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Non-uniform Memory Access (NUMA) Architecture
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32 - Core Server
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Execution of a Sequential Program

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1
CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 5 / 25



Execution of a Sequential Program

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

T1

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 6 / 25



Execution of a Sequential Program

CPU 9 CPU 10 CPU 11 CPU 12

CPU 13 CPU 14 CPU 15 CPU 16

CPU 17 CPU 18 CPU 19 CPU 20

CPU 21 CPU 22 CPU 23 CPU 24

CPU 25 CPU 26 CPU 27 CPU 28

CPU 29 CPU 30 CPU 30 CPU 32

T1

CPU 1 CPU 2 CPU 3 CPU 4

CPU 5 CPU 6 CPU 7 CPU 8

NUMA Node 0 NUMA Node 1

NUMA Node 2 NUMA Node 3

Brahmaiah Gandham OCC Pinning June 19, 2024 7 / 25



Execution of a Concurrent Program
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Execution of a Concurrent Program
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NUMA Pinning
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NUMA Pinning
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Introduction

Problems with NUMA pinning

▶ Increases average memory access time.

▶ Increases inter-NUMA communication overhead.

▶ Increases contention resources.

▶ Load imbalance.
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OCC Pinning
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OCC Pinning
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OCC Pinning
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Algorithm of OCC Pinning

Algorithm 1 OCC Pinning

1: pid← getCurrentProcessID();

2: threadsInfo← getThreadsInfoForPID(pid);

3: spids← extractSPIDs(threadsInfo);

4: for spid in spids do

5: cpuIndex← getAndIncrement() % totalCPUs;

6: setThreadAffinity(spid, cpuIndex);

7: end for
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OCC Pinning

▶ Thread pinning assigns specific software threads to dedicated
processor cores.

▶ It prevents thread thrashing (threads constantly switch cores) and
boosts efficiency.

▶ Leverage operating system mechanisms to identify processes and
threads.

▶ Leverage the taskset command to enforce desired thread-to-core
mappings.

▶ This effectively overrides the dynamic behavior of the operating
system scheduler.
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Experimental Evaluation

Experimental System

Hardware:

▶ Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz

▶ RAM: 512GB RAM

▶ CPU(s): 96

▶ Thread(s) per core: 2

▶ Core(s) per socket: 24

▶ Socket(s): 2

▶ L1d cache: 32K, L1i cache: 32K, L2 cache: 1MB, L3 cache: 36MB

Software:

▶ Ubuntu 22.04 LTS

▶ JDK Runtime version 19.02
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Experimental Evaluation

Pinning configurations:

▶ OCC Pinning

▶ NUMA Pinning

▶ No Pinning

Concurrent Data structures:

▶ Contention Adapting Binary Search Tree [1]

▶ Striped Hash Set [2]

▶ Lazy List [3]

Workload representation:

▶ xC-yI-zD
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Experimental Evaluation

Workloads

▶ Read-only workload (100C-0I-0D).

▶ Read dominant workload (70C-20I-10D).

▶ Balanced workload (50C-25I-25D).

▶ Update dominant workload (30C-35I-35D).

▶ Update only workload (0C-50I-50D).
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Experimental Evaluation
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Figure 1: Average throughput of a CA tree, striped hash set, and lazy list
implementations.
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Experimental Evaluation

CA Tree
▶ OCC pinning achieved an average speedup of 1.10× compared to

both NUMA pinning and No pinning.

Striped Hash Set

▶ OCC pinning achieved an average speedup of 1.25× compared to
both NUMA pinning and No pinning.

Lazy List

▶ OCC pinning achieved an average speedup of 1.26× compared to
both NUMA pinning and No pinning.
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Conclusion

▶ In the NUMA world, the OCC pinning strategy helps for efficient
mapping between software threads and hardware threads.

▶ This approach achieves better resource utilization, minimizes
interference, and cache misses, and outperforms traditional scheduling
policies.

▶ It optimizes performance by utilizing OS integration, granular affinity
binding, and distributing threads across CPU cores.

▶ It paves the way for realizing the full potential of concurrent
applications.

▶ Future work includes the potential extension of this strategy to GPUs.
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