
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 March/April 2008 I E E E S o f t w a r e � 57

focusqual i t y r e qu ir em en t s

A New Standard
for Quality Requirements

Jørgen Bøegh, Terma A/S

A new standard on
software quality
requirements,
ISO/IEC 25030,
takes a systems
perspective and
suggests specifying
requirements
as measures
and associated
target values.

T
he ISO recently published ISO/IEC 25030, a new standard on software qual-
ity requirements1 that complements the two IEEE Computer Society standards
for software2 and system3 requirements. These three standards are important,
given that properly identifying and specifying requirements are prime factors in

determining a software project’s success or failure.4 Many companies, having realized this,
are now better emphasizing requirements specification. Unfortunately, there’s a tendency to
focus on functional requirements rather than quality issues such as usability, maintainability,

reliability, portability, and efficiency.
ISO/IEC 25030 can improve software quality

by helping developers identify and specify quality
requirements. Here, as an editor and a member of
the ISO committee, I discuss some of the thoughts
behind ISO/IEC 25030 and briefly summarize its
main points.

Developing the standard
The ISO first decided that quality requirements

deserve their own standard back in 2001. It then
implemented the idea in connection with a planned
revision and restructuring of two international
standards—ISO/IEC 9126 (which presents a soft-
ware quality model)5 and ISO/IEC 14598 (which
discusses software product evaluation).6 The ISO/
IEC JTC1 SC7 committee included the quality re-
quirements standard in a new SQuaRE (Software
Product Quality Requirements and Evaluation) se-
ries of standards, designated by the number 25000.7
SQuaRE includes five divisions: quality manage-
ment, quality model, quality measurement, quality
requirements, and quality evaluation (see table 1).
The quality requirements division contains the new
ISO/IEC 25030 standard.

Taking a systems view of quality
When writing the standard, the committee

members quickly realized that you can’t elicit soft-
ware quality requirements without taking a systems
perspective. Software is normally part of a larger
system, so you must view software requirements
as part of the system requirements. We therefore
looked at ways to describe systems. We wanted to
develop a system model that was powerful enough
to capture software quality requirements yet was
easy to understand and still focused on quality.

A system is a combination of interacting ele-
ments organized to achieve one or more stated
purposes.6 The simplest system of possible interest
when considering software quality is a computer
system, which comprises three elements: hardware,
software (including the operating system and appli-
cation software), and data. This system model cov-
ers software running on a single, stand-alone com-
puter and has been the implicit conceptual model
behind software quality for many years.

However, the computer system isn’t a realistic
model. Software is often distributed on many com-
puter systems—consider, for example, client-server
systems and Internet applications. We needed to

58	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

model systems that comprise communicating com-
puter systems, and we wanted to include embedded
systems. So, we added a mechanical parts element
that covers mechanics, electronics, hydraulics, and
so on. This let us provide a system-description
model covering a large class of applications.

But the real world is more complex, and not ev-
erything is automated, so we also added a human-
process element. The system model includes commu-
nicating computer systems, mechanical parts, and
human processes. This relatively simple hierarchical
model of systems satisfied our need to describe soft-
ware quality from the systems perspective.

Identifying a software quality model
In addition to the system model, we also needed

a software quality model for describing quality re-

quirements. The obvious choice was the ISO 9126
quality model,5 which identifies a set of software
quality characteristics and subcharacteristics (see
figure 1). First published in 1991 and slightly en-
hanced in 2001, it’s a well-known model that devel-
opers and researchers are using more and more in
industry and in empirical research.

There are many opinions about what consti-
tutes a software quality model’s most important
quality characteristics or factors and at what level
these should appear in the model. Indeed, research-
ers have proposed several quality models with vari-
ous sets of characteristics over the last 30 years. I
doubt we’ve heard the last word on quality mod-
els. I think that the ISO 9126 quality model’s most
important advantage is that it’s an international
standard and thus provides an internationally ac-

Table 1
The SQuaRE (Software Product Quality Requirements and Evaluation)

series of standards
Standards Division Description

ISO/IEC 2500n Quality
management

These standards define all common models, terms, and definitions in the SQuaRE series. They guide users
through SQuaRE documents using referring paths. They also include high-level practical suggestions to
help users apply the proper standards to specific applications. The division also provides requirements and
guidance for a supporting function that’s responsible for managing software-product requirements speci-
fication and evaluation.

ISO/IEC 2501n Quality model This division includes a detailed quality model (based on ISO/IEC 9126) comprising characteristics for
internal and external quality and for quality in use. Furthermore, the model decomposes the internal and
external quality characteristics into subcharacteristics. This division also includes a data quality model.

ISO/IEC 2502n Quality
measurement

This division includes a software product quality measurement reference model, mathematical definitions
of quality measures, and practical guidance for their application. Presented measures apply to internal and
external quality and quality in use.

ISO/IEC 2503n Quality
requirements

ISO/IEC 25030, the only standard in this division, helps identify and specify quality requirements. Develop-
ers can use these quality requirements to elicit and define quality requirements for a software product to
be developed or as input for an evaluation process.

ISO/IEC 2504n Quality
evaluation

These standards provide requirements, recommendations, and guidelines for software product evaluation,
whether performed by independent third-party evaluators, acquirers, or developers (internally in the devel-
oping organization). It also presents support for documenting a measure as an evaluation module. This
division is based on the ISO/IEC 14598 series of standards.

Maintainability
Changeability

Stability
Testability

Compliance

Functionality
Suitability
Accuracy

Interoperability
Security

Compliance

Reliability
Maturity

Fault tolerance
Recoverability

Compliance

Usability
Understandability

Learnability
Operability

Attractiveness
Compliance

Quality in use

Efficiency
Time behavior

Resource utilization
Compliance

Portability
Adaptability
Installability
Co-existence

Replaceability
Compliance

Effectiveness
Productivity

Safety
Satisfaction

Internal and external quality

Figure 1. The ISO/IEC
9126 quality model.

	 March/April 2008 I E E E S o f t w a r e � 59

cepted terminology for software quality. Whether
we need to change some quality characteristics or
subcharacteristics is of secondary importance in
this context.

The ISO 9126 quality model presents three
different views of quality. The first two, the inter-
nal and external views, share the same six char-
acteristics and 26 subcharacteristics (see figure 1).
The third view, quality in use, has its own four
characteristics.

The internal view is concerned mainly with
static properties of the software product’s individ-
ual parts, including the design and code elements’
structure and complexity. Developers can typi-
cally measure these quality properties early during
development. A typical example of internal mea-
sures is Shyam Chidamber and Chris Kemerer’s
suite of “CK” measures for object-oriented soft-
ware:8 weighted methods per class (WMC), depth
of the inheritance tree (DIT), number of children
(NOC), coupling between object classes (CBO),
response for a class (RFC), and lack of cohesion in
methods (LCOM).

The external view is concerned with the com-
pleted software executing on the computer hard-
ware, with real data. In this view, the software’s
dynamic aspects play an important role. A typi-
cal external measure is the mean time between
failures, which relates to reliability in the quality
model.

The quality-in-use view is concerned with the
specified users performing specified tasks with the
software in its real environment. This view typically
measures end-user productivity and effectiveness.

These different views support each other. Inter-
nal quality influences external quality, which influ-
ences quality in use. Internal quality measures can
act as early indicators for external quality. For ex-
ample, if both the complexity of code (WMC) and
the coupling between classes (CBO) are high, the
software will likely be difficult to maintain. Simi-
larly, external measures can indicate the quality in
use—if the response time (efficiency) is low, end-
user productivity will likely be low.

Internal-quality measures are also meaning-
ful on their own. However, this isn’t the case for
external-quality measures, which depend on the
computer hardware, the data, and possibly other
elements. For example, an efficient algorithm im-
plementation doesn’t appear as an efficient pro-
gram if the computer hardware is slow. When we
consider quality in use, we might also need to con-
sider mechanical parts and human processes. The
quality of a system’s individual parts plays a role
in our conception of (software) quality. So, we

have to consider the quality of the computer hard-
ware, data, mechanical parts, human processes,
and so on.

Identifying software measures. Before we can identify
software quality requirements, we must clearly un-
derstand what the quality of a product really means.
There are (at least) two different viewpoints:

satisfaction of requirements (according to speci-
fications) and
satisfaction of stated and implied needs (fit for
purpose).

These two viewpoints only coincide when the
requirements specification reflects the stated and
implied needs of all stakeholders for all applica-
tions. This is usually not the case. Many stake-
holders can’t articulate or don’t even know their
real needs. In addition, stakeholders might have
conflicting needs. When we look at requirements
from a software acquirer or supplier viewpoint,
then their common interest is “satisfaction of re-
quirements.” The end users and public authorities
(for example, in the case of safety-critical applica-
tions) are interested in “satisfaction of stated and
implied needs.” The first case focuses on the soft-
ware product, while the second case focuses on
the system.

Both viewpoints are important, so the standard
takes both into account.

In the ISO quality model, a software quality
(sub)characteristic is defined as a category of soft-
ware quality attributes that influence software
quality. An attribute is a measurable property—
for example, size, which can be measured as the
number of lines of code. We can determine a soft-
ware product’s behavior though its inherent prop-
erties and its quality through its inherent quality
attributes. So, software measurement becomes the
link between the quality model and the software’s
quality—that is, we can quantify software quality
using software measures.

This implies that we can specify software qual-
ity requirements by providing a set of quality mea-
sures with associated target values. An example
is an online administrative system with report-
generation features. A possible quality requirement
for this system is

Quality characteristic: Efficiency (time behavior).
Attribute: Report-generation time.
Measure: Average number of seconds to gener-
ate report X during normal system use, mea-
sured 10 times using a stopwatch.

■

■

■

■

■

60	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Target value: 20 seconds (60 seconds is the
worst acceptable time).

When the software is completed, we can measure
the quality attributes and compare actual measure-
ment values to target values to reveal whether the
software fulfills its quality requirements. It’s impor-
tant to formulate quality requirements such that we
can demonstrate their fulfillment in a reasonable
amount of time and with reasonable effort. What’s
“reasonable” depends on the stringency of the re-
quirements and on the intended application. For a
high-risk application, we’re willing to spend more
time and effort when evaluating quality.

Dealing with difficulties. Several difficulties arose in
considering the ISO 9126 software quality model.

In particular, we weren’t sure how to interpret

■

functionality. Does it refer to the software’s “func-
tional abilities”? If yes, then the functional require-
ments would be a subset of the quality require-
ments. However, we instead decided to interpret
all quality characteristics as statements about how
well the software and its functions perform—that
is, we focused on the functions’ reliability, usability,
efficiency, and so on. This becomes clearer when
looking at functionality’s five subcharacteristics (see
figure 1):

suitability (of the functions provided),
accuracy (of the functions’ results),
interoperability (with other software),
security (the ability to protect information),
and
compliance (the adherence to standards, laws,
and regulations).

The model’s size also made it complicated. Spec-
ifying quality requirements for a software product
to this level of detail would be a major task. Fortu-
nately, in most cases, this isn’t necessary. For exam-
ple, an aircraft engine is an embedded system with
no direct end users, so we don’t expect many us-
ability requirements but instead stringent reliability
requirements.

So, developers should use the quality model as
a checklist to ensure they’ve included all important
quality requirements. When specific quality needs
exist, the developers should note them and specify
associated quality requirements. It’s equally impor-
tant to avoid specifying too many or overly strin-
gent quality requirements. This would be a waste
of time and money, because fulfilling stringent soft-
ware quality requirements is expensive.

■

■

■

■

■

Computer system

System

Hardware Software Data Mechanical part Human process

Hardware
quality model

Data
quality model

Mechanical
quality model

Human-process
quality model

Internal software quality model External software quality model System quality model

Figure 2. The quality models for the various elements of a system.

System
requirements

Definition
process

Analysis
process

Stakeholder
needs

Stakeholder
quality
needs

Stakeholder
requirements

Stakeholder
quality

requirements

Software
quality

requirements

System
quality

requirements

Software
quality

requirements

Software
requirements

Figure 3. The software
quality requirements
definition and analysis
processes.

	 March/April 2008 I E E E S o f t w a r e � 61

For example, again consider an aircraft en-
gine’s software. The software is highly critical,
so its development and testing require substantial
effort. Demonstrating fulfillment of the stringent
reliability requirements also requires significant
effort. It would be meaningless to specify a sim-
ilarly stringent reliability requirement for the re-
port-generating system I mentioned in the previ-
ous section and to allocate another large effort to
demonstrate its reliability. My recommendation
is to strive for the right level of quality—not too
much or too little.

The ISO 9126 quality model relates primarily
to the computer system. Only the quality-in-use
characteristic applies to the whole system, and only
from a rather narrow perspective. Figure 2 shows
the quality models for the other system parts in ad-
dition to the ISO quality model. ISO/IEC 25030
points out the relations between various quality
models. However, it’s still a research issue to define
and integrate the different quality models into a co-
herent system quality model.

Defining the requirements processes
When eliciting requirements, we must consider

the whole system. Most stakeholders aren’t inter-
ested in whether their needs are implemented in the
software, in the hardware, in the mechanics, or as a
manual process. Stakeholders simply want the sys-
tem to satisfy their stated and implied needs. This is
the “fit-for-purpose” viewpoint.

After developers have collected, analyzed, con-
solidated, and agreed on all the stakeholders’ needs,
they must apply a high-level architectural design
process to determine what the software will imple-
ment. An analysis activity then identifies all soft-
ware-related requirements. As explained earlier,
the developers must formulate these requirements
in terms of measures and target values. Figure 3
shows this two-step approach, which complies with
the system life-cycle processes defined in ISO/IEC
15288.9 This standard defines a set of processes
categorized as either project, enterprise, or agree-
ment processes. Technical processes constitute a
subset of project processes, including

the requirements definition process, which de-
fines the requirements that can provide the ser-
vices that users need in a defined environment;
and
the requirements analysis process, which trans-
forms the stakeholder requirement-driven view
into a technical view of a product.

The technical view of the software quality require-

■

■

ments is the “according to specification” view of the
requirements—that is, you can measure and verify
them objectively.

The main difference between ISO/IEC 15288
and ISO/IEC 25030 is that the first takes a process
view while the latter focuses on the product—that
is, on defining the quality requirements. This view is
similar to the two IEEE requirements standards.2,3
However, the IEEE standards focus primarily on
functional requirements, although they also include
quality aspects. For example, IEEE 830 specifi-
cally mentions performance (which isn’t considered
a quality feature), reliability, availability, security,
maintainability, and portability.2

Introducing ISO/IEC 25030
International standards follow a specific ISO-

defined template. Figure 4 shows ISO/IEC 25030’s
table of contents.

Clause 1 presents the scope and objectives. The
standard applies to both acquirers and suppliers
and provides requirements and recommendations
for specifying quality requirements. It’s particularly
useful for

1. Scope
2. Conformance
3. Normative references
4. Terms and definitions
5. Software quality requirements framework
 	 5.1. Purpose
 	 5.2. Software and systems
 	 5.3. Stakeholders and stakeholder requirements
 	 5.4. Stakeholder requirements and system requirements
 	 5.5. Software quality model
 	 5.6. Software properties
 	 5.7. Software quality measurement model
 	 5.8. Software quality requirements
 	 5.9. System requirements categorization	

5.10. Quality requirements life cycle model
6. Requirements for quality requirements

6.1. General requirements and assumptions
6.2. Stakeholder requirements

6.2.1. System boundaries
6.2.2. Stakeholder quality requirements
6.2.3. Validation of stakeholder quality requirements

 	 6.3. Software requirements
6.3.1. Software boundaries
6.3.2. Software quality requirements
6.3.3. Verification of software quality requirements

Annex A (Normative). Terms and definitions
Annex B (Informative). Processes from ISO/IEC 15288
Annex C (Informative). Bibliography

Figure 4. The table
of contents of ISO/
IEC 25030: Quality
Requirements.

62	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

specifications (including contractual agree-
ments and calls for tender),
planning (including for feasibility analyses),
development (including early identification of
potential quality problems), and
evaluation (including objective assessment and
certification of software product quality).

Clauses 5 and 6 present the standard’s main
body. Clause 5, which is more informative and
doesn’t include any requirements, describes quality
concepts such as modeling and measurement and
how these concepts relate to each other.

Clause 6 contains the normative requirements.
Claiming conformance to the standard requires
fulfilling these requirements. (The standard states
the general conformance requirements separately
in clause 2.) However, the standard’s usefulness
isn’t restricted to situations requiring formal con-
formance; it’s equally useful as a general guide for
defining software quality requirements.

Clause 6.1 includes general assumptions. In par-
ticular, it states that the standard doesn’t assume or
require any specific software development model.
In addition, it provides useful references to related
standards, including ISO 9001,10 which states that
top management shall ensure that customer re-
quirements are determined and met with the aim
of enhancing customer satisfaction. ISO 9001 also
goes into more detail about specifying customer re-
quirements, including requirements not stated by
the customer but necessary for the specified or in-
tended use, as well as statutory and regulatory re-
quirements related to the product. ISO/IEC 25030
further elaborates on these requirements.

Clause 6.2 provides requirements and recom-
mendations for defining stakeholder requirements.
First of all, the user of the standard must describe
the system’s intended purpose (or at least ensure
that such a description exists). The clause empha-
sizes the need to identify all legitimate stakeholders
and describe their roles. Stakeholders include end
users, organizations—such as the acquirer and de-
veloper organizations—as well as statutory and reg-
ulatory bodies. Stakeholders might have conflicting
interests, and their needs might even change during

■

■

■

■

the system life cycle. The standard doesn’t promote
any specific elicitation methods or techniques but
provides general applicable guidance, which can
be used together with specific approaches. This
clause takes a system view, because stakeholders
aren’t generally concerned with implementation.
The standard emphasizes the need to document all
stakeholder needs, wishes, expectations, and de-
sires, even if they’re conflicting, too ambitious, or
completely unrealistic. This list must be prioritized
and consolidated to an agreed and validated set of
stakeholder requirements.

Clause 6.3 provides requirements and recom-
mendations for software quality requirements. It
assumes that developers make high-level architec-
tural decisions about how to implement system
requirements and about which parts to implement
in software. So, it helps them identify stakeholder
quality requirements relevant to the software. They
then must formulate these requirements in terms of
software measures with associated target values.
This set becomes the technical formulation of the
quality requirements.

Formalizing the software requirements in terms
of measures and target values forces the involved
parties to carefully consider which quality require-
ments are necessary. Developers can use the soft-
ware quality requirements to monitor and control
software quality during development as well as to
evaluate the final product. The standard empha-
sizes having relevant stakeholders verify and for-
mally agree on the list of quality requirements.

I hope that the quality requirements standard
is well received in the software community
and is used in industry as well as in research

and education. Although we devoted much effort
to preparing the standard, there’s always room for
improvement. I strongly encourage the standard’s
users to report their experiences to the ISO com-
mittee, either directly or through their national
standards bodies. We welcome—and seriously
consider—constructive comments. We can make
progress in the standards area only through active
dialogue between the standards’ users and the stan-
dards committees.

Acknowledgments
I thank members of ISO/IEC JTC1 SC7/WG6 and

particularly Kazuhiro Esaki for their diligent work
on ISO/IEC 25030.

About the Author
Jørgen Bøegh is the Safety & Quality manager at Terma A/S. He’s also head of
the Danish delegation to ISO/IEC JTC1/SC7 and is editor of three international standards
in software quality requirements and evaluation. His research interests include software
quality modeling, requirements specification, and quality evaluation. He received his MSc
in mathematics and computer science from the University of Aarhus. Contact him at Terma
A/S, Vasekaer 12, DK-2730 Herlev; jorgen_boegh@yahoo.dk.

	 March/April 2008 I E E E S o f t w a r e � 63

References
	 1.	 ISO/IEC 25030:2007, Software Engineering—Soft-

ware Product Quality Requirements and Evaluation
(SQuaRE)—Quality Requirements, Int’l Organization
for Standardization, 2007.

	 2.	 IEEE Std. 830-1998, Recommended Practice for
Software Requirements Specification, IEEE Computer
Society, 1998.

	 3.	 IEEE Std. 1233, Guide for Developing System Require-
ments Specification, IEEE Computer Society, 2002.

	 4.	 J. Verner, B. Kitchenham, and N. Cerpa, “Estimating
Project Outcomes,” Proc. 20th Int’l Conf. Software &
Systems Eng. and Their Applications, 2007.

	 5.	 ISO/IEC 9126-1:2001, Software Engineering—Prod-
uct Quality—Part 1: Quality Model, Int’l Organization
for Standardization, 2001.

	 6.	 ISO/IEC 14598-1:1999, Information Technology—
Software Product Evaluation—Part 1: General Over-

view, Int’l Organization for Standardization, 1999.
	 7.	 ISO/IEC 25000:2005, Software Engineering—Soft-

ware Product Quality Requirements and Evaluation
(SQuaRE)—Guide to SQuaRE, Int’l Organization for
Standardization, 2005.

	 8.	 S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for
Object-Oriented Design,” IEEE Trans. Software Eng.,
vol. 20, no. 6, 1994, pp. 476–493.

	 9.	 ISO/IEC 15288:2002, Information Technology—Life
Cycle Management—System Life Cycle Processes, Int’l
Organization for Standardization, 2002.

	10.	 ISO 9001:2000, Quality Management Systems—Re-
quirements, Int’l Organization for Standardization,
2000.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

a d v e r t i s e r i n d e x M a r c h / A p r i l 2 0 0 8

Advertiser/Product	 Page Number

Better Software 2008	 Cover 2

ESRI	 9

Java One 2008	 1

Seapine Software, Inc. 	 Cover 4

STPCon 2008	 Cover 3

*Boldface denotes advertisements in this issue.

Advertising Personnel

Marion Delaney
IEEE Media,
Advertising Director
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@

computer.org

Sandy Brown
IEEE Computer Society,
Business Development
Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

Mid Atlantic
(product/recruitment)
Dawn Becker
Phone:	 +1 732 772 0160
Fax:	 +1 732 772 0164
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone:	 +1 978 244 0192
Fax:	 +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
John Restchack
Phone:	 +1 212 419 7578
Fax:	 +1 212 419 7589
Email: j.restchack@ieee.org

Connecticut (product)
Stan Greenfield
Phone:	 +1 203 938 2418
Fax:	 +1 203 938 3211
Email: greenco@optonline.net

Southwest (product)
Steve Loerch
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: steve@
didierandbroderick.com

Northwest (product)
Lori Kehoe
Phone:	 +1 650 458 3051
Fax:	 +1 650 458 3052
Email: l.kehoe@ieee.org

Southern CA (product)
Marshall Rubin
Phone:	 +1 818 888 2407
Fax:	 +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone:	 +1 310 836 4064
Fax:	 +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Midwest (product)
Dave Jones
Phone: 	 +1 708 442 5633
Fax:	 +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone:	 +1 269 381 2156
Fax:	 +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone:	 +1 440 248 2456
Fax:	 +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone:	 +1 770 645 2944
Fax:	 +1 770 993 4423
Email: flynntom@mindspring.
com

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone:	 +1 847 498-4520
Fax:	 +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southeast (product)
Bill Holland
Phone:	 +1 770 435 6549
Fax:	 +1 770 435 0243
Email: hollandwfh@yahoo.com

Japan (recruitment)
Tim Matteson
Phone:	 +1 310 836 4064
Fax:	 +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone:	 +44 1875 825700
Fax:	 +44 1875 825701
Email: impress@impressmedia.
com

