
OCC Pinning: Optimizing Concurrent
Computations through Thread Pinning

Brahmaiah Gandham Dr. Praveen Alapati

Department of Computer Science and Engineering

Ecole Centrale School of Engineering

Mahindra University



Outline

▶ Introduction

▶ OCC Pinning

▶ Experimental Evaluation

▶ Conclusion

▶ References

Brahmaiah Gandham OCC Pinning June 19, 2024 1 / 25



Uniform Memory Access (UMA) Architecture

CPU 1 CPU 2 CPU 3 CPU 4

L3

L1 L1 L1 L1

L2 L2 L2 L2

Memory

UMA

Brahmaiah Gandham OCC Pinning June 19, 2024 2 / 25



Non-uniform Memory Access (NUMA) Architecture

CPU 1 CPU 2 CPU 3 CPU 4

L3

L1 L1 L1 L1

L2 L2 L2 L2

CPU 5 CPU 6 CPU 7 CPU 8

L3

L1 L1 L1 L1

L2 L2 L2 L2

Memory Memory

NUMA Node 0 NUMA Node 1

Brahmaiah Gandham OCC Pinning June 19, 2024 3 / 25



32 - Core Server

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 4 / 25



Execution of a Sequential Program

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1
CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 5 / 25



Execution of a Sequential Program

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 6 / 25



Execution of a Sequential Program

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

T1

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 7 / 25



Execution of a Concurrent Program

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

T2

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

T3
CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

T4

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 8 / 25



Execution of a Concurrent Program

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

T2

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

T4
CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1

T3

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 9 / 25



NUMA Pinning

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1T2

T3 T4T5 T8

T7 T6

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

Brahmaiah Gandham OCC Pinning June 19, 2024 10 / 25



NUMA Pinning

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1T2

T3 T4T5 T8

T7 T6

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

T9

Brahmaiah Gandham OCC Pinning June 19, 2024 11 / 25



Introduction

Problems with NUMA pinning

▶ Increases average memory access time.

▶ Increases inter-NUMA communication overhead.

▶ Increases contention resources.

▶ Load imbalance.

Brahmaiah Gandham OCC Pinning June 19, 2024 12 / 25



Introduction

Problems with NUMA pinning

▶ Increases average memory access time.

▶ Increases inter-NUMA communication overhead.

▶ Increases contention resources.

▶ Load imbalance.

Brahmaiah Gandham OCC Pinning June 19, 2024 12 / 25



Introduction

Problems with NUMA pinning

▶ Increases average memory access time.

▶ Increases inter-NUMA communication overhead.

▶ Increases contention resources.

▶ Load imbalance.

Brahmaiah Gandham OCC Pinning June 19, 2024 12 / 25



Introduction

Problems with NUMA pinning

▶ Increases average memory access time.

▶ Increases inter-NUMA communication overhead.

▶ Increases contention resources.

▶ Load imbalance.

Brahmaiah Gandham OCC Pinning June 19, 2024 12 / 25



OCC Pinning

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1 T3T2 T4

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 13 / 25



OCC Pinning

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1 T2 T3 T4

T5 T8T7T6

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

Brahmaiah Gandham OCC Pinning June 19, 2024 14 / 25



OCC Pinning

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1 T2 T3 T4

T5 T8T7T6

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

T9 T10 T11 T12

Brahmaiah Gandham OCC Pinning June 19, 2024 15 / 25



Algorithm of OCC Pinning

Algorithm 1 OCC Pinning

1: pid← getCurrentProcessID();

2: threadsInfo← getThreadsInfoForPID(pid);

3: spids← extractSPIDs(threadsInfo);

4: for spid in spids do

5: cpuIndex← getAndIncrement() % totalCPUs;

6: setThreadAffinity(spid, cpuIndex);

7: end for

Brahmaiah Gandham OCC Pinning June 19, 2024 16 / 25



OCC Pinning

▶ Thread pinning assigns specific software threads to dedicated
processor cores.

▶ It prevents thread thrashing (threads constantly switch cores) and
boosts efficiency.

▶ Leverage operating system mechanisms to identify processes and
threads.

▶ Leverage the taskset command to enforce desired thread-to-core
mappings.

▶ This effectively overrides the dynamic behavior of the operating
system scheduler.

Brahmaiah Gandham OCC Pinning June 19, 2024 17 / 25



OCC Pinning

▶ Thread pinning assigns specific software threads to dedicated
processor cores.

▶ It prevents thread thrashing (threads constantly switch cores) and
boosts efficiency.

▶ Leverage operating system mechanisms to identify processes and
threads.

▶ Leverage the taskset command to enforce desired thread-to-core
mappings.

▶ This effectively overrides the dynamic behavior of the operating
system scheduler.

Brahmaiah Gandham OCC Pinning June 19, 2024 17 / 25



OCC Pinning

▶ Thread pinning assigns specific software threads to dedicated
processor cores.

▶ It prevents thread thrashing (threads constantly switch cores) and
boosts efficiency.

▶ Leverage operating system mechanisms to identify processes and
threads.

▶ Leverage the taskset command to enforce desired thread-to-core
mappings.

▶ This effectively overrides the dynamic behavior of the operating
system scheduler.

Brahmaiah Gandham OCC Pinning June 19, 2024 17 / 25



OCC Pinning

▶ Thread pinning assigns specific software threads to dedicated
processor cores.

▶ It prevents thread thrashing (threads constantly switch cores) and
boosts efficiency.

▶ Leverage operating system mechanisms to identify processes and
threads.

▶ Leverage the taskset command to enforce desired thread-to-core
mappings.

▶ This effectively overrides the dynamic behavior of the operating
system scheduler.

Brahmaiah Gandham OCC Pinning June 19, 2024 17 / 25



OCC Pinning

▶ Thread pinning assigns specific software threads to dedicated
processor cores.

▶ It prevents thread thrashing (threads constantly switch cores) and
boosts efficiency.

▶ Leverage operating system mechanisms to identify processes and
threads.

▶ Leverage the taskset command to enforce desired thread-to-core
mappings.

▶ This effectively overrides the dynamic behavior of the operating
system scheduler.

Brahmaiah Gandham OCC Pinning June 19, 2024 17 / 25



Experimental Evaluation

Experimental System

Hardware:

▶ Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz

▶ RAM: 512GB RAM

▶ CPU(s): 96

▶ Thread(s) per core: 2

▶ Core(s) per socket: 24

▶ Socket(s): 2

▶ L1d cache: 32K, L1i cache: 32K, L2 cache: 1MB, L3 cache: 36MB

Software:

▶ Ubuntu 22.04 LTS

▶ JDK Runtime version 19.02

Brahmaiah Gandham OCC Pinning June 19, 2024 18 / 25



Experimental Evaluation

Pinning configurations:

▶ OCC Pinning

▶ NUMA Pinning

▶ No Pinning

Concurrent Data structures:

▶ Contention Adapting Binary Search Tree [1]

▶ Striped Hash Set [2]

▶ Lazy List [3]

Workload representation:

▶ xC-yI-zD

Brahmaiah Gandham OCC Pinning June 19, 2024 19 / 25



Experimental Evaluation

Workloads

▶ Read-only workload (100C-0I-0D).

▶ Read dominant workload (70C-20I-10D).

▶ Balanced workload (50C-25I-25D).

▶ Update dominant workload (30C-35I-35D).

▶ Update only workload (0C-50I-50D).

Brahmaiah Gandham OCC Pinning June 19, 2024 20 / 25



Experimental Evaluation

Workloads

▶ Read-only workload (100C-0I-0D).

▶ Read dominant workload (70C-20I-10D).

▶ Balanced workload (50C-25I-25D).

▶ Update dominant workload (30C-35I-35D).

▶ Update only workload (0C-50I-50D).

Brahmaiah Gandham OCC Pinning June 19, 2024 20 / 25



Experimental Evaluation

Workloads

▶ Read-only workload (100C-0I-0D).

▶ Read dominant workload (70C-20I-10D).

▶ Balanced workload (50C-25I-25D).

▶ Update dominant workload (30C-35I-35D).

▶ Update only workload (0C-50I-50D).

Brahmaiah Gandham OCC Pinning June 19, 2024 20 / 25



Experimental Evaluation

Workloads

▶ Read-only workload (100C-0I-0D).

▶ Read dominant workload (70C-20I-10D).

▶ Balanced workload (50C-25I-25D).

▶ Update dominant workload (30C-35I-35D).

▶ Update only workload (0C-50I-50D).

Brahmaiah Gandham OCC Pinning June 19, 2024 20 / 25



Experimental Evaluation

Workloads

▶ Read-only workload (100C-0I-0D).

▶ Read dominant workload (70C-20I-10D).

▶ Balanced workload (50C-25I-25D).

▶ Update dominant workload (30C-35I-35D).

▶ Update only workload (0C-50I-50D).

Brahmaiah Gandham OCC Pinning June 19, 2024 20 / 25



Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32 64 96 128 160 192

T
h
ro

u
g

h
p
u
t 

(M
O

P
S

)

OCC Pinning NUMA Pinning No Pinning

CA Tree
(200K)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 4 8 16 32 64 96 128 160 192

Striped Hash Set
(2000)

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64 96 128 160 192

Lazy List
(2000)

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32 64 96 128 160 192

T
h
ro

u
g

h
p
u
t 

(M
O

P
S

)

Number of Threads

CA Tree
(2M)

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 96 128 160 192

Number of Threads

Striped Hash Set
(20000)

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16 32 64 96 128 160 192

Number of Threads

Lazy List
(20000)

Figure 1: Average throughput of a CA tree, striped hash set, and lazy list
implementations.

Brahmaiah Gandham OCC Pinning June 19, 2024 21 / 25



Experimental Evaluation

CA Tree
▶ OCC pinning achieved an average speedup of 1.10× compared to

both NUMA pinning and No pinning.

Striped Hash Set

▶ OCC pinning achieved an average speedup of 1.25× compared to
both NUMA pinning and No pinning.

Lazy List

▶ OCC pinning achieved an average speedup of 1.26× compared to
both NUMA pinning and No pinning.

Brahmaiah Gandham OCC Pinning June 19, 2024 22 / 25



Conclusion

▶ In the NUMA world, the OCC pinning strategy helps for efficient
mapping between software threads and hardware threads.

▶ This approach achieves better resource utilization, minimizes
interference, and cache misses, and outperforms traditional scheduling
policies.

▶ It optimizes performance by utilizing OS integration, granular affinity
binding, and distributing threads across CPU cores.

▶ It paves the way for realizing the full potential of concurrent
applications.

▶ Future work includes the potential extension of this strategy to GPUs.

Brahmaiah Gandham OCC Pinning June 19, 2024 23 / 25



Conclusion

▶ In the NUMA world, the OCC pinning strategy helps for efficient
mapping between software threads and hardware threads.

▶ This approach achieves better resource utilization, minimizes
interference, and cache misses, and outperforms traditional scheduling
policies.

▶ It optimizes performance by utilizing OS integration, granular affinity
binding, and distributing threads across CPU cores.

▶ It paves the way for realizing the full potential of concurrent
applications.

▶ Future work includes the potential extension of this strategy to GPUs.

Brahmaiah Gandham OCC Pinning June 19, 2024 23 / 25



Conclusion

▶ In the NUMA world, the OCC pinning strategy helps for efficient
mapping between software threads and hardware threads.

▶ This approach achieves better resource utilization, minimizes
interference, and cache misses, and outperforms traditional scheduling
policies.

▶ It optimizes performance by utilizing OS integration, granular affinity
binding, and distributing threads across CPU cores.

▶ It paves the way for realizing the full potential of concurrent
applications.

▶ Future work includes the potential extension of this strategy to GPUs.

Brahmaiah Gandham OCC Pinning June 19, 2024 23 / 25



Conclusion

▶ In the NUMA world, the OCC pinning strategy helps for efficient
mapping between software threads and hardware threads.

▶ This approach achieves better resource utilization, minimizes
interference, and cache misses, and outperforms traditional scheduling
policies.

▶ It optimizes performance by utilizing OS integration, granular affinity
binding, and distributing threads across CPU cores.

▶ It paves the way for realizing the full potential of concurrent
applications.

▶ Future work includes the potential extension of this strategy to GPUs.

Brahmaiah Gandham OCC Pinning June 19, 2024 23 / 25



Conclusion

▶ In the NUMA world, the OCC pinning strategy helps for efficient
mapping between software threads and hardware threads.

▶ This approach achieves better resource utilization, minimizes
interference, and cache misses, and outperforms traditional scheduling
policies.

▶ It optimizes performance by utilizing OS integration, granular affinity
binding, and distributing threads across CPU cores.

▶ It paves the way for realizing the full potential of concurrent
applications.

▶ Future work includes the potential extension of this strategy to GPUs.

Brahmaiah Gandham OCC Pinning June 19, 2024 23 / 25



References

Konstantinos Sagonas and Kjell Winblad. 2015. Contention Adapting
Search Trees. In 2015 14th International Symposium on Parallel and
Distributed Computing. 215–224.

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William
N. Scherer, and Nir Shavit. 2006. A Lazy Concurrent List-Based Set
Algorithm.

Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor
Programming, Revised Reprint (1st ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

The Linux Foundation. 2022. numactl(8) - Linux man page.
https://man7.org/linux/man-pages/man8/numactl.8.html.

Brahmaiah Gandham OCC Pinning June 19, 2024 24 / 25



Thank You ⌣

Brahmaiah Gandham OCC Pinning June 19, 2024 25 / 25


