
Causal Mutual Byzantine Broadcast

Research project
Samuel Pénault, Guillaume Poignant,

Florian Monsion, Mathieu Féry

Supervisors
Vincent Kowalski, Matthieu Perrin,

Achour Mostéfaoui

Byblos Seminar — Mai 19, 2022



Introduction – Implementation of a shared register

Computing model

▶ Closed system: n processes

▶ Message passing: processes send and receive messages

▶ Reliable channels: no message loss

▶ Asynchronous processes and channels

▶ Up to t < n
3 Byzantine processes

Issue

How to implement a
single-writer/multiple-reader

linearizable read/append register?

Causal Mutual Byzantine Broadcast 1 / 12



Introduction – State of the art

Dedicated algorithms

JPDC 2016 D. Imbs, S. Rajsbaum, M. Raynal, J. Stainer.
Read/write shared memory abstraction on top of asynchronous

Byzantine message-passing systems.

TCS 2017 A. Mostéfaoui, M. Petrolia, M. Raynal, C. Jard.
Atomic Read/Write Memory in Signature-Free Byzantine

Asynchronous Message-Passing Systems.

Dedicated abstraction: SCD-broadcast

TCS 2021 D. Imbs, A. Mostéfaoui, M. Perrin, M. Raynal.
Set-constrained delivery broadcast: A communication abstraction

for read/write implementable distributed objects.

OPODIS 2019 A. Auvolat, M. Raynal, F. Taïani.
Byzantine-tolerant set-constrained delivery broadcast

Causal Mutual Byzantine Broadcast 2 / 12



Introduction – State of the art

Dedicated algorithms

JPDC 2016 D. Imbs, S. Rajsbaum, M. Raynal, J. Stainer.
Read/write shared memory abstraction on top of asynchronous

Byzantine message-passing systems.

TCS 2017 A. Mostéfaoui, M. Petrolia, M. Raynal, C. Jard.
Atomic Read/Write Memory in Signature-Free Byzantine

Asynchronous Message-Passing Systems.

Dedicated abstraction: SCD-broadcast

TCS 2021 D. Imbs, A. Mostéfaoui, M. Perrin, M. Raynal.
Set-constrained delivery broadcast: A communication abstraction

for read/write implementable distributed objects.

OPODIS 2019 A. Auvolat, M. Raynal, F. Taïani.
Byzantine-tolerant set-constrained delivery broadcast

Causal Mutual Byzantine Broadcast 2 / 12



Introduction – Is SCD-broadcast optimal?

Complexity issues

▶ SCD-broadcast requires O(n2) messages
▶ Not only for reliability

▶ SCD-broadcast imposes a convoy effect

Problem statement

▶ SCD-broadcast is the abstraction for snapshot objects

What is the abstraction for Read/Append registers?

Contributions

▶ CMB-broadcast: a new broadcast abstraction

▶ An algorithm for a read/append register

▶ An algorithm for CMB-broadcast

Causal Mutual Byzantine Broadcast 3 / 12



Specification – Reliable broadcast

w

p

q

append(a)

read() → [a]

read() → [a]

a

a

Reliable broadcast

Validity: No message creation

Integrity: No message duplication

Local progress: Correct processes deliver their own messages

Reliability: Correct processes deliver the same set of messages

Causal Mutual Byzantine Broadcast 4 / 12



Specification – Reliable broadcast

w

p

q

byz()

read() → [a]

read() → [b]

a

a b

Reliable broadcast

Validity: No message creation

Integrity: No message duplication

Local progress: Correct processes deliver their own messages

Reliability: Correct processes deliver the same set of messages

Causal Mutual Byzantine Broadcast 4 / 12



Specification – Reliable broadcast

w

p

q

byz()

read() → [a]

read() → [a]

a

ba

Reliable broadcast

Validity: No message creation

Integrity: No message duplication

Local progress: Correct processes deliver their own messages

Reliability: Correct processes deliver the same set of messages

Causal Mutual Byzantine Broadcast 4 / 12



Specification – Mutual ordering

w

p

q

append(a)

read() → ∅

Mutual ordering

▶ Correct processes cannot mutually ignore each other

▶ Forbidden pattern:

p

q

Causal Mutual Byzantine Broadcast 5 / 12



Specification – Mutual ordering

w

p

q

append(a)

read() → ∅

Mutual ordering

▶ Correct processes cannot mutually ignore each other

▶ Forbidden pattern:

p

q

Causal Mutual Byzantine Broadcast 5 / 12



Specification – Mutual ordering

w

p

q

append(a)

read() → [a]

Mutual ordering

▶ Correct processes cannot mutually ignore each other

▶ Forbidden pattern:

p

q

Causal Mutual Byzantine Broadcast 5 / 12



Specification – Causal ordering

w

p

q

append(a)

read() → ∅

read() → [a]

Causal ordering

▶ Causality it transmitted by correct processes

Causal Mutual Byzantine Broadcast 6 / 12



Specification – Causal ordering

w

p

q

append(a)

read() → [a]

read() → [a]

a

Causal ordering

▶ Causality it transmitted by correct processes

Causal Mutual Byzantine Broadcast 6 / 12



Specification – Causal ordering

w

p

q

append(a)

read() → [b]

read() → [a]

b

Causal ordering

▶ Causality it transmitted by correct processes

Causal Mutual Byzantine Broadcast 6 / 12



Specification – Causal ordering

w

p

q

append(a)

read() → [a]

read() → [a]

Causal ordering

▶ Causality it transmitted by correct processes

Causal Mutual Byzantine Broadcast 6 / 12



Specification – FIFO ordering

w

p

q

append(a) append(b)

read() → [b, a]

read() → [a, b]

FIFO ordering

▶ Correct processes agree on a per-process order

Causal Mutual Byzantine Broadcast 7 / 12



Specification – FIFO ordering

w

p

q

append(a) append(b)

read() → [a, b]

read() → [a, b]

FIFO ordering

▶ Correct processes agree on a per-process order

Causal Mutual Byzantine Broadcast 7 / 12



Specification – Causal-Mutual-Byzantine-broadcast

Complete specification

Validity No message creation

Integrity No message duplication

Local progress Correct processes deliver their own messages

Reliability Correct processes deliver the same set of messages

Mutual ordering Correct processes cannot ignore each other

Causal ordering Causality it transmitted by correct processes

Fifo ordering Correct processes agree on a per-process order

Implementation

How to implement CMB-broadcast in a closed message-passing
system with t < n

3 Byzantine processes?

Causal Mutual Byzantine Broadcast 8 / 12



Implementation – Reminder on Bracha’s algorithm

p0

p1

p2

p3

reliable−
broadcast(m)

Init(m)

Properties

▶ After Echo: at most one message supported by correct processes

▶ After Ready : all correct processes support the same messages

Causal Mutual Byzantine Broadcast 9 / 12



Implementation – Reminder on Bracha’s algorithm

p0

p1

p2

p3

reliable−
broadcast(m)

Im

Im′

Properties

▶ After Echo: at most one message supported by correct processes

▶ After Ready : all correct processes support the same messages

Causal Mutual Byzantine Broadcast 9 / 12



Implementation – Reminder on Bracha’s algorithm

p0

p1

p2

p3

reliable−
broadcast(m)

Im

Im′

Echo(m)

Echo(m′)

Properties

▶ After Echo: at most one message supported by correct processes

▶ After Ready : all correct processes support the same messages

Causal Mutual Byzantine Broadcast 9 / 12



Implementation – Reminder on Bracha’s algorithm

p0

p1

p2

p3

reliable−
broadcast(m)

Im

Im′

Em

Em′

Ready(m)

Ready(m′)

Properties

▶ After Echo: at most one message supported by correct processes

▶ After Ready : all correct processes support the same messages

Causal Mutual Byzantine Broadcast 9 / 12



Implementation – Reminder on Bracha’s algorithm

p0

p1

p2

p3

reliable−
broadcast(m)

Im

Im′

Em

Em′

Rm

Rm′

deliver(m)

deliver(m)

deliver(m)

Properties

▶ After Echo: at most one message supported by correct processes

▶ After Ready : all correct processes support the same messages

Causal Mutual Byzantine Broadcast 9 / 12



Implementation – Mutual Ordering

p0

p1

p2

p3

m

m′

∄ two disjoint majorities of correct processes
(
> n+t

2

)
▶ If a majority sends Ack(m) before Ack(m′)

▶ p3 delivers m before m′

▶ If a majority sends Ack(m′) before Ack(m)
▶ p0 delivers m′ before m

▶ If there is no clear majority
▶ p0 delivers m′ before m and p3 delivers m before m′

Causal Mutual Byzantine Broadcast 10 / 12



Implementation – Mutual Ordering

p0

p1

p2

p3

m

m′

Ack(m) Ack(m′)

∄ two disjoint majorities of correct processes
(
> n+t

2

)
▶ If a majority sends Ack(m) before Ack(m′)

▶ p3 delivers m before m′

▶ If a majority sends Ack(m′) before Ack(m)
▶ p0 delivers m′ before m

▶ If there is no clear majority
▶ p0 delivers m′ before m and p3 delivers m before m′

Causal Mutual Byzantine Broadcast 10 / 12



Implementation – Mutual Ordering

p0

p1

p2

p3

m

m′

Ack(m) Ack(m′)

•
m′

•
m′

•m

•m •m
′

•m

•m

•m
′

∄ two disjoint majorities of correct processes
(
> n+t

2

)
▶ If a majority sends Ack(m) before Ack(m′)

▶ p3 delivers m before m′

▶ If a majority sends Ack(m′) before Ack(m)
▶ p0 delivers m′ before m

▶ If there is no clear majority
▶ p0 delivers m′ before m and p3 delivers m before m′

Causal Mutual Byzantine Broadcast 10 / 12



Implementation – Causal and FIFO Ordering

FIFO Ordering

▶ It suffises to have FIFO point-to-point channels

Causal ordering

▶ We can reuse the Ack messages for a FIFO+forward strategy

p0

p1

p2

p3

m Ack(m)
Init(m′)

•m

•m

•m

Causal Mutual Byzantine Broadcast 11 / 12



Implementation – Causal and FIFO Ordering

FIFO Ordering

▶ It suffises to have FIFO point-to-point channels

Causal ordering

▶ We can reuse the Ack messages for a FIFO+forward strategy

p0

p1

p2

p3

m Ack(m)
Init(m′)

•m

•m

•m

Causal Mutual Byzantine Broadcast 11 / 12



Conclusion – Causal Mutual Byzantine Broadcast

Contributions

▶ Specification of CMB-broadcast

▶ From CMB-broadcast to read/append register

▶ Implementation for CMB-broadcast

▶ Proof of the algorithm

Perspectives

▶ Implementation of CMB-broadcast from read/append registers

▶ Implementation of CMB-broadcast in open systems?

▶ Relationship between SCD and CMB?

Causal Mutual Byzantine Broadcast 12 / 12


	Introduction
	Specification
	Implementation
	Conclusion

