inheritance
- Very mature, used since 1970's

State Transition Diagram (Z example)

From J. Jacky, "The way of Z", chapter 6

State Transition Table (Z example)

	SELECT PATIENT	SELECT FIELD	ENTER	ok	START	STOP	intlk
PATIENTS			FIELDS				
FIELDS	PATIENTS		SETUP				
SETUP	PATIENTS	FIELDS		READY			
READY	PATIENTS	FIELDS			BEAM ON		SETUP
BEAM ON						READY	SETUP

And now in Z

```
STATE ::= patients | fields | setup | ready | beam_on
EVENT ::= select_patient | select_field | enter | start | stop | ok | intlk
FSM == (STATE × EVENT) → STATE
 no_change, transitions, control: FSM
 control = no_change ⊕ transitions
 no_change = \{ s: STATE; e: EVENT \bullet (s, e) \mapsto s \}
 transitions = \{ (patients, enter) \mapsto fields,
      (fields, select_patient) → patients, (fields, enter) → setup,
      (setup, select_patient) → patients, (setup, select_field) → fields, (setup, ok) → ready,
      (ready, select_patient) → patients, (ready, select_field) → fields, (ready, start) → beam_on, (ready, intlk) → setup,
      (beam_on, stop) → ready, (beam_on, intlk) → setup }
```

Non-functional reqs - customer importance?

NFR type	Avg. weight (of 100)	Std.dev.	
Usability	23.21	+/- 3.7	
Reliability / security	22.79	+/- 10.6	
Performance	22.44	+/- 9.4	
Stability / Robustness	19.87	+/- 11.5	
Maintainability	11.69	+/- 7.1	

149 answers from Swedish industry, Spring 2009

SMART NFRs

- NFRs / QRs should be:
 - Specific = without ambiguity, using consistent terminology, simple and at the appropriate level of detail.
 - Measurable = possible to verify req is met. What tests must be performed?
 - Attainable = technically feasible. What is your professional judgement of the technical "do-ability" of the requirement?
 - Realizable = realistic given available resources (skill, staff, schedule etc).
 - Traceable = connected to sources as well as to later dev artefacts.

PLanguage

- Keyword-based language for requirements
- Developed by Tom Gilb, famous SE consultant
- Used in many large corporations
- Often for Quality Requirements: focus on quantification

PLanguage Keywords

A unique, persistent identifier
A short, simple description of the concept contained in the Planguage
statement
A party materially affected by the requirement
The scale of measure used to quantify the statement
The process or device used to establish location on a SCALE
The minimum level required to avoid failure
The level at which good success can be claimed
A stretch goal if everything goes perfectly
A desirable level of achievement that may not be attainable through
available means
An expression of previous results for comparison
An historical range or extrapolation of data
The best-known achievement
The official definition of a term
The person, group, or level of authorization

Table 2: Sub-keywords for the METER Keyword

METHOD	The method for measuring to determine a point on the Scale		
FREQUENCY	The frequency at which measurements will be taken		
SOURCE	The people or department responsible for making the measurement		
REPORT	Where and when the measurement is to be reported		

PLanguage - Additionals

- Fuzzy: <fuzzy concepts>
- Modifiers: Keyword [Qualifier1, Qualifier2, ...]
- Collections: {item I, item 2, ...}
- Source for statement: Statement <- source

PLanguage example

NatLang: "The system must be easy to learn"

StructEnglish: "The system must be used successfully to place an order in under 10 minutes without assistance by at least 80% of test subjects with no previous system experience."

PLanguage example

NatLang: "The system must be easy to learn"

Tag: Learnable

Gist: Ease of learning to use system

Scale: Time for Novice to complete a 1-item order using only onlie help system

Meter: Measurements on 100 novices during UI testing

Must: <7 minutes 80% of the time

Plan: <5 minutes 80% of the time

Wish: <3 minutes 100% of the time

Past [old system]: II minutes <- recent site statistics

Novice: **Defined**: A person with <6 months experience with Web applications

and no prior exposure to our web application