
Software Defined Networks - Lab 1 LP1 2018

Lab 1: Introduction to SDN

General Instructions

In this series of labs, we will look at more advanced concepts in computer networks. We

will focus on Software Defined Networks (SDN), a new paradigm in network management

used nowadays in many large-scale deployments.

The successful completion of the labs requires your provision of a report for each lab. All

exercises in the instructions must be answered unless stated otherwise. Your answers should

be concise; you don’t need more than a few lines to answer each question. Questions that

needs to be answered are within boxes. Some exercises ask you to discuss with your lab

partner. You do not need to provide written answers to those questions.

You should complete the labs in groups of two persons — use the group you’ve created

in pingpong! You are of course encouraged to discuss with other groups, but all your

submissions must be the results of your own work. Once finished, upload your solution as

a PDF document to pingpong, and don’t forget to identify both members of the group.

Additional documents, such as source code, are available on pingpong.

It is assumed that you run the labs in the windows environment at Chalmers. We use a

virtual machine and VirtualBox to have access to a linux environment. You may use your

own computers, however we might not be able to provide support in that case.

If you haven’t done it yet, please watch the videos on SDN by David Mahler. A link is given

on pingpong.

Software Defined Networks

In conventional networks, the control and management are done locally by dedicated equip-

ment, such as routers and switches. Special algorithms, rules sets and specific hardware

(ASICs) are used to perform operations like packet routing and flow forwarding. Configura-

tion is device-centric, and topology changes, require human intervention or long transition

phases to come back to normal performance. The lack of flexibility can especially hinder

performances in high traffic networks such as Internet Service Providers backbones and

within datacenters.

In SDN, the control and data planes are decoupled. The forwarding logic can now be

programmed and is not integrated into the hardware as before. The control plane can

therefore fully observe the system and sends commands to the elements of the data plane

to configure them.

The control plane is composed of one or more controllers. A controller centrally defines the

behavior of the network, by computing forwarding rules on request. Switches compose most

of the elements of the data plane (along with routers) and are called learning switches.

EDA387 Computer Networks



Software Defined Networks - Lab 1 LP1 2018

Data Plane

Control Plane

Application plane

Switch

Controller

Application

Figure 1: Architecture of Software Defined Networks (SDN)

Setup

We will experiment with Software Defined Networks using Mininet1. Mininet is a network

emulator that can emulate switches, controllers and execute application code. It is available

for many Linux distributions. If you are already using Linux, you can install it directly,

although we recommend you to use a virtual machine (VM). Mininet makes updates to your

network interfaces to work and might affect your system.

We will use VirtualBox2 to run our virtual machine. VirtualBox is available for Windows,

Mac OS, and Linux. You can use another hypervisor of your choice, but be aware that we

will only support you for technical problems if you use VirtualBox.

A virtual machine has been prepared for you. Download it on pingpong or at http://www.

cse.chalmers.se/~poirotv/files/EDA387_sdn.ova.zip.

Start VirtualBox and use File → Import Appliance. Import the VM we gave you. It might

take a few minutes. Once it is done, you can start the VM. The credentials are given in the

following table:

User Password

sdn sdn

Table 1: Virtual Machine Credentials

Please refer to the appendix if you want to create your own virtual machine.

Testing your environment

You should now have a working environment. You can try to start a very simple network

with the command:

1http://mininet.org/
2https://www.virtualbox.org/wiki/Downloads

EDA387 Computer Networks

http://www.cse.chalmers.se/~poirotv/files/EDA387_sdn.ova.zip
http://www.cse.chalmers.se/~poirotv/files/EDA387_sdn.ova.zip
http://mininet.org/
https://www.virtualbox.org/wiki/Downloads


Software Defined Networks - Lab 1 LP1 2018

$ sudo mn

If everything is working, you should see something like this:

Figure 2: Starting Mininet

You can now interact with the newly created network using the Command Line Interface

(CLI). By default, Mininet creates a network composed of two host machines, h1 and h2,

and a switch in between, s1. A native controller c0 is also present. You will now try the

connectivity between the two hosts. Try the command pingall. You should see that no

packets are dropped. You can also try iperf to see the available bandwidth. Now, ping

from one specific host by using h1 ping h2. Finally, you can execute any bash commands

on a specific host by using xterm h1, where you replace h1 by the name of the host. Once

the new terminal is created, check the network interfaces with ifconfig. Once you are done,

use the command exit in the mininet CLI to stop the network.

Important!

Later on, Mininet might crash if you have errors in your scripts. Mininet won’t be able

to start anymore if that’s the case. To correct this behavior, use:

$ sudo mn -c

The -c option will clean Mininet’s internal files.

Part 1 - Network Discovery

Your environment is now ready and you should know how to interact with mininet. In this

first part, we will take a closer look at how OpenFlow creates the forwarding rule.

From a terminal, go to the floodlight directory (in the VM we gave you, floodlight is located

in ∼/labs/lab1/) and starts your controller with the command:

$ java −jar target/ floodlight . jar

It takes a few seconds to initialize the controller. Once it is ready (you should see Sending

LLDP packets out of all the enabled ports printed regularly), open a second terminal and

EDA387 Computer Networks



Software Defined Networks - Lab 1 LP1 2018

start the custom network topology we gave you, with the command:

$ sudo python topo lab1.py

If everything is working correctly, you should see that the controller registered a switch.

Question 1. In a conventional network, how can a switch know where to forward an

incoming packet? Please explain briefly the mechanism.

Question 2. Ping from one host to another. You should see that at the very beginning,

the RTT is significantly longer. Why? Stop pinging and wait for about 30 seconds,

and try again. Is the RTT now stable? Why?

Question 3. Plot the Round Trip Time (RTT) evolution over time. You need to

produce a plot with the runtime as the x-axis and the RTT time as the y-axis. You

need two curves, the RTT from h1 to h2, and the RTT from h2 to h1. One measurement

is not enough! You will need to restart both the network and the controller many times

and average over multiple measures.

Remember, if Mininet crashes or has any problem, use the command: $ sudo mn -c

Part 2 - Understanding OpenFlow

We saw just before that a switch must learn what action it should execute if it receives a

new packet. We will now take a closer look at how OpenFlow behave in the presence of

new flows.

Open a new terminal. Start Wireshark in superuser mode with the command sudo wireshark

(at startup, a message error should appear, this is normal). Start capturing incoming packets

on the loopback interface (lo). To only display the important packets, use openflow v4 as

the display filter (don’t forget to press enter to activate the filter). In the other terminals,

start the controller and the mininet topology as before. You should see new traffic appearing

in Wireshark.

Question 4. Explain the roles of the different packets you see. You can use http:

//flowgrammable.org/sdn/openflow/message-layer/ to understand them. We are

using Openflow 1.3. Do not describe all the packets, but only the most important ones!

Typically at the very beginning, once the switch contacts the controller, and when a

new packet is received.

We will now directly look into the memory of the switch. Open vSwitch, the software used

to run virtual switches, offers a command to look into the details of OpenFlow, ovs-ofctl. As

with Wireshark, you can see the communications between your switch and your controller.

Run

$ sudo ovs−ofctl snoop s1 −O OpenFlow13

You can also just check the switch’s state with

$ sudo ovs−ofctl show s1 −O OpenFlow13

EDA387 Computer Networks

http://flowgrammable.org/sdn/openflow/message-layer/
http://flowgrammable.org/sdn/openflow/message-layer/


Software Defined Networks - Lab 1 LP1 2018

Start pinging between the two hosts again. Now execute the command

$ sudo ovs−ofctl dump−flows s1 −O OpenFlow13

You should see three flows.

Question 5. Explain what each flow represents. Briefly explain what each field is

used for.

Question 6. Imagine now that a web server is running on h1. h2 starts an HTTP

request to h1. What will happen? Describe briefly the messages exchanged between

the switch and the controller, and the flows that would appear in the dump-flows result.

Note: you can try to emulate the behavior by opening a terminal on h2 and by using

the wget command and python -m SimpleHTTPServer.

Part 3 - Floodlight’s User Interface

We have seen how SDN work from the user perspective, and from the switch perspective.

We will now investigate how the controller views the network.

Floodlight has two interfaces we can use: an API, and a user interface. While both the

network and the controller are running, connect to http://localhost:8080/ui/index.

html.

You should see a dashboard appearing, with the switches and the hosts discovered by the

controller. Look at the topology and discuss with your partner the different elements. Go

then to the Switches tab, and select the switch. Start pinging again. In the Flows table, do

you see the same flows as before? Discuss with your partner.

Stop the network and the controller. We will now try a different topology. Start again the

controller, and start a new network with the command:

$ sudo mn −−topo=tree,depth=3 −−controller=remote,ip=0.0.0.0,port=6653

Question 7. How many switches are present? What kind of topology is it? How many

switches must be programmed to ping from h1 to h8?

We try again with a different topology, linear this time.

$ sudo mn −−topo=linear,n=1,k=7 −−controller=remote,ip=0.0.0.0,port=6653

Question 8. How does the first RTT evolve with the number of switches to cross?

Conclusion

In this lab, we looked at SDN as a new paradigm for network management. We introduced

the concepts of controllers and learning switches, and how OpenFlow allows us to program

EDA387 Computer Networks

http://localhost:8080/ui/index.html
http://localhost:8080/ui/index.html


Software Defined Networks - Lab 1 LP1 2018

our switches for flow forwarding. In the next lab, we will introduce you to the concept of

self-stabilizing control plane, and how we can tolerate failures in SDN.

For the next lab, please read Renaissance: Self-Stabilizing Distributed SDN Control

Plane (the paper is present on pingpong). We do not require you to fully understand

all the details of the paper or to be able to do the proofs. But pay close attention

to algorithm 1, you will work with an implementation of that system during the next

session.

Appendix

Creating your own VM

On your favorite OS, use the command:

$ sudo apt−get install git ant wireshark

Git is a version control system, we will use it to download and install a specific version of

Mininet. Ant is used to build Java applications, and Wireshark3 is a packet analyzer that

listens and records all communications in the network.

Once this is done, we will clone the Mininet repository from Github. Use the command:

$ git clone https://github.com/mininet/mininet.git mininet

This will create a directory and copy all the files. You then need to install Mininet. From

the same location, execute the following command:

$ ./mininet/utils/ install .sh −rmf −V 2.5.5 −3

By doing so, you are installing mininet and OpenFlow version 1.3.

Finally, we will use Floodlight4 as our OpenFlow controller. It is open-source and written in

Java. Go to http://www.projectfloodlight.org/download/ and download the version

1.2. To build the controller, just use

$ ant build

from within the floodlight repository.

Authors

This series of labs were created by Valentin Poirot <poirotv@chalmers.se> and Emelie

Ekenstedt <emeeke@student.chalmers.se>.

3https://www.wireshark.org/
4http://www.projectfloodlight.org/floodlight/

EDA387 Computer Networks

http://www.projectfloodlight.org/download/
https://www.wireshark.org/
http://www.projectfloodlight.org/floodlight/


Software Defined Networks - Lab 2 LP1 2018

Lab 2: Renaissance, a self-stabilizing control plane

General Instructions

In this lab and the next one, we will go more in-depth into SDN and we will investigate a self-

stabilizing control plane. We are giving you two controllers: a global controller and a local

controller. if you have not done it yet, please read the paper Renaissance: Self-Stabilizing

Distributed SDN Control Plane [2] present in pingpong.

The successful completion of the labs requires your provision of a report for each lab. All

exercises in the instructions must be answered unless stated otherwise. Your answers should

be concise; you don’t need more than a few lines to answer each question. Questions that

needs to be answered are within boxes. Some exercises ask you to discuss with your lab

partner. You do not need to provide written answers to those questions.

You should complete the labs in groups of two persons — use the group you’ve created

in pingpong! You are of course encouraged to discuss with other groups, but all your

submissions must be the results of your own work. Once finished, upload your solution as

a PDF document to pingpong, and don’t forget to identify both members of the group.

Additional documents, such as source code, are available on pingpong.

It is assumed that you run the labs in the windows environment at Chalmers. We use a

virtual machine and VirtualBox to have access to a linux environment. You may use your

own computers, however we might not be able to provide support in that case.

In-band and Out-of-Band Controllers

Deploying a software-defined network can take two forms: with an in-band control plane,

where both the control and data planes are using common physical links, or with an out-of-

band control plane, where dedicated physical links are used to connect the switches and the

controllers. The latter is more expensive, since an operator must now maintain two physical

networks, but is usually a more reliable solution. In in-band deployments, the control traffic

and the data traffic are competing for the bandwidth, and link failures can cause a loss of

connectivity for the control plane, which cannot operate the necessary forwarding to support

topology changes.

EDA387 Computer Networks



Software Defined Networks - Lab 2 LP1 2018

In-Band Control Plane Out-of-Band Control Plane

Figure 1: Architecture of Software Defined Networks (SDN)

In this lab, we will take a look at an in-band control plane, i.e. controllers are running on

hosts within the network, unlike the precedent lab where the controller was running outside

the network.

Renaissance, Local and Global Controllers

This time, you will have at your disposal a modified version of the Floodlight controller.

The Renaissance algorithm has been (partially) implemented, and you will have to complete

it. Your modification should be consistent with the algorithm, i.e. it should guarantee that

every switch will be managed by at least one non-faulty controller and eventually that every

non-faulty controller will reach every switch in the network, and this within a bounded delay

of communication with a bounded number of failures.

We give below a high-level description of the algorithm. For more details, please see the

paper in pingpong.

For simplicity, our implementation has split the task of discovering and computing paths in

the network from actually installing them at the switches by introducing a local and a global

controller. The global controller takes the role of making decisions of which rules should be

installed and keeps track of all switches in the network, while the local controller translates

the instructions that the switches receive from the global controller into instructions that

they understand.

We will focus for now on the global controller. You can assume that the local controller

implementation is correct, but feel free to check how it works.

Part 1 - Global Controller

In the floodlight global/src/main/java/net/floodlightcontroller/globalcontroller/ directory,

open GlobalController.java. You will find here the (partial) implementation of Renaissance.

EDA387 Computer Networks



Software Defined Networks - Lab 2 LP1 2018

Algorithm 1: Renaissance, high-level code description. [2]

1 Local state: responses ⊆ {m(j) : pj ∈ P} has the most recently received query replies;

2 currTag and prevTag are pi’s current and previous synchronization round, respectively;

3 Interface: myRules(G, j, tag): returns the rules of pi on switch pj given a topology G on

round tag;

4 do forever begin

5 Remove from responses any reply from unreachable senders or not from round prevTag

or currTag. Also, remove from responses any response from pi and then add a record

that includes the directly connected neighbors, Nc(i);

6 if responses includes a reply (with tag currTag) from every node that is reachable

according to the accumulated local topology, G, in responses then

7 Store currTag’s value in prevTag and get a new and unique tag for currTag;

8 foreach switch pj ∈ PS and pj’s most recently received reply do

9 if this is the start of a new synchronization round then

10 Remove from pj ’s configuration any manager pk or rule of pk that was not

discovered to be reachable during round prevTag;

11 Add pi in pj ’s managers (if it is not already included) and replace pi’s rules in pj
with myRules(G, j, tag);

12 foreach pj ∈ P that is reachable from pi according to the most recently received replies in

responses do

13 send to pj (with tag currTag) an update message (if pj ∈ PS is a switch) and query

pj ’s configuration;

14 upon query reply m from pj begin

15 if there is no space in responses for storing m then

16 perform a C-reset by including in responses only the direct neighborhood, Nc(i)

17 if m’s tag equals to currTag then include m in responses after removing the previous

response from pj ;

18 upon arrival of a query (with a syncTag) from pj begin

19 send to pj a response that includes the local topology, Nc(i), and syncTag

The goal is to familiarize yourself with the code. You should be able to understand

and explain what is the main function of each section. Discuss them with your partner.

You do not need to write your discussion in the report.

Attributes

Lines 70 to 94 contains the different attributes used throughout the algorithm, such as the

tags associated to the iteration (here called previousLabel and currentLabel), the set of all

nodes discovered so far (discoveredNodes), and the set of nodes to query for this iteration

(querySet).

Let us go a bit further down in the code.

EDA387 Computer Networks



Software Defined Networks - Lab 2 LP1 2018

a. Main Task

171 public void startUp(FloodlightModuleContext context) throws

FloodlightModuleException {

186 installRulesTask = new SingletonTask(ses, new Runnable() {

187 @Override

188 public void run() {

This is the main task of the algorithm. It is rescheduled and executed periodically. It

corresponds to the do forever loop of Alg. 1.

b. Network Queries

432 private void queryNetwork () {

The queryNetwork method implements the foreach loop, line 12, of Alg. 1.

c. Topology

524 private void createTopology(Response r, List<SwitchNode> sNodes)

The createTopology method allows the controller to build the topology only with the

directly connected neighbors of queried switches.

d. Paths

579 private String findPaths(SwitchNode dpid1, SwitchNode dpid2, List<

SwitchNode> pathNodes)

As you can see, the implementation of this function is missing.

To keep the network operational, the global controller must compute the port used for

forwarding packets from one switch to any other point of the network. findPaths construct

a tree and do a Breadth-First Search (BFS) to obtain the path.

The function returns the port to use on the switch dpid1 to contact the switch dpid2.

e. Receive

715 public net.floodlightcontroller.core.IListener.Command receive(IOFSwitch

ofSwitch, OFMessage message, FloodlightContext context)

The controller executes receive upon reception of a packet. If the message can be decoded

as a control packet, a switch statement calls the correct method. If the message is not for

the control plane, e.g. a ping, it must be forwarded to the correct destination.

EDA387 Computer Networks



Software Defined Networks - Lab 2 LP1 2018

Part 2 - Running Renaissance

Now, you’ll try to run the controllers in a network. Three different topologies are given in

pingpong:

• B4, Google’s wide-area SDN [3];

• Clos, a fat-tree data-center architecture [1]; and

• the backbone of Telstra, an Australian ISP [4].

To run a network, you must first start with the controller, like in the previous lab. Start

the local controller. As you can see, it takes a few seconds for the controller to boot. Now,

start the network with the command:

1 $ sudo python b4.py

The local controller should register all the new switches directly.

We now want to start the global controller in-band. To do so, you need to open a terminal

on one of the hosts (xterm h1). Navigate to the location of the global controller, and start

it.

The controller will now periodically query all the switches he is aware of. Because the

implementation is incomplete, the controller cannot discover the entire network.

Question 1. Implement the findPaths method.

You need to use a Breadth-First Search (BFS) from the first switch dpid1 towards the

second node dpid2 using the list pathNodes. Look at the implementation of SwitchNode

to find the relationship between switches. The method must return the port of dpid1

that connects towards dpid2, followed by a “/” character.

For example, if the path from switch A to switch B passes through the port 1 of switch

A, your implementation should return “1/”.

To compile your code, use the ant command from the floodlight directory.

Question 2. Show that your implementation is correct by demonstrating a few paths

on the B4 topology.

Note: The UI of floodlight has been deactivated. If you want, you can run the topology

with the floodlight from lab 1 to see the topology. You can also look at the mininet

script. To show that your path is correct, you can simply print the path once it is

created, and show with the topology that it is indeed the shortest path.

Part 3 - Evaluating Renaissance

Run once more a network topology and both controllers. If your implementation is correct,

your global controller should now be able to discover the entire network. With B4, you

should have a querySet with 12 elements.

EDA387 Computer Networks



Software Defined Networks - Lab 2 LP1 2018

We will now evaluate Renaissance. We choose two performance metrics: the discovery time,

i.e. the time required by a global controller to receive a reply from all nodes in the network,

and the number of messages exchanged.

Question 3. Evaluate the discovery time distribution of Renaissance for three network

topologies: B4, Clos, and Telstra. The average time is not enough. Use a violin plot

or a box plot. The experiment must be repeated enough times for significant results.

After each experiment, you need to completely stop both the network and the local

controller.

Remember, if Mininet did not quit correctly, use sudo mn -c.

Question 4. Evaluate the number of messages exchanged for three network topologies:

B4, Clos, and Telstra.

For an easier comparison between different topologies, divide the total number of mes-

sages by the number of nodes present in the network.

Again, use a violin plot.

Conclusion

In this lab, we studied Renaissance, a self-stabilizing distributed control plane. We looked

at the relationship between the algorithm and its implementation, and tested it on three

real-world topologies: B4, Clos, and Telstra. We then completed the implementation with

a BFS-tree building algorithm. Finally, we evaluated the performance of our modified

implementation.

In the next lab, we will go even further with Renaissance. We will implement backup

paths for improved fault-tolerance, allow hosts to ping each other and use multiple global

controllers concurrently.

References

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity

data center network architecture. In Proceedings of the ACM SIGCOMM 2008 Con-

ference on Data Communication, SIGCOMM ’08, pages 63–74, New York, NY, USA,

2008. ACM.

[2] Marco Canini, Iosif Salem, Liron Schiff, Elad Michael Schiller, and Stefan Schmid. Re-

naissance: Self-stabilizing distributed SDN control plane. arXiv, abs/1712.07697, 2017.

[3] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,

Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experience with a

globally-deployed software defined wan. In ACM SIGCOMM Computer Communication

Review, volume 43, pages 3–14. ACM, 2013.

[4] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring isp

topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, February 2004.

EDA387 Computer Networks



Software Defined Networks - Lab 2 LP1 2018

Authors

This series of labs were created by Valentin Poirot <poirotv@chalmers.se> and Emelie

Ekenstedt <emeeke@student.chalmers.se>.

EDA387 Computer Networks



Software Defined Networks - Lab 3 LP1 2018

Lab 3: Adding Fault Tolerance to Renaissance

General Instructions

In this lab, we will continue to work on Renaissance. This time, we will compute backup

paths to add fault tolerance to the system.

The successful completion of the labs requires your provision of a report for each lab. All

exercises in the instructions must be answered unless stated otherwise. Your answers should

be concise; you don’t need more than a few lines to answer each question. Questions that

needs to be answered are within boxes. Some exercises ask you to discuss with your lab

partner. You do not need to provide written answers to those questions.

You should complete the labs in groups of two persons — use the group you’ve created

in pingpong! You are of course encouraged to discuss with other groups, but all your

submissions must be the results of your own work. Once finished, upload your solution as

a PDF document to pingpong, and don’t forget to identify both members of the group.

Additional documents, such as source code, are available on pingpong.

It is assumed that you run the labs in the windows environment at Chalmers. We use a

virtual machine and VirtualBox to have access to a linux environment. You may use your

own computers, however we might not be able to provide support in that case.

Backup Paths and Fault Tolerance

Our current implementation is not very resilient against node failures. If a node fails, the

global controller must recompute the topology and install new rules on the switches. This

causes downtime for the system, during which communication is disrupted.

The simplest way to resolve node failures and add fault tolerance is to use redundancy.

If a failure happens along a path, a backup path can be used to forward traffic while the

problem is taken care of. We now speak of primary and secondary paths.

We introduce the findBackupPath method:

1 private String findBackupPath(SwitchNode dpid1, SwitchNode dpid2, List<

SwitchNode> excludeNodes, List<SwitchNode> sNodes)

To be correct, the secondary path must not use the same output port as the primary path,

i.e., avoid the next node along the path if it has failed. An excludeNodes list allows us to

keep tracks of already used nodes (i.e., the output port of the source node).

EDA387 Computer Networks



Software Defined Networks - Lab 3 LP1 2018

Question 1. Implement the findBackupPath method.

You need to use a Breadth-First Search (BFS) from the first switch dpid1 towards the

second node dpid2 using the list pathNodes. Your path cannot use any node present in

excludeNodes.

Like for findPaths in lab 2, the method must return the port to use followed by a “/”

character, e.g. “2/” if the switch dpid1 must use port 2 to contact dpid2 with the

backup path.

We now need to add this information to the rules. Luckily for us, the local controller’s

implementation is already able to handle backup paths. All we have to do is to concatenate

the result of findBackupPath to the String returned by findPaths.

Question 2. Update your findPaths method to include the result of findBackupPath.

If the primary path uses port 1 and the secondary path uses port 4, your function must

return “1/4/”.

Do not forget to add the node used by your primary path in the excludeNodes list

before computing the backup path!

Question 3. Show that your implementation is correct by demonstrating a few paths

on the B4 topology.

Your implementation should now install both a primary path and a secondary, backup path

from every switch to every other node in the network. The network should now be resilient

to link failures. We will now demonstrate that backup paths are indeed used when the

primary link is down.

In mininet, run the command:

1 link s1 s2 down

Check the B4 topology and choose one link to stop. If you want to stop more than one

link, remember that the network must remain connected, i.e. you shouldn’t cause network

segmentation.

Now, look at the output of the global controller. You should see the current synchronization

label. The label increases every time the global controller receives replies from its entire

query set. If one node is not reachable, the label should not increase.

Question 4. Are all switches reachable by the global controller, even in the presence

of link failures?

You should now be convinced that the global controller can still reach all nodes in the

network, even if one link is down.

But the implementation is still limited to at most one failed link per switch. We can make it

even more reliable by computing more backup path. We simply need to call findBackupPath

multiple times, until there is no additional path.

EDA387 Computer Networks



Software Defined Networks - Lab 3 LP1 2018

Question 5. Update your findBackupPath to find all existing backup paths.

One way to do this is to recursively call the method and add the used ports to the

excludeNodes list at each iteration. If no more paths are available, the method should

return an empty string.

If switch A can contact switch B through the ports 1, 3 and 7, then your findPaths

function should output “1/3/7/”.

Allowing Data Packets Through

To ensure self-stabilization, Renaissance considers all incoming packets as control packets

by default. The content is then matched to a set of well-defined set of possible control

messages. If no matches are found, the implementation discards the packet.

We will change this behavior to forward non-control packets. To simplify the problem, we

will assume that all packets on the data plane are using IPv4. Even more, all packets are

using ICMP, i.e. they are ping from one node to another.

Question 6. Upon reception of an ICMP message, forward the packet to its correct

destination.

You need to update the receive method of the global controller.

You can take inspiration from the way other TCP messages are handled. ICMP messages

can be tested if the protocol is equal to IpProtocol.ICMP.

To be able to test the ping, you need to run two global controllers in the network. Only a

host with a running global controller can ping other hosts.

Make a copy of the global controller directory. Open src/main/resources/floodlightde-

fault.properties. Modify the line:

58 net.floodlightcontroller.globalcontroller.GlobalController.controllerIP =

10.0.0.1

To the IP of the second host, e.g. 10.0.0.2.

Once both global controllers are running and they have discovered the entire network, you

should be able to ping from one host to another.

Adding Global Controllers

We ran two global controllers in the same network to enable pinging. Remember that, to

recover from any faulty configuration, a global controller must erase the memory of all the

switches it contacts. One might wonder how two controllers can work in the same network

without competing.

EDA387 Computer Networks



Software Defined Networks - Lab 3 LP1 2018

Question 7. What mechanism allows multiple controllers in the same network without

competition?

Question 8. How does the algorithm deal with failed controllers? Check the meaning

of manager in the implementation.

Conclusion

In this lab, we build upon our implementation of Renaissance. We added fault tolerance

with backup paths and enabled pinging through the network.

More generally, this series of labs introduced you to the concepts of software defined net-

works. You used OpenFlow, the most frequently used protocol for switch and flow pro-

gramming. You also interacted with Mininet, a powerful network emulator often used in

research on SDN.

Finally, you had the chance to experiment with an implementation of a self-stabilizing

algorithm. You saw how an implementation differs from pseudocode, how to evaluate a

system and how self-stabilization can be implemented.

Authors

This series of labs were created by Valentin Poirot <poirotv@chalmers.se> and Emelie

Ekenstedt <emeeke@student.chalmers.se>.

EDA387 Computer Networks


