
Multi-key fully homomorphic encryption report

Elena Fuentes Bongenaar

July 12, 2016

1 Introduction

Since Gentry’s first Fully Homomorphic Encryption (FHE) scheme in 2009 [6] mul-
tiple new schemes have been proposed. In 2012 the notion of multi-key FHE was
introduced by [9] and realized based on the NTRU cryptoscheme. They also showed
that every FHE scheme can be made multi-key for only a constant number of keys.
Clear and McGoldrick proposed in [5] a multi-key variant based on Learning With
Errors (LWE) which was followed by a simpler version in [11]. The BGV FHE scheme
[3] has been implemented in HElib [7] and has good performance, thus it would be
interesting if this scheme could be made multi-key. The only known variant will
support a logarithmic number of keys (in the security parameter). This report will
give an introduction to multi-key FHE and discuss the schemes proposed in [9], [5]
and [11].

2 Notation and preliminaries

The security parameter is denoted by λ. Reduction mod q will reduce into the set
{−b q2c, . . . , b

q
2c}. A vector (v1, . . . , vn) ∈ Zn is represented as v, with vi being the

ith component. The l1 norm for vector v= (v1, . . . , vn) is defined as
∑n
i=1 |vi|.

Learning with errors (LWE) Many recent proposed schemes base their security
on the hardness of the learning with errors problem introduced by Regev [12]. Given
an integer q, a (Gaussian) distribution χ on Zq, and dimension n the decision LWE
problem is to distinguish between the following distributions, for a fixed s uniformly
sampled from Znq :

(1) (ai, bi) sampled uniformly from Zn+1
q

(2) (ai, bi), where ai is sampled uniformly from Znq , ei is sampled from χ and we
set bi = 〈ai, s〉+ ei

The search variant of LWE would be to find s from arbitrarily many pairs (ai,
bi = 〈ai, s〉 + ei). We can see this as solving a ”noisy” linear system of equations
〈ai, s〉 ≈ bi. The error ei should be small in order to solve this correctly, that is why
it is sampled from a Gaussian distribution centered around 0.

Ring Learning with Errors (RLWE) Hardness of the LWE problem made it
very interesting for cryptographic applications but efficiency turned out to be a
problem. An algebraic variant of this problem also gives hardness guarantees and is
a more practical base for such systems [10]. This ring-based variant was proposed by

1

Lyubashevsky, Peikert and Regev. Now we consider the ring R = Zq[x]/〈xn+1〉 with
n a power of 2 and an error distribution χ over R that is concentrated on ”small”
elements. Note that the elements in R are polynomials of degree (n−1) or lower. For
s sampled uniformly from R the (decision) RLWE problem is to distinguish between:

• (a, b), with a, b sampled uniformly from R

• (a, b), with a again sampled in the same way and e from χ. Set b = a · s+ e.

The RLWE assumption is that this is a hard problem. There is a quantum
reduction of this problem to a hard problem in ideal lattices. Compared to LWE in
most cases n noisy LWE equations can be replaced by 1 noisy RLWE equation which
obviously improves in terms of efficiency.

3 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is a special type of encryption that allows
arbitrary computations to be performed on the ciphertexts in a meaningful way. This
means operations performed in the ciphertextspace will translate back to operations
on the plaintexts after decrypting the result. This makes it possible to outsource
computations on sensitive data, because computations on the ciphertexts can be
performed without knowing the secret key.

Such a FHE scheme E will consist of four algorithms; E = (KeyGen, Enc, Dec,
Eval) [6]. Eval is the function that makes this encryption scheme special, because
for every function f and ciphertexts c1 = Enc(m1, pk), . . . , cn = Enc(mn, pk), which
can be decrypted with the secret key sk, it should provide the following:

cnew = Eval(f, c1, . . . , cn)⇒ Dec(cnew, sk) = f(m1, . . . ,mn)

Note that the plaintexts have to be encrypted under the same public key and the
output of Eval is again encrypted under that same key.

Ideally the number of operations one can perform on ciphertexts is unlimited,
but this is in practice hard to achieve. Also, for many applications it is not necessary
to be able to compute an arbitrary number of operations. Somewhat homomorphic
encryption (SHE) allows computations of limited complexity to be performed, op-
posed to any complexity for fully HE schemes. Another option is a ’leveled FHE
scheme’, in this case the size of the public key is depending linearly on the number
of computations that can be performed.

4 Multi-key FHE

So far we have been looking at the single-user setting, where all ciphertexts must
be encrypted under the same key. It could be interesting to look at the situation
where we don’t necessarily need the same key for all messages, in order to be able to
outsource computations on data coming from different sources. For example to do
statistics on health care data from different hospitals, while keeping all input secret
from each other.

In the multi-key FHE setting we have N participants with their own keypair
(ski, pki) and message mi, who want to perform computations on all data without
revealing any private information to each other. After the computation decryption

2

should only be possible when all the secret keys that were used to encrypt the mes-
sages are involved.

By [9] it is shown any FHE scheme is multi-key for a constant number of keys.
This is achieved by making use of an ’onion’ encryption and decryption, where cipher-
text are repeatedly encrypted or decrypted with a sequence of keys. In a standard
FHE scheme we encrypt a message m ∈ {0, 1} into a ciphertext c ∈ {0, 1}λ. If we
want to encrypt a ciphertext again, under a different key, we need a definition for
encrypting x ∈ {0, 1}l. Let x1, . . . , xl be the bits of x then let encryption be as
follows:

Enc(pk, x) = (Enc(pk, x1), . . . ,Enc(pk, xl))

Now we define ”onion” encryption Enc∗ for k ∈ N recursively:

Enc∗(pk,m) = Enc(pk,m)

Enc∗(pk1, . . . , pkk,m) = Enc∗(pk1, . . . , pkk−1,Enc(pkk,m))

= Enc(pk1,Enc(. . .Enc(pkk,m) · · ·)

Note that a ciphertext produced by Enc∗ encrypting a message under N keys
has size λN .
In a similar way we define decryption:

Dec∗(sk, c) = Dec(sk, c)

Dec∗(sk1, . . . , skk, c) = Dec∗(sk2, . . . , skk,Dec(sk1, c))

= Dec(skk,Dec(. . .Dec(sk1, c)) · · ·)

A ciphertext ci encrypting message mi with public key pi can be turned into a
new ciphertext zi that is encrypting the same message under keys p1, . . . , pk. This is
done by homomorphically evaluating the function Enc∗(pi+1, . . . , pN , ci) which gives
Enc∗(pi, . . . , pN ,mi). Then encrypt this new ciphertext with the remaining keys to
obtain Enc∗(p1, . . . , pN ,mi).

When the ciphertexts involved have been changed into ciphertext encrypting the
same message under all keys, it is possible to perform homomorphic operations on
them, keeping in mind the order of the keys involved. Since the size of a ciphertext
zi is λN and N is the number of keys, this can only be efficient if N = O(1); in other
words only a constant number of keys can be involved. More details can be found in
[9].

5 Multi-key NTRU

NTRU was introduced as a public key cryptosystem in the nineties [8]. When it
was shown that a modified version of the NTRU scheme [13] can actually be used for
FHE, it turned out it could support multiple keys [9]. The security is based on RLWE
and the Decisional Small Polynomial Ratio (DSRP) assumption that is the following.

DSPR assumption [9] Define ring R = Z[x]/〈φ(x)〉 for φ(X) ∈ Z[x] a poly-
nomial of degree n. Let q ∈ Z be a prime integer and χ a distribution over R.
Furthermore Rq = R/qR. Then the DRPRφ,q,χ says it is hard to distinguish be-
tween these distributions:

3

• polynomial h, where h = [2gf−1]q for f = 2f ′ + 1 and f ′, g sampled from χ
(and f−1 is the inverse of f in Rq)

• polynomial u, sampled uniformly at random from Rq

First the modified NTRU scheme is given, followed by the multi-key fully homo-
morphic version.

Modified NTRU scheme Define ring R = Z[x]/〈xn + 1〉 for n a power of 2. Let
q ∈ Z be an odd prime integer and χ a B-bounded distribution over R (B � q),
which means the magnitude of the coefficients of a polynomial sampled from χ is less
than B.

• NTRU.KeyGen: sample f ′, g from χ. Set f = 2f ′+1 (note that f mod 2 ≡
1). If f is not invertible resample, otherwise compute f−1 and set h = [2gf−1]q.
Output: (sk, pk) = (f, h)

• NTRU.Enc(m, pk): for m ∈ {0, 1}, sample s, e from χ and parse h = pk.
Output: c = [hs+ 2e+m]q

• NTRU.Dec(c, sk): parse f = sk and compute z = [fc]q.
Output: µ = z mod 2

Decryption works as follows:

µ = z mod 2

= [fc]q mod 2

= [fhs+ 2fe+ fm]q mod 2

= [2gs+ 2fe+ fm]q mod 2

Because all elements f, g, s, e come from χ and B � q, there is no reduction mod q.
Furthermore recall that f ≡ 1 mod 2. Then we get:

µ ≡ 2gs+ 2fe+ fm ≡ fm ≡ m mod 2

Multi-key FHE based on NTRU In the multi-key fully homomorphic setting
we have two ciphertexts that encrypt different messages m1,m2 with different public
keys h1, h2. Thus we have the ciphertexts c1 = [h1s1 + 2e1 +m1]q and c2 = [h2s2 +
2e2 +m2]q. If we simply add them and try to decrypt with the joint secret key f1f2,
we get the following:

f1f2(c1 + c2) = f1f2h1s1 + 2f1f2e1 + f1f2m1 + f1f2h2s2 + 2f1f2e2 + f1f2m2

= f1f2h1s1 + f1f2h2s2 + 2f1f2e1 + 2f1f2e2 + f1f2(m2 +m1)

= 2(g1f2s1 + g2f1s2 + f1f2e1 + f1f2e2) + f1f2(m2 +m1)

= 2eadd + f1f2(m2 +m1)

Which will decrypt correctly if the new error eadd is not too large. This is possible
because si, ei, f

′
i and gi were sampled from χ and fi = 2f ′i + 1, and thus are all

relatively small. Now we repeat the same for multiplication:

4

f1f2(c1c2) = f1f2(h1s1 + 2e1 +m1)(h2s2 + 2e2 +m2)

= (f1f2h1s1 + 2f1f2e1 + f1f2m1)(h2s2 + 2e2 +m2)

= f1f2h1h2s1s2 + 2f1f2h1s1e2 + f1f2h1s1m2 + 2f1f2h2s2e1 + 4f1f2e1e2 + 2f1f2e1m2

+ f1f2h2s2m1 + 2f1f2m1e2 + f1f2m1m2

= 4g1g2s1s2 + 4g1f2s1e2 + 2g1f2s1m1 + 4g2f1s2e1 + 4f1f2e1e2 + 2f1f2e1m2

+ 2g2f1s2m1 + 2f1f2m1e2 + f1f2m1m2

= 2emult + f1f2m1m2

Again, it must hold that the new multiplication error is not too large and thus χ
must be chosen appropriately.
For one addition and multiplication this simple approach seems to work. Apart from
being able to do the computation this scheme allows the use of multiple keys for
multiple ciphertexts, which thus makes it a multi-key scheme. It becomes more tricky
when this is extended to circuits where multiple of these operations are performed.
First of all it is clear only a limited number of operations can be performed, because
of the growing error term. More importantly consider a situation where we have
3 ciphertexts c1, c2, c3, similarly to the situation above, encrypted under 3 different
keys f1, f2, f3. Say we have computed c1c2 and c2c3, which then respectively need
key f1f2 and f2f3 for decryption. With these ciphertexts we compute c1c2 + c2c3
and want to decrypt with the new key f1f2f3:

f1f2f3(c1c2 + c2c3) = f3(f1f2c1c2) + f1(f2f3c2c3) = f3(2emult1 + f1f2m1m2) + f1(2emult2 + f2f3m2m3)

= 2eadd′ + f1f2f3(m1m2 +m2m3)

This works, so it seems in general we can make a new keys by appending all keys
that were used for encryption of the involved ciphertexts. However, for c1c2 · c2c3
the key f1f2f3 will not work! We need the key f1f

2
2 f3:

c = f1f
2
2 f3(c1c2 · c2c3) = (f1f2c1c2)(f2f3c2c3) = (2emult1 + f1f2m1m2)(2emult2 + f2f3m2m3)

= 2emult′ + f1f
2
2 f3(m1m2 ·m2m3)

This shows that it is necessary to be aware of the circuit that was evaluated on
the ciphertexts and additionally the size of the key grows faster than just the number
of different keys involved.

To solve these problems, the authors used the key-switching technique from Brak-
erski and Vaikuntanathan [2], also known as relinearization. An evaluation key is
added to the public key, that is a ”pseudo-encryption” of the powers of 2 of the secret
key: ekf = [hs+2e+Pow(f)]q, for newly sampled s, e ∈ χ. This is not a real encryp-
tion because we have defined decryption only for a binary message, which the secret
key is not. When ciphertexts encrypted under the set of keys F1 = {f1i , . . . , f1k} and
F2 = {f2j , . . . , f2l} are multiplied, the keys in F1 ∩ F2 would appear as a square in
the new key. For each of those keys the ciphertext is ”corrected” with the evaluation
key, such that the power of this key goes down in the new key. More precisely, the
inner product is taken between the bitexpansion of the ciphertext and each of the
evaluation keys. In our example that gives the following: c’ = 〈Bit(c), ekf2〉 mod q
with ekf2 = [hs+ 2e+ Pow(f2)]q. Then c’ can be decrypted with the key f1f2f3 as
desired.
This gives the following multi-key FHE scheme:

5

• KeyGen: run NTRU.KeyGen to obtain (sk, pk) and additionally sample
s′, e′ ∈ χ and compute ek = [hs′ + 2e′ + Pow(f)]q.
Output: (sk, pk, ek)

• Enc(m, pk): run NTRU.Enc to obtain c.
Output: c

• Dec(c, sk1, . . . , skN): compute z = [f1 · · · fNc]q.
Output: µ = z mod 2

• Eval:add(c1, c2): cadd = [c1 + c2]q.
Output: cadd

• Eval:mult((c1, F1), (c2, F2)): where F1 = {pk1, ek1} denotes the set of public
keys and corresponding evaluation keys associated with ciphertext c1 and F2

similarly for c2. Let c0 = [c1c2]q and F1 ∩ F2 contain the evaluation keys
{eki1 , . . . , ekil}. Set j = 1 and repeat until j = l: cj = [〈Bit(cj−1), ekij 〉]q and
set cmult to the resulting cl.
Output: cmult

6 GSW FHE scheme

In the GSW scheme, named after the authors Gentry, Sahai and Waters, the cipher-
texts are matrices and the homormorphic operations are simply matrix addition and
multiplication. The idea comes from nice properties of eigenvectors for matrices: if
v is an eigenvector of matrix A, that means there is a scalar λ such that Av=λv and
in this case λ is the eigenvalue. If we have matrices C1, C2 with the same eigenvector
v for certain eigenvalues respectively m1,m2 then the following holds:

• v is an eigenvector for C1 + C2 for eigenvalue m1 +m2

• v is an eigenvector for C1 · C2 for eigenvalue m1 ·m2

This looks like the homomorphic properties we would want for ciphertexts C1, C2

and messages m1,m2 encrypted under v. Unfortunately we can not use exactly this
setting because for a given matrix it is easy to find eigenvectors and eigenvalues. For
this scheme instead of the secret key being an actual eigenvector, an approximate
eigenvector is considered, for example C1v=m1v+e for a certain small error e and
thus C1v≈ m1v. If ciphertexts C1, C2 are added we get: (C1 + C2)v = C1v+C2v=
(m1 +m2)v + e1+ e2, which will decrypt correctly if the original errors e1 and e2

are small enough. Multiplication of the same ciphertexts gives:

(C1 · C2)v = (m1 ·m2)v +m2 · e1 + C1 · e2

This situation is different: the new error also depends on the message and the ci-
phertexts. The message will be 0 or 1 and thus the part m2·e1 will not be large.
This does not necessarily hold for the part of the error that depends on the first
ciphertext; the ciphertext might have large entries. To ensure the entries will be
small and thus the error doesn’t grow too much a gadget matrix is used.

A gadget matrix G (i.e ∈ Zm×nq) and corresponding inverse transformation G−1

(i.e Zm×nq → Zm×mk , n < m and k < q) have the following properties for a matrix
A ∈ Zm×nq :

• G−1(A) has small entries

6

• G−1(A)×G = A

The way this is used in GSW is by letting G be a matrix with every column
containing the powers of 2, and G−1 the transformation that turns a matrix into a
larger one with every element in its binary representation. Then if you multiply this
larger matrix with G, the original matrix is obtained. More formally: let a, a’ be
vectors in Zmq for integers q,m. Let l = blog2 qc + 1 and N = m · l, the number of
bits needed to represent an element in Zq and a complete vector in Zmq respectively.

Let b ∈ ZNq . Define:

• BitDecomp(a) = (a1,0, . . . , a1,l−1, a2,0, . . . , am,l−1), the binary representation
of vector a with LSB first. Input has dimension m, output N .

• BitDecomp−1(b) = (
∑l−1
j=0 b1,j , . . . ,

∑l−1
j=0 bm,j), which is also well defined if

input isn’t a binary vector. Input has dimension N , output m.

Thus G−1 is BitDecomp and to apply BitDecomp−1, one can multiply by
gadget matrix G that contains the powers of 2.

Now we have the tools to define the scheme. Let χ be a B-bounded distribution.
We consider a message m ∈ {0, 1}.

• KeyGen: choose t ∈ Zn−1q and set s=(-t,1) ∈ Znq . Sample uniformly matrix
B from Zm×n−1q and e from χm.

Set b = Bt+e and A =

[
B
b

]
. Note that As=e

Output: (sk, pk) =(s, A)

• Enc(m, pk): sample uniformly R ∈ {0, 1}m×m. Set C = RA+mG.
Output: C

• Dec(C, sk): define w=[0, . . . , 0, d q2e]
T ∈ Zq and compute µ = 〈Cs, G−1(w)〉.

Output: b µ
q/2e

• Eval:add(C1, C2): Output: (C1 + C2)

• Eval:mult(C1, C2): Output: (C1G
−1(C2))

7 Multi-key GSW

Clear and McGoldrick presented a masking scheme that can be used to make identity
based FHE (IBFHE) schemes which use LWE for security, support multiple keys
[5]. In an identity based cryptoscheme the public key for a specific person can be
deduced from the publicly known user-identity, without any interaction necessary
with the individual. GSW was the first scheme that allowed an IBFHE scheme,
because no evaluation keys were necessary to perform homomorphic operations on
the ciphertexts, which was always the case in previous schemes. Such an evaluation
key cannot be computed with an ID by a third party as is the case for a public key,
which makes schemes involving evaluation keys unfit to become an IBFHE scheme.

Mukherjee and Wichs gave an implementation of the masking scheme for the
GSW scheme [11] and gave the option to perform a 1-round decryption protocol
where every party computes and broadcasts a partial decryption which are finally
combined to give the resulting plaintext. Their scheme will be discussed.

7

Intuition The GSW scheme was making use of eigenvectors properties for matri-
ces. Because of the involvement of gadget matrices we have the following property
for a ciphertext C: Csi=mGsi+e for secret key si, a small error e, gadget matrix
G and message m. In the multi-key situation we would like to achieve a similar
situation, with the new secret key s=(s1, . . . , sk)T , larger ciphertext C ′ and larger
gadget matrix G = G · Ik: C ′(s1, . . . , sk)T=mG(s1, . . . , sk)T+e’.
This will be achieved by transforming an existing ciphertext that encrypts a message
m under a certain key si into a new ciphertext encrypting m under the concate-
nated key s. To achieve this, every ciphertext will carry additional encryptions of
the randomness matrix R used to encrypt m, which will allow the correct expansion
to be performed. Once the expanded ciphertext satisfies said property, homomor-
phic operations can be done on it as in the single key GSW scheme (with larger
parameters).

To achieve the multi-key setting, 2 major changes are applied to the GSW-scheme:
the public keys of the participants will depend on each other and, as said, additional
information is added to every ciphertext. First we elaborate on the public keys, later
it will become clear what the extra information has to be.

Public and secret keys The public keys of the participants will be related to
each other in the sense that a part of it will be exactly same. Recall that if the secret

key is s=(-t,1), the corresponding public key is A =

[
B
b

]
for b=Bt+e.

The LWE assumption states that finding the secret key is hard when given the public
key. The crucial observation is that security will not be weakened if the same random
matrix B is used for all the public keys of participants of the scheme.
Fix uniformly sampled matrix B ∈ Zn−1×m, and for every secret key si=(-ti,1)

calculate bi=Bti +ei and set the public key pki to be Ai =

[
B
bi

]
.

Expanding ciphertext First we will focus on the situation for 2 participants
and then extend this to k participants. We have an encrypted message m1 as a
ciphertext C1 and want to expand this ciphertext into C ′1 to make it satisfy the
property C ′1(s1, s2)T=m1G(s1, s2)T+e≈ m1G(s1, s2)T . The message is encrypted
with public key A1 and randomness matrix R. The expanded ciphertext C ′1 will

have the form

(
C1 X
Y C1

)
and we want it to satisfy the following:

C ′1

(
s1
s2

)
=

(
C1 X
Y C1

)(
s1
s2

)
≈ m1G

(
s1
s2

)
This means we need the following two properties:

1. C1s1 +Xs2 ≈ m1Gs1

2. Y s1 + C1s2 ≈ m1Gs2

The first property is satisfied if X is a matrix with every entry 0, for ease this is
denoted as X = 0. The second case is more difficult, but it is helpful to see what
happens when trying to ’decrypt’ C1 with the incorrect key s2:

C1s2 = (RA1 +m1G)s2 = RA1s2 +m1Gs2

8

Furthermore we know A1 =

[
B
b1

]
, A2 =

[
B
b2

]
and s2=(-t2, 1). We would like

the term RA1s2 to actually be RA2s2 because this would give a small error, while
we cannot say anything about the size of RA1s2. This means that the actual and
the ideal term only differ a factor of R:

RA2s2+m1Gs2 = R(A2−A1)s2+RA1s2+m1Gs2 = R(b2−b1)+RA1s2+m1Gs2

Now the challenge is to construct R(b2 − b1) without knowing R.
It turns out there is a trick we can use for this; write δ = b2 − b1, which can be
done without any knowledge of the secret key because b1, b2 are parts of the public
keys B1, B2. Let ri,j be the entries of matrix R and let participant 1 encrypt every
one of them with B1 and a fresh randomness: Ui,j = R′B1 + ri,jG. Furthermore
let matrices Zi,j have entries all 0 except for the last column, which is equal to the
vector δ. Apply G−1 to get Z ′i,j = G−1(Zi,j). Now we have:

Z ′i,jUi,js1 ≈ Z ′i,jri,jGs1

≈ ri,jG−1(Zi,j)Gs1

≈ ri,jZi,js1
≈ ri,jδ

If this is done for all i, j and put together, the complete term R(b2 − b1) = Rδ
can be recovered by multiplying with secret key s1. Fortunately this is exactly what
we want, since the intention is to have Y s1 + C1s2 ≈ m1Gs2 and the term C1s2
differs about R(b2 − b1) from the ideal outcome m1Gs2.
In conclusion to find matrix Y we needed encryptions of ri,j and the difference
between public keys B1, B2. Thus participant 1 should include the encryptions of
ri,j along with the ciphertext C1, producing a tuple of ciphertexts rather than a single
ciphertext. Then the expansion of ciphertext C1 to C ′1 means calculating matrices
Z ′i,j and Ui,j and put it together in a new matrix:(

C1 0∑
i,j Z

′
i,jUi,j C1

)
Including the encryptions of ri,j will not weaken the security of the scheme because
of the security of GSW encryption. Also, expansion of ciphertexts can be done by
any party because no secret keys are involved, which is very convenient.

k participants So far only 2 participants were involved in the multi-key GSW
scheme, but this can be extended to k participants. The expanded ciphertext grows
with the number of participants but it will have the same form. Assume we again
have a ciphertext C1 encrypted with B1 which must be expanded, this time to a
ciphertext that can only be decrypted by the concatenation of all k keys. This
expanded ciphertext will look like this:

C1 0 . . . 0
Y2 C1 . . . 0
...

. . .
...

Yk 0 . . . C1

The first column contains the ciphertext C1 and the ’correction’ matrices Yj that
will give the correction factors R(bj − b1) when multiplied with key s1. Note that

9

these matrices can be determined just as in the 2-key scheme, only with different
δ = bj − b1 for different rows j. In general for a message encrypted by participant
i, column i will contain correction matrices Yj for all j 6= i and the diagonal of the
matrix will consist of the original ciphertext Ci.

’Threshold’ decryption This multi-key scheme gives the possibility for ’thresh-
old’ decryption; every participant should do a piece of the decryption with its own
key and these partial decryptions together make it possible to retrieve the message.
To allow this process we need the following lemma, to make sure no secret keys can
be deduced from the ciphertexts and partial decryptions.

Smudging noise lemma[11]. For I1, I2 positive integers and e1 ∈ [−I1, I1]
fixed integer, choose e2 ∈ [−I2, I2] uniformly at random. Then the distribution of e2
is statistically indistinguishable from that of e1 + e2 if B1/B2 = negl(λ) where negl
is a negligible function.

A proof can be found in [1]. Now the adjusted decryption process can be de-
scribed. Assume we have a ciphertext C ′ in the expanded form (possibly homo-
morphic computations have been performed on it). This can be seen as a vector of
submatrices: C ′ =

(
M1 . . .Mk

)
where every Mi is a ’column’ of matrices. Now ∀i

participant i :

1. receives Mi

2. computes p′i = 〈Misi, G
−1(w′)〉 for w′ a vector with all zeros and last entry

d q2e

3. adds ’smudging noise’ e ∈ Zq, set pi = p′i + e, and outputs pi

Finally the message can be retrieved from p =
∑k
i=1 pi through dividing by q

2 and
rounding correctly. This smudging noise will make sure the secret key si cannot be
deduced from Mi and pi. The correct parameters with respect to the original noise
and the lemma must be used to generate this noise.

8 The BGV scheme

Brakerski, Gentry and Vaikuntanathan constructed the first FHE scheme that doesn’t
need bootstrapping [3]. The scheme provides the option to base security on LWE or
RLWE, the latter providing better performance. This scheme has been implemented
in the open source library HElib [7] along with many proposed optimizations. In
[9] a multi-key variant of the BV-scheme [2], a predecessor of the BGV scheme that
has many similarities, for O(log λ) number of keys was given. Unfortunately it is
not clear how to turn this scheme into a leveled or FHE variant. Because of the
similarities between BV and BGV, and the popularity of the latter scheme it is still
interesting to take another look at this multi-key proposal.

Basic scheme First the basic encryption scheme BGV is based on is given, which
is extended to a FHE scheme. For now we will focus on the RLWE setting. Choose
integers q and d and set R = Z[x]/〈xd + 1〉, Rq = R/qR. Furthermore χ is a distri-
bution on Rq and N = d(2n+ 1) log qc.

10

• KeyGen: sample s′ ∈ χ and set sk = s = (1, s′). Generate uniformly at
random B ∈ RNq and error vector e ∈ χN . Set b = Bs′ + 2e and A = [b,−B].
Output:(sk, pk) = (s, A)

• Enc(m, pk): for message m ∈ R2, set m=(m, 0). Sample r ∈ RN2 and set
c = m+AT r = (c0, c1).
Output: (c0, c1)

• Dec(c, sk): compute z = [[〈(c0, c1), (1, s′)〉]q]2.
Output: z

Turning it into a FHE scheme Addition of ciphertext can simply be defined
by adding the different entries; if we add ciphertexts (c0, c1), (d0, d1) in this way and
decrypt, we get the following:

〈(c0+d0, c1+d1), (1, s′)〉 = c0+c1s
′+d0+d1s

′ = 〈(c0, c1), (1, s′)〉+〈(d0, d1), (1, s′)〉 ≈ m1+m2

Multiplication is slightly trickier, and will show the need for dimension reduction.
Denote the inner product calculated during decryption as a linear equation based on
the ciphertext c: Lc(x) = c0 + c1x. Then homomorphic multiplication of ciphertexts
c1 and c2 is defined as Lc1(x)Lc2(x), for ciphertexts encrypted under the same key,
which gives a quadratic equation in x, or a linear equation in x⊗ x = (1, x, x2):

Lc1(x)Lc2(x) = (c0+c1x)(d0+d1x) = c0d0+(c0d1+c1d0)x+c1d1x
2 = Qc1,c2(x) = Lc1,c2(x⊗x)

If we consider the last representation of the homomorphic product, it becomes clear
that this growth in dimension for the ciphertext and secret key has to be managed.
The solution here is a key-switching procedure which allows to change a ciphertext c
encrypted under key s1 to a ciphertext c′, encrypted under a different and possibly
shorter key s2. For the concrete implementation we need the BitDecomp as defined
for the GSW scheme and additionally the following function:

PowersOf2(x ∈ Rq, q): output (x, 2x, 22x, . . . , 2blog qcx) ∈ Rblog qcq .

To allow key-switching from s1 to s2, additional information is added to the pub-
lic key of s1, which is produced in the routine SwitchKeyGen. In a later stadium
this additional information is used in SwitchKey to do the actual switching.

SwitchKeyGen(s1, (s2, A2)): add PowersOf2(s1) to the first column of A2,
call this matrix τs1→s2 and output it.

SwitchKey(τs1→s2 , c): output τs1→s2BitDecomp(c)T .

For proof of correctness see [3]. On the cost of a slightly larger error the key can
be switched to a shorter one and thus also the ciphertext is shortened. During the
key generation, instead of a single secret key, a sequence of public/private keypair
is generated, along with the additional information τ that allows to switch from key
sj ⊗ sj to the next key sj+1.

The other main technique used in the BGV scheme is modulus-switching, in order
to reduce the noise. If we have a ciphertext c mod q and want to transform this
into a new ciphertext c′ mod p for modulus p < q, we simple scale down: p

q · c and

11

round to the closest integer which we call c′. Then with the following lemma we see
that for a small key s the noise also scales down.

Lemma modulus switching [3]. For p, q odd moduli and c an integer vector,
define c′ as above, such that c = c′ mod 2. Then for any s with |[〈c, s〉]q| < q

2−
q
p l1(s)

we have the following:

[〈c, s〉]q = [〈c′, s〉]p mod 2 and |[〈c′, s〉]p| <
p

q
|[〈c, s〉]q|+ l1(s)

A proof is given in [3]. If we assume l1(s) is small enough and p and q are
chosen such that p is sufficiently smaller than q we see that the noise scales down
by approximately a factor of p

q . The ratio noise/modulus doesn’t change but the
following example will show how we can use this switching to our advantage, because
of the decreasing noise magnitude.
Consider a sequence of moduli (Qd, Qd−1, . . . , Q0) defined as Qd = xd+1, Qj−1 =
Qj/x for integers x and d. Assume we have 2 ciphertexts c1, c2 both with noise of
magnitude x and will compare the following 2 situations:

(a) Calculate c3 = c1c2, c4 = c3c3 and c5 = c4c4

(b) Do the same calculation but after every operation switch from modulus Qj to
Qj−1

For procedure (a) we get noise level x2 for c3 mod Qd, x
4 for c4 mod Qd and

x8 for c5 mod Qd.
With (b) we start with noise level x2 for c3 mod Qd and then scale down to noise
level x for c′3 mod (Qd/x). We continue with squaring c′3 and get ciphertext c4
mod (Qd/x) with noise level x2. Scale this down to noise level x for c′4 mod (Qd/x

2).
Finally the noise level for c5 = c′4c

′
4 mod (Qd/x

2) is x2 and after scaling down it
becomes x for c′5 mod (Qd/x

3).
Now compare the noise/modulus ratio of the final outcome of (a): x8/Qd and (b):
x/(Qd/x

3) = x4/Qd. This shows that by decreasing the magnitude of the noise, even
though the ratio after switching stays the same, we can reduce the pace in which
the noise ceiling is achieved and thus perform more multiplications. By using this
technique a leveled FHE scheme without bootstrapping can be achieved.

BGV scheme Putting all the pieces together, we can now define the BGV leveled
FHE scheme. According to the number of levels L the ladder of decreasing moduli
{qL, . . . , q0} will be constructed, with qL consisting of (L+ 1)µ bits and q0 µ bits.

• KeyGen: for j = L to 0 repeat: get keypair (sj , Aj) from the basic scheme.
Set s′j = BitDecomp(sj ⊗ sj) and compute τs′j→sj−1

with SwitchKeyGen

(omit this final step for j = 0).
Output : (sk, pk) = ((sL, . . . , s0), (AL, . . . , A0, τs′L→sL−1

, . . . , τs′1→s0))

• Enc(pk,m): as in basic scheme.

• Dec(C, sk): as in basic scheme.

• Eval:add(c, d): for c = (c0, c1), d = (d0, d1) add every entry.
Output : (c0 + d0, c1 + d1)

12

• Eval:mult(pk, c, d): set c3 to be the coefficient vector of Lc,d(x ⊗ x). Set
c′3 = Powersof2(c3) and for c′3 switch from the current modulus qj to the
smaller modulus qj−1 as described before. Finally apply SwitchKey on the
ciphertext using the correct τ from the public key pk, and output this result.

After addition also key and modulus switching could be done, by interpreting the
new ciphertext as encrypted under key s′j = sj ⊗ sj instead of under sj (which is
possible because s′j contains all the powers sj contains and more).

8.1 Multi-key BGV for O(log λ) number of participants

A very limited multi-key version for the BV scheme [4] was proposed in [9], which is
also applicable to the BGV scheme. The addition of ciphertexts c1, c2 will be defined
as (c1, c2), with new secret key (s1, s2). This works because decryption gives the
following:

〈(c1, c2), (s1, s2)〉 = 〈c1, s1〉+ 〈c2, s2〉

For the multi-key setting multiplication of 2 ciphertexts c1, c2 is defined as the
coefficient vector Lc,d(x⊗ y). For decryption set x = s1 and y = s2, in order words
the new key is s1⊗ s2. No key-switching will take place, which means the size of the
key and ciphertext grows. If we have 2 ciphertexts of length l1 and l2 the multiplied
ciphertext will have length l1 · l2. After N − 1 operations the size of the ciphertext
and decryption key can be at most 2N to allow log λ number of participants (keys).
This means one of the ciphertexts involved in multiplication must always be fresh
and thus have size 2. For addition there is no such restriction because the size of the
new ciphertext is always the addition of the sizes of the original ciphertexts. Thus
these small changes result in a scheme that can support O(log λ) keys.

Note that the new secret key is different after addition and multiplication. It is
possible to make this equal, on the cost of also requiring addition to also always have
at least one fresh ciphertext as entry. Define addition of c = (c0, c1), d = (d0, d1) as
(c0 + d0, d1, c1, 0) for new key s1 ⊗ s2 = (1, s2, s1, s1s2). Decryption gives:

〈(c0 + d0, d1, c1, 0), (1, s2, s1, s1s2)〉 = 〈c1, s1〉+ 〈c2, s2〉

Even though this is possible, it is still necessary to know which keys and in which
order were involved in which sequence of operations in order to assemble the correct
decryption key at the end. It is probably simplest to keep track of the form of the
new key and output this additionally to a new ciphertext.

References

[1] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with
low communication, computation and interaction via threshold fhe. 2011.

[2] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 97–106, Oct 2011.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. In Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference, pages 309–325. ACM,
2012.

13

[4] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In Advances in
Cryptology–CRYPTO 2011, pages 505–524. Springer, 2011.

[5] Michael Clear and Ciarán McGoldrick. Multi-identity and multi-key leveled fhe
from learning with errors. Technical report, Cryptology ePrint Archive, Report
2014/798, 2014. http://eprint. iacr. org.

[6] Craig Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC,
volume 9, pages 169–178, 2009.

[7] Shai Halevi and Victor Shoup. Helib - an implementation of homomorphic
encryption. https://github.com/shaih/HElib, 2013.

[8] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public
key cryptosystem. In Algorithmic number theory, pages 267–288. Springer, 1998.

[9] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 1219–1234. ACM, 2012.

[10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In In Proc. of EUROCRYPT, volume 6110 of
LNCS, pages 1–23. Springer, 2010.

[11] Pratyay Mukherjee and Daniel Wichs. Two round mutliparty computation via
multi-key fhe. Cryptology ePrint Archive, Report 2015/345, 2015. http://

eprint.iacr.org/.

[12] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM (JACM), 56(6):34, 2009.

[13] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems
over ideal lattices. In Advances in Cryptology–EUROCRYPT 2011, pages 27–47.
Springer, 2011.

14

https://github.com/shaih/HElib
http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Notation and preliminaries
	Fully Homomorphic Encryption
	Multi-key FHE
	Multi-key NTRU
	GSW FHE scheme
	Multi-key GSW
	The BGV scheme
	Multi-key BGV for O(log) number of participants

