People, Refactoring

Lecture 3, EDA397/DIT191, Agile Dev Processes Robert Feldt, 2011-04-11

Structure

6

Ģ

0

0

0

×

Ð

-0

9

8

Humans: funky & vary a lot

- Spontaneous
- Change, sometimes for no apparent reason
- Contradictory
- Full of personality
- Vary by hour, day, age, culture, temp...
- Solve problems differently
- Personal style affect others

Humans: funky & vary a lot

Diversity of methods work depending on people and their experience!

- Change, sometimes for no apparent reason
- Contradictory

Spontaneous

- Full of personality
- Vary by hour, day, age, culture, temp...
- Solve problems differently
- Personal style affect others

Humans: funky & vary a lot

Diversity of methods work depending on people and their experience!

- Change, sometimes for no apparent reason
- Contradictory

Spontaneous

• Full of personality

Variation => FEW general rules & always exceptions

- Vary by hour, day, age, culture, temp...
- Solve problems differently
- Personal style affect others

Technology's role

• Can **AUTOMATE**

- Tedious tasks (Avoid -Motivation, Speed up)
- Error-prone activities (Avoid +Faults/Biases)

Can SUPPORT DECISIONS

- Transform problem/solution space
- Collect (new) data
- Facilitate communication & collaboration

Technology's role

• Can **AUTOMATE**

But Basic Problem: SW is People-Driven and People Vary

- Tedious tasks (Avoid -Motivation, Speed up)
- Error-prone activities (Avoid +Faults/Biases)
- Can SUPPORT DECISIONS
 - Transform problem/solution space
 - Collect (new) data
 - Facilitate communication & collaboration

Some Failure Modes

- People:
 - Make Mistakes
 - Prefer to Fail Conservatively
 - Invent rather than Investigate
 - Are creatures of Habit
 - Are Inconsistent
 - Have many Cognitive Biases

Some Failure Modes

- Invent rather than Investigate
- Are creatures of Habit
- Are Inconsistent
- Have many Cognitive Biases

Risk-averse to gains

- Fail similar >= Fail differently
- We might be blamed if we failed and did it differently
- Serious effects in SE:
 - Less willing to test new processes...

Risk-averse to gains

- Fail similar >= Fail differently
- We might be blamed if we failed and did it differently
- Serious effects in SE:
 - Less willing to test new processes...

Premium on Originality

- Many cultures put premium on originality
- We learn to invent rather than search/find

Some Cognitive Biases: Decision-making or Behavioral

- Anchoring = rely too much on one piece of info
- Bandwagon = do or believe as majority
- Bias blind spot = "I'm less biased than you..."
- Confirmation = seek info that supports, not counters
- Framing = draw different conclusions from same info depending on its presentation
- Zero-risk = prefer small-risk-to-zero over greaterreduction-in-large-risk

Some Cognitive Biases: Social

- Actor-observer = overemphasize personality (vs. situation) in explaining behavior of others
- False consensus = overestimate degree to which others agree with me
- Halo = traits "spill over" from one area to another
- Assymetric insight = "I understand you more than you understand me"
- Self-serving = claim more responsibility for success than failure

Cognitive Heuristics in Software Engineering: Applying and Extending Anchoring and Adjustment to Artifact Reuse

December 2004 (vol. 30 no. 12)

pp. 873-888

Jeffrey Parsons, IEEE Computer Society Chad Saunders

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TSE.2004.94

ABSTRACT

The extensive literature on reuse in software engineering has focused on technical and organizational factors, largely ignoring cognitive characteristics of individual developers. Despite anecdotal evidence that cognitive heuristics play a role in successful artifact reuse, few empirical studies have explored this relationship. This paper proposes how a cognitive heuristic, called anchoring, and the resulting adjustment bias can be adapted and extended to predict issues that might arise when developers reuse code and/or designs. The research proposes that anchoring and adjustment can be manifested in three ways: propagation of errors in reuse artifacts, failure to include requested functionality absent from reuse artifacts, and inclusion of unrequested functionality present in reuse artifacts. Results from two empirical studies are presented. The first study examines reuse of object classes in a programming task, using a combination of practicing programmers and students. The second study uses a database design task with student participants. Results from both studies indicate that anchoring occurs. Specifically, there is strong evidence that developers tend to use the extraneous functionality in the artifacts they are reusing and some evidence of anchoring to errors and omissions in reused artifacts. Implications of these findings for both practice and future research are explored.

- Creatures of habit => resist new
- Inconsistent in what we do/think
- Choice of paradigm:
 - Discipline = enforce specific behavior
 - Tolerance = tolerate variation and differences

- Creatures of habit => resist new
- Inconsistent in what we do/think
- Choice of paradigm:
 - Discipline = enforce specific behavior

- Creatures of habit => resist new
- Inconsistent in what we do/think
- Choice of paradigm:
 - Discipline = enforce specific behavior

- Creatures of habit => resist new
- Inconsistent in what we do/think
- Choice of paradigm: Harder to attain, May be more effective
 - Discipline = enforce specific behavior

• Tolerance = tolerate variation and differences

- Creatures of habit => resist new
- Inconsistent in what we do/think
- Choice of paradigm: Harder to attain, May be more effective
 - Discipline = enforce specific behavior

• Tolerance = tolerate variation and differences

Easier to adopt, May be less productive

Some Success Modes

- People generally work better:
 - from Examples (concrete and tangible)
 - by Altering rather than from scratch
 - by Watching
 - by Getting Feedback

Up to 2006
Introduction & Adoption

Human & Social Factors

Perceptions

Comparisons

måndag den 11 april 2011

Comparisons

Agile practices easy to introduce and work well

Difficult to intro in **large/complex organizations**

Benefits: Customer collaboration Defect handling processes Learning among developers Estimation of time/cost easier

Some studies saw **pair programming as inefficient**

XP works best with **experienced teams**

XP well accepted in <u>different organizations</u> (hierarchical structure to little or no control)

Comparisons

Good **interpersonal skills** and **trust** important for successful XP teams

Individual **autonomy must be balanced** with team autonomy

Making progress tracking **visible and audible** important

Important standardization of collaborative work

Customers liked more (give/get) feedback

On-site customer stressful/unsustainable

Developers more satisfied with work and product

Pair programming considered tiring since it required focused concentration

Pair programming hard when skills differ much

Test-driven development was difficult

Agile can more <u>easily incorporate changes</u> and <u>show business value</u>

Can be <u>combined with traditional stage-gate</u> <u>project management</u>

Subjects believe agile increases productivity

47 Industrial SW Engineers

måndag den 11 april 2011

Personality Test

47 Industrial SW Engineers

måndag den 11 april 2011

SE Views & Personality Test Attitudes

47 Industrial SW Engineers

måndag den 11 april 2011

47 Industrial SW Engineers

måndag den 11 april 2011

Personality and Software Engineering

- Intense personality <->
 - multiple projects
 - parts of projects
- Age & Gender differences
- Higher Extraversion <->
 - prefer team work
 - prefer plan & schedule
- Higher Openness <->
 - whole project responsibility

[Feldt2010]

Input - Process - Output Model

[Acuna2009]

Personality and Teams

Table 1

Summary of the findings of social psychology and software engineering research on teams

	Cohesion	Conflict	Performance	Satisfaction
Conscientiousness		-[3]	+[3] +[40] +[50] +[20]	
Extraversion	+[3] +[50]	-[3]	+[4] +[3]	
Agreeableness	+[3] +[40]	-[3] -[40]	+[3] +[40] +[50]	
Neuroticism	-[3] -[50]	+[3]	-[3]	
Openness to experience				+[37] (Task autonomy as moderator)
Cohesion		-[3]	+[54]	

[Acuna2009]

Fig. 2. Correlations between personality, team processes, task characteristics and quality or satisfaction.

[Acuna2009]

Personality in XP teams

Repertory grid technique of 9 XP teams

Pei

R

good with people	4	4	3	2	2	2	2	good problem solver	
structured/organised	4	2	2	2	4	2	2	multi-tasking	
understanding (supportive)	4	2	2	2	2	4	2	working on their own	
patient	5	4	4	2	2	4	2	achiever/juggling	
team workers	4	4	4	2	1	2	2	individualistic	
helpful	4	4	2	2	2	2	2	patient	
purposeful	4	2	2	4	4	4	2	meaingful	
team-minded	5	2	2	2	1	2	2	people minded	
specific	5	4	2	2	2	2	2	big picture	
detailed	5	4	2	2	2	2	2	look ahead	
realistic in problem solving	5	4	2	2	2	2	2	does not panic (no way of passing on problems)	
team player	4	4	2	2	2	2	2	single-minded	
team/joint decisions	5	4	4	4	2	2	2	decision making	
good people manager	5	4	4	4	2	2	2	instructing	
leader	5	5	4	4	2	2	2	indirect leading	
organiser	1	4	4	4	2	2	2	leader	
sharing	5	4	4	2	2	2	2	doer	
problem solver	5	4	4	4	2	2	2	guidance	
disciplined	5	4	2	2	1	1	1	conductor	
Bad team member Good team member XP team member Team leader Technical lead Technical Architect									
	Opps manager								

٦

Г

ms

ns

Table 5: Good (XP) Team Member constructs, MDS coordinates and ratings

Good	Good Team Member (-2.08, 1.17)						
Dimension 1	Dimension 2	Construct	Constructs Left (rating value is 1)	Constructs Right (rating value is 5)			
- <mark>0.47</mark>	1.47	1	Flexible	1 More individualistic (make own decisions)			
-1.09	1.04	3	Interesting	1 Formal			
-1.20	1.30	5	Good communicator (knowledge transfer)	1 Making assumptions			
- <mark>1.06</mark>	0.52	7	Ability to explain to people with different abilities and backgrounds	2 Ability to interact with customer (good at presenting technical information in an accessible way)			
- <mark>0.8</mark> 5	1.26	8	Good analytical skills	2 Needs to know the right questions to ask the technical people			
-0.61	1.43	47	Analytical	2 Requires energy			
-0.65	1.40	48	Starting things	3 Closure			
- <mark>0.5</mark> 6	0.85	51	Passion for learning	² Passion for good systems			
-1.35	0.87	58	Desire to make things work	1 Scheduling			

"analytical personality, good interpersonal skills, passion for extending knowledge base"

	Table 6: Bad Team Member constructs, MDS coordinates and							
ratings Rad SD Team Member (1 57 1 22)								
Dau	Bad SD Team Member (1.57, –1.32)							
Dimension 1	Dimension 2	Construct	Constructs Left (rating value is 1	Hating given	Constructs Right (rating value is 5)			
1.42	-1. <mark>11</mark>	2	Good communicators	-	Patient			
0.98	-1.77	4	Rigid	4	Flexible			
1.89	-0.56	6	Stable	3	More agile			
1.05	-0.93	11	Team leading (drive forward)	2	Put knowledge and skills into practice (creativity)			
1.92	-0.35	14	Discipline	-	Ability to focus on single task and see it to completion			
1.02	-1.06	15	Thoroughness	-	Imagination			
1.25	-1.24	16	Completion/ finishing	-	Flexibility			
1.08	-1.57	17	Willingness to be dictatorial	1	Mentoring/supportive/ Patience			

Flexible, more inclined to team leadership, willingness to be dictatorial, inclined towards domineering management, little sharing of knowledge and support to others.

Collaboration & Personality in Pair Programming

Audio recordings of 44 pairs performing a change task

Figure 1. Pair Collaboration as a mediator variable

Collaboration & Personality in Pair Programming

Audio recordings of 44 pairs performing a change task

Figure 1. Pair Collaboration as a mediator variable

Collaboration

- Def: "Situation in which all parties contribute new information to a task"
- In contrast to cooperation: "Splitting into sub-tasks and working on them independently"

Results

- Personality affects collaboration
- Variability in personality increases amount of communication-intensive collaboration
- Extraversion: no connection to interruptions
- Later results have shown that task complexity and expertise have stronger effect

Refactoring

- "a change made to the internal structure of software to make it easier to understand and cheaper to modify without changing its observable behavior"
- Claims about refactoring:
 - Refactoring helps developers to program faster
 - Refactoring improves the design of the software
 - Refactoring makes software easier to understand
 - Refactoring helps developers to find bugs

[Fowler, Moser2008]

Refactoring

Refactorings in Alphabetical Order

This is a simple list of refactorings both from the original book and some later sources. Sadly I haven't had extra material to what's in the Refactoring book. Refactorings marked with NEW are in addition to those in

| Russian | German |

- Add Parameter
- Change Bidirectional Association to Unidirectional
- Change Reference to Value
- Change Unidirectional Association to Bidirectional UPDATED
- Change Value to Reference
- Collapse Hierarchy
- Consolidate Conditional Expression
- Consolidate Duplicate Conditional Fragments UPDATED
- Convert Dynamic to Static Construction by Gerard M. Davison NEW.
- <u>Convert Static to Dynamic Construction</u> by Gerard M. Davison NEW.
- Decompose Conditional
- Duplicate Observed Data
- Eliminate Inter-Entity Bean Communication (Link Only)
- Encapsulate Collection
- Encapsulate Downcast
- Encapsulate Field
- Extract Class

[Fowler]

Results from one case

Figure 1: Average development productivity per iteration.

[Moser2008]

Result 2: Refactoring can limit complexity and coupling

Sources

- Dybå & Dingsöyr, "What do we know about agile sw dev?", IEEE Software, 2009
- Feldt et al, "Links Between the Personalities, Views and Attitudes of Software Engineers", IST, 2010
- Whitworth et al, "Motivation & Cohesion in Agile Teams", XP Conf 2007
- Acuna et al, "How do Personality, Team Processes and Task Characteristics Relate to Job Satisfaction and Software Quality?", IST, 2009.
- Walle et al, "Personality and the Nature of Collaboration in Pair Programming", ESEM 2009.
- Young et al, "Personality Characteristics in an XP Team...", 2005.
- Moser et al, "A case study on the impact of refactoring...", 2008.