Adapting Methodologies,

Crystal Methodologies, Lean
& Kanban + W54

Robert Feldt
Agile Dev Processes Course, 2012-05-14

Division of Software Engineering

!}:\iih'.\. I829 > ';;:%6"
Daa” HOSE Lab (Human-fOcused SE)
CHALMERS

System Criticality

Judge the “Loss due to impact of defects™

Level | Acronym Def

Loss of life (many, single, degrees
of damage to limb)

Loss of value/money which is

3 Essential value . .
- hard/impossible to replace

Discretionary |Loss of value/money which can be
value replaced (but is setback)

| Comfort Loss of comfort/choice

tisdag den 15 maj 2012

Precision

“How much you care to say about a topic™

Use Ul Domain External
Cases Design Design Interfaces Infernals

Do L1:
Actors-goals

Do L1: Release
dependencies

(split into teams)

Do L2:
Main stories

s T Do L3: Study Ul Study domain | [Do L2: External | [[dentify frameworks
dependencies Failure cases requirements requirements interfaces to build

Do L3: . wdlk th h | Define shared 2 Design
Milestones 2 w models 2 Fromev%ork

: L2: Initigl
Build L1: :
Scrueen flow om(oé?zc) el @

Monitor : Review Revise frameworks
status design

Complete
framework

Release

Figure 4-8 Using low levels of precision to trigger other activities.

tisdag den 15 maj 2012

Tolerance

“How much variation is permitted”

Ceremony

“Amount of precision and tightness of tolerance”

Methodology Size

“Number of elements of control of methodology”

Methodology VVeight

“Methodology Size * Ceremony”

Stability

“Likelihood that things will change™

Q: If | ask this question today and in X weeks, how likely | get the same answer?

Level Desc Answer

Loss of value/money which is hard/

3 Relatively stable . .
impossible to replace
) Varvin Loss of value/money which can be
~atying replaced (but is setback)
Wildly

Loss of comfort/choice

Fluctuating

tisdag den 15 maj 2012

Stability

“Upstream activities (more stable than) downstream ones™

BYatn el \/\/\/\

Requirements Requirements

Normal Unhealthy

tisdag den 15 maj 2012

Serial development

< / Minimizes
equirements ;

. (If NO surprises)

Ul & object

design

Longer ELAPSED TIME :
Absence of FEEDBACK

Programming |
Less ADAPTIVE

Testing) | /

Time

2
]
=
Wy
Vi
N
<
c
oY
e
=
o N
£
0
U

Figure 4-12 Serial development. Each workgroup waits for the upstream workgroup to achieve
complete stability before starting.

tisdag den 15 maj 2012

Concurrent development

Elapsed time
More opp. for

Requirements

Ul & object
design

Programming

Having POO COMMUNIC N
Overestimating REI\NO capability

Testing

£
3
o
e
N
w
U
)
€
2
-
o
£
e]
v

Tlme
Figure 4-13 Concurrent development. Each group starts as early as its communications and rework
capabilities indicate.As it progresses, the upstream group passes update information to the downstream
group in a continuous stream (the dashed arrows).

tisdag den 15 maj 2012

Methodology Design Principles

® |.Interactive face-2-face comm. is cheapest & fastest comm. channel
® 2. Excess methodology weight is costly

® 3. larger teams need heavier methodologies

® 4 Greater system criticality => greater ceremony

® 5 Increasing feedback & comm. reduces need to intermediates

® 6. Discipline/Skill/Understanding counter Process/Formality/Docs

e /. Efficiency is expendable in non-bottleneck activities

tisdag den 15 maj 2012

Weight-is-costly & Larger-
needs-heavier

What size problem can a given
number of people attack, using various
methodology weights?

Lakger-needs-heavier
| —r—-——>
N

Weight-is-costly

e

7
&
%
"
<
a

Methodology weight
Figure 4-18 Effect of adding methodology weight

to a large team.

tisdag den 15 maj 2012

Different methodologies for
different projects

Criticality

(defects cause loss of...

Life (L) L6 L20 | L40 | L100

Essential
money (E) E6 E20 | E40 | E100

Discretionary
GRENE(D) D6 | D20 | D40 D100 “Cockburn

e) B
Comfort(C) C6 | C20 | C40 | C100 Diagrams

1-6 -20 -40 -100

Number of people

tisdag den 15 maj 2012

XP Applicability

Criticality

(defects cause loss of...

Life (L) L6 L100

Essential || =90 E100

money (E)

Discretionary O NoTe
money (D) || 2© D100

Comfort (C) || C6 | C20 C100

1-6 -20 -40 -100

Number of people

tisdag den 15 maj 2012

Different methodologies for
different projects

Criticality

(defects cause loss of...

Life (L) L6 L20 | L40 | L100

Essential
money (E) E6 E20 | E40 | E100

Discretionary
GRENE(D) D6 | D20 | D40 D100 “Cockburn

e) B
Comfort(C) C6 | C20 | C40 | C100 Diagrams

1-6 -20 -40 -100

Number of people

tisdag den 15 maj 2012

Crystal Applicability

“Family of methodologies™ =
concrete examples to be tuned

Criticality

(defects cause loss of...

Life (L) L6 L100
. Red |
Essential =9() E100

money (E)

o ———————————

Discretionary A0
money (D) D100

- -

Comfort (C) G20 C100

1-6 -20 -40 -100

Number of people

tisdag den 15 maj 2012

Core of Crystal

® [wo values:

® People- & communication-centric (tools, artefacts, processes
supports the humans)

® Highly tolerant (to varying human cultures and choices)
® TJwo rules:
® [ncremental dey, |-3 (max 4) months increments

® pre- and post-increment reflection workshops, possibly mid-
increment also

® Jwo base techniques:
® Methodology-tuning via interviews & team workshop

® Reflection workshops

tisdag den 15 maj 2012

Crystal Clear cysaicea

Methodology for Small Teams

air LOCKE

® D6 (E8 with more comm., D10 with more testing)

® 4 Roles: Sponsor, Senior des/prog, Des/Prog, User

® One team, all seated in one office or adjacent offices
® [ncremental, regular SWV delivery every 2-3 months
® Progress tracked as delivery or major decision, not docs

® Automated regression testing

® Direct user involvement

® Two user “viewings” per release

® Downstream starts when upstream “stable enough to review”

® Product- and methodology-tuning workshops in start and middle

tisdag den 15 maj 2012

Crystal Clear Artifacts

® Release sequence

® Schedule of user viewings and deliveries

® Annotated use cases or features descriptions
® Design sketches and notes as needed

® Screen drafts

® A common object model

® Running code

® Test cases

® User manual

® Possibly: Templates for artefacts, code & Ul & testing standards

tisdag den 15 maj 2012

Crystal Orange

® D40 (10 to 40 persons), |-2 years

® “Medium-sized production project in industrial setting”, not life-
critical

® Roles: Sponsor, Business expert, Usage expert, Technical facilitator,
Business analyst/des, Project manager, Architect, Design mentor,
Lead Des/Prog, Des/Prog, Ul designer, Reuse resp, Writer, Tester

® Cross-functional groups:
® Reduce deliverables, Enhance communication

® Business analyst/designer, Ul designer, |1-2 Des/Prog, possibly tech/
db expert and tester depending on group

® System planning, Project monitoring, Arch, Tech, Functions,
Infrastructure, External test

tisdag den 15 maj 2012

Crystal Orange

® Added artefacts compared to Crystal Clear:
® Requirements doc
® Status reports
® Ul design doc
® [nter-team specs
® Standards/Policies same as Crystal Clear
® [ncremental delivery may be extended to 3-4 months

® Too heavy for |10 people, Light for 40 people

tisdag den 15 maj 2012

Agile is Lean

Defer
commitment

Build quality in
(jidoka/auto-
mation/TDD)

tisdag den 15 maj 2012

[Kniberg2008]

Optimize the whole

_Eliminate waste
Respect people

__ Focuson
learning

Deliver fast /
Limit work

to capacity /
Pull scheduling

Kanban

® |n Japanese the word Kan means "signal” and "ban" means "card" or
“board”.

® A Kanban card is a signal that is supposed to trigger action.

® Therefore Kanban refers to "signal cards".

tisdag den 15 maj 2012

Kanban

® The basic principles of Kanban for software engineering:
® LimitWork in Process (WIP)
® Pull value through (with WIP limit)
® Make it visible (Visual Control)
® Increase throughput
® Fixed Kanban Backlog
® Quality is embedded in (not inspected in)

® The team continuously monitor the above to improve

tisdag den 15 maj 2012

Kanban in a nutshell

e Visualize the workflow

o Split the work into pieces, write each item on a card and
put on the wall.

Use named columns to illustrate where each item is in
the workflow.

e Limit Work In Progress (WIP) — assign explicit limits to how
many items may be in progress at each workflow state.

e Measure the lead time (average time to complete one item,
sometimes called “cycle time”), optimize the process to make
lead time as small and predictable as possible.

To do Test Qe3lease

7
-

tisdag den 15 maj 2012

More prescriptive More adaptive

e p—————— —— ———— ——
RUP Kanban Do Whatever

(120+) ‘ (3) (0)

tisdag den 15 maj 2012

Scrum board Kanban board

To do To do ' Ongoing | Done :0)
2

Scrum limits WIP Kanban limits WIP
indirectly (via timeboxed directly (limit per

iteration, i.e. limit per workflow state)
time unit)

Scrum board related to team, Kanban board
related to workflow

tisdag den 15 maj 2012

Scrum resists change within iteration

® A-D arein iteration / being processed. User turns up with E.
® Scrum:You are welcome with E in next iteration.”

® Kanban:“Feel free to add E to ToDo if you take away C or D”

tisdag den 15 maj 2012

Scrum resets board between
iterations, Kanban does not

Scrum: First day of sprint Scrum: Mid-sprint Scrum: Last day of sprint

tisdag den 15 maj 2012

Scrum items must fit in iteration

|l] () Lol |l L] |l
Sprint 3 Sprint 4

DD Longrunning
L¢ unning D
100 DD IEEE |[EEEE

Kanban items can be long-running

tisdag den 15 maj 2012

Kanban Stand-ups

® Focus on WIP not on people. Enumerate items in flow, not people

® => can handle more people/larger teams
® Board shows status, meeting focus on exceptions
® Traverse board from right to left, emphasizing pull

® Standup questions:
® Do we have a bottleneck? (Congestion or gap in queues)
® Do we have a blocker not dealt with?
® Are we keeping our WIP limits?
® Are priorities clear?

® Done yesterday, planning today.

tisdag den 15 maj 2012

Summary of Scrum vs. Kanban

Similarities

tisdag den 15 maj 2012

Both are Lean and Agile.

Both use pull scheduling.

Both limit WIP.

Both use transparency to drive process improvement.

Both focus on delivering releasable software early and often.
Both are based on self-organizing teams.

Both require breaking the work into pieces.

In both, the release plan is continuously optimized based on
empirical data (velocity / lead time).

tisdag den 15 maj 2012

Differences

Scrum

Kanban

Timeboxed iterations
prescribed.

Timeboxed iterations optional.
Can have separate cadences for
planning, release, and process
improvement. Can be event-
driven instead of timeboxed.

Team commits to a specific

amount of work for this iteration.

Commitment optional.

Uses Velocity as default metric
for planning and process
improvement.

Uses Lead time as default metric
for planning and process
improvement.

Cross-functional teams
prescribed.

Cross-functional teams optional.
Specialist teams allowed.

Items must be broken down so
they can be completed within 1
sprint.

No particular item size is
prescribed.

Burndown chart prescribed

No particular type of diagram is
prescribed

Differences

Scrum

Kanban

WIP limited indirectly (per
sprint)

WIP limited directly (per
workflow state)

Estimation prescribed

Estimation optional

Cannot add items to ongoing
iteration.

Can add new items whenever
capacity is available

A sprint backlog is owned by
one specific team

A kanban board may be shared
by multiple teams or individuals

Prescribes 3 roles (PO/SM/Team)

Doesn’t prescribe any roles

A Scrum board is reset between
each sprint

A kanban board is persistent

Prescribes a prioritized product
backlog

Prioritization is optional.

tisdag den 15 maj 2012

SWELL SE Census
2012

® Survey over 4 years 2009-2012

® Hot off the press! 2012 survey ended April 30, you are first to see
results

® Around 150 responses per year, Industrial developers, Finance and
consultancies

® Main division is on dev method used: Agile, Plan, Hybrid/Mix

® Then focus is on Requirements and Testing

tisdag den 15 maj 2012

Development method’?

Method? Total 2010 2011 2012
Agile 16.9% 13.7% 18.8% 18.7%
Mixed 51.8% 52.3% 49.3% 54.7%

Plan-driven 26.5% 30.7% 26.4% 22.3%

Other 4.1% 3.3% 5.6% 3.6%

tisdag den 15 maj 2012

Development method??

Agile dev methods are Men: definition av
comimaon. “agile”...?!

A majority use either a

selected/concious mix (52%) Plandrivet ar

or Work “pu fe|y” agi a (-' 7%)_ fortfarande storre an
. . rent agilt, hybrider

Close toa third work mainly vanligt

plan driven.

No significant differences
between years.

tisdag den 15 maj 2012

Req/Test Org&Process works?

Requirements Test

Response

2010 2011 2012 2010 2011 2012
Veryhign o ge 7e% 58% 14.9% 22.9% 18.0%

degree

High Deg. 85.3% 31.2% 396% 558% 458% 54.0%
Low Deg. 46.4% 424% 38.8% 26.6% 26.4% 24.5%
Ve[r)ye;OW 105% 18.8% 151% 2.6% 4.9% 2.9%
Avg (1-4): 2.4 2.3 2.4 2.8 2.9 2.9

tisdag den 15 maj 2012

2012

Practice AgileAvg MixedAvg PlanAvg
Use cases/Scenarios 55 71 T2
Natural Language Reqs 64 61 65
Reg-specific personnel 36 H4 48
Non-func requirements 40 48 38

Measurable/Testable reqs 43 35 32
Prototypes/Mock-ups 30 31 19
Modeling (UML) 17 26 22
Formal notation 4 6 3

Table 4: Ways of working in Requirements Engineering 2012 (Percentages)

tisdag den 15 maj 2012

2012

Practice AgileAve MixedAvg PlanAvg

Manual testing

Textual test cases
Test-specific personnel
Exploratory testing
Automated Test Execution
Automated Test Generation
Testers also work with dev
Models in testing

Table 6: Ways of working in Testing 2012 (Percentages)

tisdag den 15 maj 2012

Practice Avgll Avgl2 : Mixed12 Planl2
Sprint-based development 41 56 72 6
Stand-up meeting 46 H2 ' (3 62 6
Exploratory testing 33 47 54 59 13
Product/Sprint backlog 38 44) 65 o1 6
Daily /Continuous build 26 30 58 390 0
Test driven development 19 29 42 36
Small/Frequent release 26 29 l A 33
Coding standards 12 23 35 28

Refactoring 10 18 38 18
Planning game 12 27 18
On-site customer 11 12 23 12
Pair programming 10 12 27 11
Collective code ownership 8 12 12

Sustainable pace 2 : 15 3
System metaphor 1 1 | 4 1

Table 2: Use of Agile Practices 2012 (Percentages)

tisdag den 15 maj 2012

Sources

® Khniberg & Skarin, “Kanban and Scrum - Making the most of both”,
InfoQ free book, Crips AB

® David Joyce,“Kanban for SE”, BBC, presentation online.

tisdag den 15 maj 2012

Workshop 4

® Theme: Does Agile work?

® Sub-questions:

When does agile methodologies work?
Why do agile methodologies work?
When do agile methodologies not work!?
Why do they fail?

Are agile methodologies easy to transition to? Why/why not!?

® Groups of 5, Each group either positive or negative and discuss
effect of of agile on one of:

SW Quality, Effectiveness/Time, Team spirit/Happiness, Individuals
happiness, Customer interaction/satsifaction, Scale/Large projects

tisdag den 15 maj 2012

Software team response extensiveness (formative) (1 = 0%; 2 = 20%, 3 = 40%, 4 = 60%, 5 = 80%, 6 = 100%)

To what extent did the software team actually incorporate requirement changes in each of the following categories? (For example, if the project
actually incorporated four out of ten different changes in a specific category, your answer would be 40 %.)

1. System scope (EXT1)

2. System input data (EXT2)

3. System output data (EXT3)

A Divniannnn wmiilanlumuwnnnnnn~s VT AN
Software team autonomy (reflective) (1 = strongly disagree; 7 = strongly agree)
1. The project team was allowed to freely choose tools and technologies (AUTO1)
2. The project team had control over what they were supposed to accomplish (AUTO2)
3. The project team was granted autonomy on how to handle user requirement changes (AUTO3)
4. The project team was free to assign personnel to the project (AUTO4)

Software Development

Characteristics CUTMAgY j - Performance

elf-managing H1a(s) Changes?

p— H1b(- : ;
Sel golg-r:lglvasiay@re Team v Software Team X On-Time Completion
nomy H2(+) Response Extensiveness o

H5(-) On-Budget Completion

Software Team | H3(+) Software Team
, , Diversity Response Efficiency [Software Functionality

: H4()
lh Cross-funct.

experllgeur:tf 1. 1w nessarcn model Addltlonal effort

eterogeneous to'inclichanges!
Software team diversity (reflective) (1 = strongly disagree; 7 = strongly agree)
1. The members of the project team were from different areas of expertise (DIV1) llowing changes? (Effort includes time, cost, personnel,
2. The members of the project team had skills that complemented each other (DIV2)
3. The members of the project team had a variety of different experiences (DIV3)
4. The members of the project team varied in functional backgrounds (DIV4)

System output data (EFF3)
[I— 4 Business rules/processes (EFF4)
5. Data structure (EFFS)
6. User interface (EFF6)

tisdag den 15 maj 2012

Agility alone is
not enough!

Software "o Software Team
-0.272 o On-Time

jeom . j——— " . Hesponie .
' siveness /0014 _Completion
Inc. Autonomy without oS

Inc. Diversity might between two I On-Budget
. Completion
decrease extensiveness aspects!

Software [ala=r =t Software Team w

Team : : Response _
Diversity discussion Efficiency 0.298

SKill available
iy - =058
Short, but continued
Note: *p < .05; **p < .01 incremental evaluation of
Figure 2. PLS Results iterations & trade-off is

time boxing! needed!

Selective response to changes when time & cost top prios!

Lee2010]

tisdag den 15 maj 2012

Summary of LEE2010

® Team Diversity:

® “The more diverse team will be better able to respond to changes because people will
bring different levels of experience, different background, different skill sets. A team
that doesn’t have that diversity can get tunnel vision on a solution and not be as open
to other options.”

® “The diversity made it more difficult to communicate and manage change, because
the change required interaction amongst a diversity of workgroups, and that made it
harder for people to be on the same page and agree to these changes.”

tisdag den 15 maj 2012

Summary of LEE2010

® TJeam Autonomy:

® “Each team member was able to respond to small system changes individually
although the whole team discussed change requests that are important. We were very
efficient in responding to change partly due to our authority to make decisions.”

tisdag den 15 maj 2012

