Requirements Engineering —
DAT230/DIT276

Behavioral Driven Development
Emil Bérjesson, 2010



Background

* Test Driven Development
— Came out of eXtreme Programming (Agile)

— Build the test, run the test, fail, implement the
code, and iteratively test until the test passes.

— Used by Microsoft, IBM, and more.

* Acceptance testing

— Usually at the end of development (more often in
Agile)

— Focus on VALIDATION rather than VERIFICATION



NUnit test (C#)

using System;
using NUnit.Framework;

namespace UnitTestApplication.UnitTests

{
[TestFixture()]

publicclass Calculator_UnitTest

{

private UnitTestApplication.Calculator
calculator = new Calculator();

[TearDown()]
publicvoid Clean()
{

// code that will be called after each
Test case

}

[SetUp()]
publicvoid Init()

{

// some code here, that need to be

[Test]
publicvoid Test()

{
}

run at the start of every test case.




Behavioral driven development (BDD)

e TDD + Acceptance testing -> BDD!

— Capture structured requirements within
RUNNABLE Natural language test-cases!

— Removes the interpretation phase between
Requirements elicitation to test-case (Somewhat)
and raises overall Validity



Cucumber

It’s a tool

— Uses Ruby definitions, (base language) but can be
used to test a lot of different language, such as Java,
Pearl and so on.

Has been used to develop iPhone apps

Integration level testing

— As well as touching on Unit-tests depending on
scenario granularity

— RSpec for Unit tests

Installation: It’s a Ruby gem! :D
“gem install cucumber”



Cukes.info

WIKI EXAMPLES

TUTORIALS LIGHTHOUSE

Cucumber

1: Describe behaviour in plain text

Feature

In order t
As a moth

I wont t

Scenorio: Add two numbers
Given I have entered S8 into the calculator
And 1 have entered 70 (nto the calculotor
When 1 press odd
Then the result should be 120 on the screen

4. Write code to make the step pass

class Colculator
def push(n)
=0

<n

7. Repeat 1-6 until the money runs out

Cucumber lets software development teams
describe how software should behave in plain

T
o
7
&

text. The text is written in a bu

readable qac -Spec

2: Write a step definition in Ruby

Given /I hove entered (.*) into the calculator/ do |
calculotor = Jnew
calculator.push(n.to 1)

end

5. Run again and see the step pass

$ cucumber features/addition.feature
Festure: Addition

In order to ovoid silly mistokes

As o moth idiot

I mont to be told the sum of two nusbers

be 120 on the screen

The money raised for this campaign will be

MAILING LIST IRC

3: Run and watch it fail

$ cucumber features/oddition.feature
Fecture: Addition

In order to ovoid silly mistokes

As o moth idiot

I want to be told the sum of two rumbers

d 70 into the ¢

be 129 on the screen

6. Repeat 2-5 until green like a cuke

$ cucumber features/oddition. feature
Feoture: Addition

In order to avoid silly mistokes

As o moth idiot

I mont to be told the sum of two rusbers

Download

You need Ruby installed. Then just run
gem install cucumber

from a command prompt. Now, run

1ge and spent to produce Cucumber swag to promote ~ cucumber --help

serves as documentation, automated tests Cucumber: T-shirts, cups and other things.

and Adaualanmant_aid _ all rallad intn Ana

The wiki has more information.



Scripts

* Keywords

— Feature (General layout)

* In order to <achieve something | value>

* A user <such as you in your role>

* Should/Would/Can <have access to this feature>
— Scenario(s)

* Given - Prerequisites

* When - Action

* Then - Goal



Example

Feature: Manage companies
In order to keep track of companies
A user
Should be able to manage companies

Scenario: Create a new company
Given | am logged in
When | create a new company named Acme
Then | should see that a company named Acme exists



Another Example

Feature: Happy Lecturer
In order to be happy

As a lecturer
| want everyone to learn BDD

Scenario: Teaching BDD
Given | have a class
And | have a prepared presentation
When | show the presentation
Then the students should learn something about BDD



Yet another Example ;)

Scenario: Teaching more BDD

Given | have a class
And class doesn’t want to fail the exam

When this lecture is over

And class are at home
Then class will read more about BDD on their own



Pros and Cons

* Pros
— Structure
— Valid test generation/less or no interpretation
— Multi purpose (Test and Requirement)

e Cons
— Low level

— Feature alignment



Code scripting

* Develop test-code that fulfills the natural
language test.

 Example shown in class, and for further home
studies look at:

— http://railscasts.com/episodes/155-beginning-
with-cucumber



Railroad crossing

You are designing the software for a railway crossing. A
sensor on the rails detects when a train is arriving and
lowers the bars over the road. The bars remains
lowered until another sensor detects that the train has
passed or until a signal from the Railway Control
Centre(RCC) is received. If the sensors malfunction, or
if the connection to the RCC is lost, the bars are
lowered and shall remain lowered until everything is
working again and they are reset from the RCC. While
the bar is being lowered or raised and while the bar is
in its lowered position, red lights will flash and a bell
will ring. When the bars are in their upper, un-lowered
position a white light is shown (not flashing).



Task for this class

Write BDD scripts based on the Rail-road
crossing description.

Focus is on elicitation! Use the structure of the
BDD script.

You don’t have to write the code! ©

— You can write Pseudo-code if you want.

We then discuss the solutions together!



Example Script

Feature: Normal operation

In order to keep crossroad safe and available

a crossroad
should be able to manage bars lights and bells

Scenario: Open passage when train is gone
Given there is a train at all

And the system is working
When a train has passed
And no trains are coming
Then bars are raised

And lights a lit

And bell is off



Example Script

Feature: Fault tolerant operation
In order to keep crossroad safe in presence of faults

the Railroad crossing
should be able put the system in a safe state

Scenario: Connection to RCC is lost

Given that the systems exists
And the system is working
When connection is lost
Then lower bars

And flash red lights

And ring the bell



Feature:

In order
As a
| should

Scenario:

Given
When
Then

Example Script



Example Script

Feature: Train passes the bar

In order the train to pass the railroad crossing

As a train
| should be able to get passed the bars

Scenario: Raising the bar
Given that the second sensor isn’t sending a signal
And the light is red
When the train passes the second sensor

Then raise the bar
And turn on the white lights



Example Script

Feature: Safety

In order to arrange a safe passage

for a trafficant
The railroad crossing should be closed when there is a train

Scenario: Turn on the white light

Given the light is red

When train has passed the second sensor
And the RCC isn’t broken

And the bars are up

Then switch to white light



BDD Script 1:

Feature: Passing the railroad crossing
In order to cross the rails safely
As a traffic participant
Should find the crossing safe for passage

Scenario: Passing the crossing
Given that the bars are raised
And the bells do not ring
And the lights do not flash
When the traffic participant arrives at the crossing
Then the traffic participant should be able to pass safely



BDD Script 2

Feature: Crossing closed
In order to close the railway crossing
As a railway crossing
| want the train to be between detector 1 and 2

Scenario: Train between detector 1 and 2
Given detector 1 is working
And detector 2 is working
When train has passed detector 1
And train has not passed detector 2
Then bars should be lowered
And red light should be flashing
And bells should ring

Scenario: Broken detector
Given detector 1 or 2 are broken
And bars have not been reset by RCC
When traffic participant reaches crossing
Then the bars should be lowered



