

Research Summary: Enhancing Localization, Selection, and Processing of Data in Vehicular Cyber-Physical Systems

Bastian Havers-Zulka (Volvo Car Corporation & Chalmers University) Vincenzo Gulisano (Chalmers University) Marina Papatriantafilou (Chalmers University)

Vehicular Cyber-Physical System (VCPS)

Vehicular Cyber-Physical System (VCPS)

Where is the data I look for?

Which parts do I need?

How do I distribute the analysis?

data data localization gathering

7

Contribution

Evaluation Highlights

- low-powered hardware
- two datasets
- up to 15 queries simultaneously
- 4x faster, 4x less workload than baselines

Ananke **Backward Provenance** Goals: reduce data duplication 1. 2. indicate once data is ready for further processing selected Query₁ Query₂ Input Stream(s) Output Stream(s) Query_N **Backward Provenance Stream**

Ananke

Forward Provenance

Goals:

- 1. reduce data duplication
- 2. indicate once data is ready for further processing

Evaluation Highlights

low-powered + high-powered hardware

- 5 queries
- Apache Flink
- frequently less than 5% overhead over SoA
- ANK-N allows to use parallel architectures
- significantly better performance than ondemand database techniques

DRIVEN

DRIVEN framework

1

data gathering: slow + costly transmission

Goal:

Jointly address gathering & analysis challenge while leveraging the edge

2 batch analysis: result latenc

DRIVEN

Evaluation Highlights

- Iow-powered hardware
- heterogeneous data
- significant data reductions
- tuneable trade-offs, e.g. 90% accuracy, 1.6 times faster, 20 times smaller

Conclusions

 \rightarrow edge compression jointly leverages Stream and edge processing;

- \rightarrow can deliver 90% data savings on LiDAR at small accuracy loss
- → Forward Provenance can efficiently aid in Data Selection to further reduce data amounts

Further results from our work:

- → Data Localization can be performed with near-baseline performance
- → Novel communication schemes can reduce data volumes in Distributed Machine Learning on the edge