A Combinatorial Multi-Armed Bandit Approach for Stochastic Facility Allocation Problem

Abdalaziz Sawwan (Presenter) and Jie Wu.

Department of Computer and Information Sciences,

Temple University.

- Introduction
- Problem Formulation
- Solution of the Problem
- Simulation
- Future Work

- Introduction
- Problem Formulation
- Solution of the Problem
- Simulation
- Future Work

Introduction

• Background of Facility Allocation:

- Strategic placement of resources in various fields: urban planning, telecommunications, computing infrastructure.
- Focus on optimizing spatial resources in dynamic, uncertain conditions.

Problem Complexity:

- Decision-making is iterative, aiming to maximize total reward over multiple rounds.
- Challenges in environments with variable demands, like emergency services and telecommunications.
- Combinatorial nature: multiple facilities are decided upon simultaneously.

- Introduction
- Problem Formulation
- Solution of the Problem
- Simulation
- Future Work

Problem Formulation

Model Setup:

- **Grid Layout**: 1×1 square divided into *N* cells (perfect square).
- **Population Density**: Each cell i has an unknown fixed density D(i).

• Facility Allocation:

- Round-by-Round Decision: Allocate K facilities at cell centers per round, represented as $F(t) = \{f_1(t), ..., f_K(t)\}$.
- **Unique Positioning**: No two facilities share the same location in the same round.

• Voronoi Partitioning:

- Determines which facility point each cell is closest to, using either Manhattan or Euclidean distance.
- Cells are assigned to the nearest facility, breaking ties randomly.

Problem Formulation

Attraction Probability:

- Probability $p_{i,j}(t)$ of attracting an individual from cell i to facility j inversely proportional to their distance.
- Modeled as: $\frac{\alpha}{d(f_j(t),i)+1}$, where α is a tunable factor and d is the chosen distance metric.

• Expected Population Attraction:

• Each round models population attraction as a binomial random variable:

$$X_i(t) \sim Binomial(D(i), p_{i,j}(t)).$$

• Expected attracted population from cell *i* to facility $j: E[X_i(t)] = \sum_{j \leq K} D(i) p_{i,j}(t)$.

• Regret Minimization Objective:

- Regret Definition: Difference between optimal and actual attracted population over rounds.
- Optimization Goal: Minimize cumulative regret by selecting F(t) to maximize total expected population attraction.

Problem Formulation

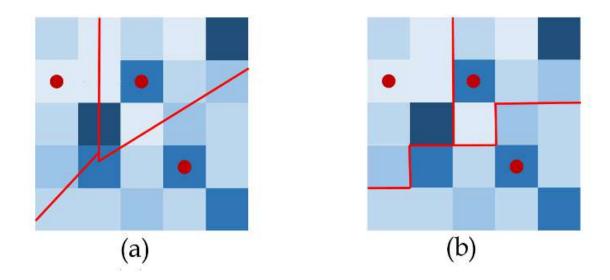


Figure 1: An illustration showing the effect of the choice of distance metric on the Voronoi partition $V_j(t) \ \forall j \leq K$. The background color represents the value of the underlying population density of the cells D(i): (a) Euclidean distance metric; (b) Manhattan distance metric.

- Introduction
- Problem Formulation
- Solution of the Problem
- Simulation
- Future Work

Solution of the Problem

Algorithm 1 Geometric-UCB for facility allocation

Input: $D(i) \forall i \leq N, K$, distance metric.

Output: **F**(*t*) $\forall t = 1, 2, ..., T$.

Initialization: $X_i(0) \leftarrow 0 \,\forall i \leq N, \, \hat{\mu}(\mathbf{F}, t) \leftarrow 0 \,\text{and}\, N_{\mathbf{F}}(t) \leftarrow 0 \,\forall \mathbf{F}$

1: **for** t = 1, 2, ..., T **do**

2: for all possible allocations F do

3: Evaluate $UCB(\mathbf{F}, t)$ from Equation 4.

4: Choose F(t) based on Equation 5.

5: Perform the Voronoi partition based on F(t) and the chosen distance metric to get $V_j(t)$ for all $j \le K$.

6: Observe $X_i(t) \ \forall i \leq N$ and update $\hat{\mu}(\mathbf{F}, t)$ and $N_{\mathbf{F}}(t) \ \forall \mathbf{F}$ based on Equations 6-7.

7: **return** $F(1), F(2), \ldots, F(T)$.

$$UCB(\mathbf{F}, t) = \hat{\mu}(\mathbf{F}, t) + \sqrt{2 \log t / N_{\mathbf{F}}(t)}, \tag{4}$$

$$\mathbf{F}(t) = \arg\max_{\mathbf{F}} \left(\hat{\mu}(\mathbf{F}, t) + \sqrt{2 \log t / N_{\mathbf{F}}(t)} \right). \tag{5}$$

$$\hat{\mu}(\mathbf{F}, t+1) = \frac{N_{\mathbf{F}}(t)\hat{\mu}(\mathbf{F}, t) + \sum_{j=1}^{K} \sum_{i \in V_{j}(t)} X_{i}(t)}{N_{\mathbf{F}}(t) + 1}.$$
 (6)

$$N_{\rm F}(t+1) = \begin{cases} N_{\rm F}(t) + 1 & \text{if } \mathbf{F}(t) = \mathbf{F} \\ N_{\rm F}(t) & \text{otherwise} \end{cases}$$
 (7)

Theorem 5.1. Algorithm 1 guarantees a regret bound of:

$$R(T) \le 2\sqrt{2N\log T} \left(1 + 1/\sqrt{N}\right).$$

Solution of the Problem

• Algorithm Choice:

- Utilizes a Combinatorial Upper Confidence Bound (C-UCB) algorithm.
- Balances exploration (gaining new information) and exploitation (using known high-reward locations).

• Algorithm Overview:

- **Expected Attraction**: Computes expected total population attraction for different facility sets, F(t).
- UCB Formula: Incorporates both past data and an exploration bonus to guide allocation decisions.

• Algorithm Execution:

- **Initialization**: Sets initial conditions for all variables and parameters.
- **Iteration Process**: Evaluates and chooses facility sets based on their upper confidence bounds across all rounds.
- **Voronoi Partitioning**: Performed each round to determine the influence area of each facility based on chosen distance metric.
- Observation and Update: Records results from the current allocation to refine future decisions.

Solution of the Problem

• Key Features of Geometric-UCB:

- Uses real-time data to dynamically adjust decisions.
- Aims to maximize total attraction over time, minimizing regret.
- Suitable for scenarios where the number of facilities (K) is small, making complex computations tractable.

Computational Complexity:

• **Time Complexity**: Dominated by evaluating all potential allocations $(O(T \times N^K))$ and computing Voronoi partitions each round $(O(T \times K^2))$.

- Introduction
- Problem Formulation
- Solution of the Problem
- Simulation
- Future Work

• Experimental Settings Overview:

- **Facility Numbers**: K = 3 or 4 to manage computational feasibility.
- **Probability Parameter**: α varied from 0.1 to 1.0 to test different attraction levels.
- **Distance Metrics**: Both Manhattan and Euclidean used to examine adaptability.

Data Used for Simulation:

- **Real-World Traces**: Population density data from the United States, discretized into 36 or 49 cell grids.
- **Synthesized Data**: Generated datasets with population densities drawn from a normal distribution to test across varied scenarios.

• Algorithm Comparison:

- **Epsilon-Greedy Algorithm**: Examines balance between exploration and exploitation, with $\epsilon = 0.25$.
- **Thompson Sampling**: Assesses performance against a probabilistic method that uses Bayesian inference for decision-making.
- Random Selection: Provides a baseline by randomly choosing facility locations, ignoring prior data.

• Goals of Comparative Evaluation:

- Test the Geometric-UCB's efficiency against established algorithms.
- Identify strengths and potential areas for improvement in different settings.
- Validate robustness and adaptability of Geometric-UCB under varied experimental conditions.

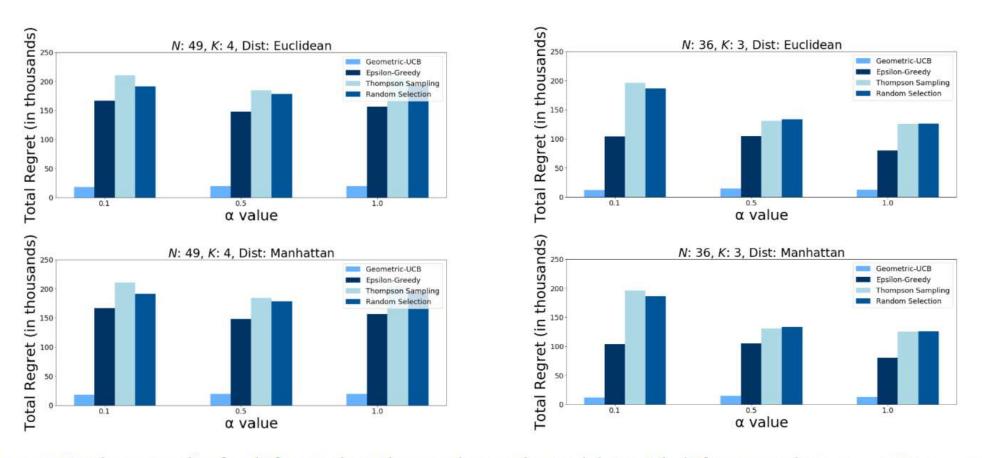


Figure 3: Total regret value for different algorithms under synthesized data with different α values. $\mu_D = 5000, \sigma_D = 100.$

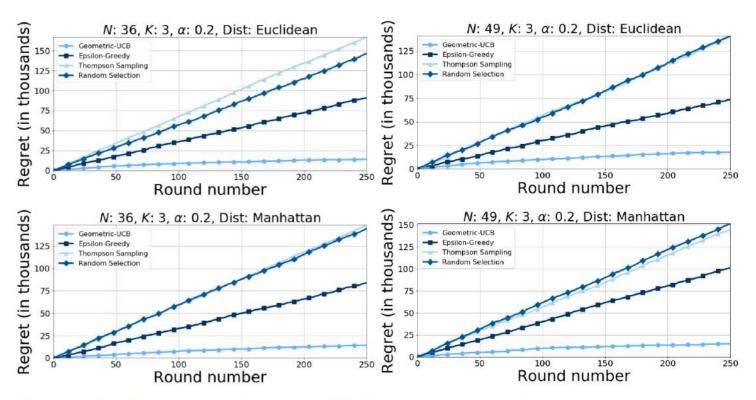


Figure 4: Regret value for different algorithms under synthesized data with different N values. $\mu_D = 5000$, $\sigma_D = 100$.

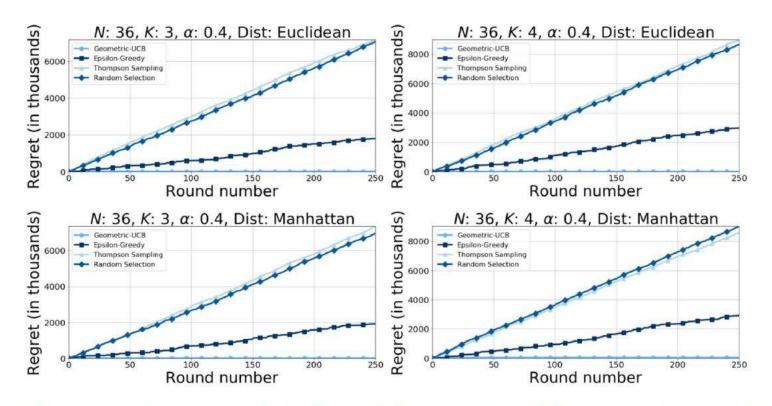


Figure 5: Regret value for different algorithms under realworld traces with different *K* values.

- Introduction
- Problem Formulation
- Solution of the Problem
- Simulation
- Future Work

Future Work

• Expanding Dimensions:

- Explore the applicability of the Geometric-UCB algorithm in higher-dimensional spaces.
- Test the scalability and computational feasibility as dimensions increase.

New Performance Measures:

- Investigate other metrics beyond regret to assess the algorithm's effectiveness.
- Consider factors like computational efficiency, convergence speed, and robustness under varying conditions.

• Refinement of Probability Parameter (α):

- Develop adaptive strategies for tuning α dynamically based on observed attraction levels.
- Enhance the algorithm's responsiveness to changes in population density and attraction patterns.

Conclusion

Key Contributions:

- Introduced a novel Geometric-UCB algorithm tailored for the stochastic facility allocation problem.
- First application of CMAB techniques in 2-dimensional spaces with uncertain population distributions.

• Algorithm Advantages:

- Efficiently balances exploration and exploitation to maximize total population attraction.
- Demonstrated adaptability with both Manhattan and Euclidean distances in facility allocation.

• Validation through Simulations:

- Tested on both real-world data and synthesized datasets to verify effectiveness and efficiency.
- Outperformed traditional algorithms like Epsilon-Greedy and Thompson Sampling in various setups.

Thank you!

Abdalaziz Sawwan (Presenter) and Jie Wu.

Department of Computer and Information Sciences,

Temple University.

