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Evaluation Highlights

Comparison with the SoA
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low-powered + high-powered hardware

5 queries

Apache Flink

frequently less than 5% overhead over SoA
ANK-N allows to use parallel architectures

significantly better performance than on-
demand database techniques
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DRIVEN framework

Goal:
Jointly address gathering & analysis

challenge while leveraging the edge
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Najdataei, H., et al.
"Continuous and parallel lidar
point-cloud clustering." ICDCS

compression ratio = f(error)
38. IEEE, 2018.
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compression strength

gathering time ratio

clustering accuracy

compression ratio

» low-powered hardware
» heterogeneous data
» significant data reductions

» tuneable trade-offs, e.g. 90% accuracy, 1.6
times faster, 20 times smaller



Conclusions

- edge compression jointly leverages Stream and edge processing;

—> can deliver 90% data savings on LIiDAR at small accuracy loss

- Forward Provenance can efficiently aid in Data Selection to further
reduce data amounts

Further results from our work:

- Data Localization can be performed with near-baseline performance

- Novel communication schemes can reduce data volumes in
Distributed Machine Learning on the edge



