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Vehicular Cyber-Physical System (VCPS)
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Where is the data I look for?

Which parts do I need?

How do I distribute the analysis?
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Data Localization
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Data Localization
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Data Localization
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Data Localization
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Data Localization
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Contribution
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Balanced

Data Distribution
1

Fleet is dynamic
2

Immediate Careful

ask all, single 
round ask 1-by-1

• round-based
• estimate yes-

ratio to scale # 
of requests

• don’t wait for 
all answers
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Evaluation Highlights
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► low-powered hardware 

► two datasets
► up to 15 queries simultaneously

► 4x faster, 4x less workload than baselines
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Backward Provenance

Backward Provenance Stream

selected

Goals:
1. reduce data duplication
2. indicate once data is ready for 

further processing
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Forward Provenance

Ananke

Time

Inputs
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Forward 
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Goals:
1. reduce data duplication
2. indicate once data is ready for 

further processing
selected
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Evaluation Highlights
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► low-powered + high-powered hardware

► 5 queries
► Apache Flink
► frequently less than 5% overhead over SoA

► ANK-N allows to use parallel architectures

► significantly better performance than on-
demand database techniques

Comparison with the SoA

NP No provenance   GL GeneaLog (Backward Provenance)  Ananke

Smart Highways
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DRIVEN framework
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batch 
analysis:
result latency

data gathering:
slow + costly 
transmission

1 2Goal:
Jointly address gathering & analysis 
challenge while leveraging the edge 

lossy streaming PLA

neighbors?

streaming clustering

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑖𝑜 = 𝑓(𝑒𝑟𝑟𝑜𝑟)

Najdataei, H., et al. 
"Continuous and parallel lidar 
point-cloud clustering." ICDCS 
38. IEEE, 2018.

DRIVEN
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Evaluation Highlights

15

compression ratio

clustering accuracy

gathering time ratio

maximum approximation error on 𝝆 [m]

► low-powered hardware 

► heterogeneous data

► significant data reductions
► tuneable trade-offs, e.g. 90% accuracy, 1.6 

times faster, 20 times smaller

compression strength

DRIVEN
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Conclusions
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à Data Localization can be performed with near-baseline performance

à Forward Provenance can efficiently aid in Data Selection to further 
reduce data amounts

à Novel communication schemes can reduce data volumes in 
Distributed Machine Learning on the edge

à edge compression jointly leverages Stream and edge processing;

à can deliver 90% data savings on LiDAR at small accuracy loss

Further results from our work:


