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Background
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● Persistent memory keeps data in memory after the power is lost.
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Background
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● Correctness Properties
○ Linearizability

○ Durable Linearizability

○ Buffered Durable Linearizability
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Model
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● Threads: The system consists of asynchronous entities, threads, that communicate using shared objects

● Invocation Event: It marks the initiation of an operation.

● Response Event: It signifies the conclusion of an operation.

● Crash Event: It signifies an unexpected system failure.

● History: A history models the system's execution as a finite sequence of invocation, response, and crash events.
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Linearizability Example

PAGE  6

R1.write(0)

R1.read(): 0

R1.write(1)

R1.read(): 0

T1

T2

Linearizable

R1.write(0)

R1.read(): 0

R1.write(1)

R1.read(): 0

T1

T2

Non-Linearizable
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● Linearizability was originally defined by Herlihy and Wing [2]



● Durable Linearizability, as defined by Izraelevitz et al. [1]

○ all threads fail together

○ on recovery, new threads are created  (no immediate reuse of thread IDs)

● A history is durably linearizable if it is well-formed (i.e., the projection onto each thread is sequential) and removing 

all crash events yields a linearizable history.

Durable Linearizability (Definition)
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Durable Linearizability Example (Cont.)
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R1.write(0)

R1.read(): 0

R1.write(1)
T1

T2
R1.read(): 1

Crash

R1.write(0)

R1.read(): 0

R1.write(1)
T1

T2
R1.read(): 0

Crash
Both are Durably 

Linearizable



Buffered Durable Linearizability
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● Buffered Durable Linearizability, as defined by Izraelevitz et al. [1]

● It is a more relaxed concept than durable linearizability.

● It allows for the removal of operations that have already been completed.

● The modified history should be a “consistent cut” of the original history.
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Consistent Cut Example
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R1.write(0)

R1.read(0)

T1

T2

C1 C2 C3

C4: Inconsistent Cut
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Buffered Durable Linearizability Example

R1.write(0)

R1.read(): 0

R1.write(1)
T1

T2
R1.read(): 0R1.read(): 1

Crash

R1.write(2)

Consistent Cut



Background
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● Memory-Mapped Files

● Montage is a buffered durable platform.
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Memory-Mapped Files
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Thread 2Thread 1

Registers

Stack

Registers

Stack

Memory-mapped fileMemory

Process 1

File on file system



Cache Line Write-Back (CLWB)
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Thread 1

Registers

Memory-mapped fileMemory

Process 1

File on PMEM

Cache

Write to cache

Cache line write-back ● Implicit
○ Automated by the processor's cache controller

● Explicit
○ Specific software components issue cache write-backs



Montage
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● Montage is a general-purpose system for building buffered durably linearizable persistent data structures.

● Montage only persists changes to semantically essential payloads.

● Montage divides time into “epochs” to keep track of operations.

● Periodic persistence: changes applied in one epoch persist all together at the end of an epoch.

● On a crash, Montage’s recovery routine reverts state to an epoch boundary.
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Epoch e - 2 Epoch e - 1 Epoch e Epoch e - 2UNKNOWN Epoch

W(k, v1) W(k, v2) W(k, v3) CRASH Recovery R(k): v1

Restart

It will discard all the changes in 
epochs e and e−1.

It explicitly writes back all the 
changes in epoch e − 2

Time

Periodic Persistence in Montage
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Snapshotting
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● A point-in-time copy of the state of a system.

● Create recoverable views of the memory-mapped files in the presence 

of persistent memory failures.
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● Montage is vulnerable to the persistent memory failure due to hardware failures.

● Persistent memory challenges are not exclusive to Montage.

● Snapshotting provides a recoverable system state at specific moments.

● The process captures and stores the system's current state as a snapshot.

● After a failure, system can use these snapshots to recover from a persistent memory failure.

Snapshotting
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Stop-the-World Snapshotting
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● This method requires pausing all changes to the memory-mapped files while 

snapshotting is in progress.
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Ralloc
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● A persistent memory allocator designed for applications that use large amounts of persistent memory like Montage [4].

Necessary information 
needed for recovery

This region specifies each 
superblock's block size

Each superblock is a fixed size 
and contains blocks

48 KB

64 GB

64 MB
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First Two Snapshots

PAGE  21Snapshotting Mechanisms for Persistent Memory-Mapped Files



Stop-the-World Snapshotting
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Online Snapshotting
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● Online snapshotting is a technique used to create a point-in-time copy of 

data while it is still in use.
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Online Snapshotting on Montage
There are four scenarios for an application thread trying to change a chunk:

1. There is no snapshotting is going on

2. There is an ongoing snapshotting process:

■ The chunk has not been copied yet.

■ The chunk has already been copied.

■ The chunk is being copied.
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Online Snapshotting
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(UN)CHANGED CHANGED CHANGED

1. Shared lock on this chunk
2. Mark
3. Release the lock

CHANGED CHANGED

Primary Chunks

Application

1. No snapshotting is going on

Primary Chunks

CHANGED
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Online Snapshotting
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CHANGED

1. Shared lock on this chunk
2. Mark it
3. Release the lock

COPIED CHANGED CHANGED

Primary Chunks

Backup Chunks
Application

COPIED

 2.    The chunk has not been copied yet

Primary Chunks

COPIED CHANGED
(UN)CHANGED
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Online Snapshotting
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CHANGED CHANGED

1. Shared lock on this chunk
2. Change both primary and backup chunks
3. Release the lock

UPDATED CHANGED CHANGED

Primary Chunks

Backup Chunks
Application

UPDATED

 3.    The chunk has already been copied.

Primary Chunks

COPIED CHANGED
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Online Snapshotting

PAGE  28

COPYING CHANGED

1. Tries to acquire the shared lock
2. It will fail and try again after it has 

been copied.

Application

 4.    The chunk is being copied.

Primary Chunks

COPIED
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Double-Checked Locking (DCL)
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● Minimize lock overhead by ensuring lock acquisition only when necessary.
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Experimental Evaluation
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● A detailed examination of snapshotting algorithms is conducted, in different 

experimental conditions.
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Working Environment 
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● Testing Environment:

○ Server Specs: Four Intel(R) Xeon(R) Gold 6230 processors 

with Optane persistent memory on Ubuntu 20.04.6 LTS.

● Benchmarked Data Structure: Hashmap.

● Experimental Setup:

○ Hashmap: 0.5 million elements into 1 million hash buckets.

● Thread Management:

○ Up to 20 threads: One socket, no hyperthreading.

○ 20-40 threads: Single socket with hyperthreading.

○ 40-80 threads: Two sockets.

○ 80-90 threads: Oversubscription on the first socket.

● Evaluation Details:

○ Averages over five trials

○ Standard deviation: Less than 2% of the mean
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Throughput Analysis
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Hashmap with 0% get, 50% insert, and 50% remove
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Conclusion
● Enhanced Fault Tolerance: We've significantly improved Montage's fault tolerance through rigorous strategies.

● Buffered-Durable Consistency: Introduced a robust definition to ensure snapshot correctness.

● Snapshotting Mechanisms: Developed both stop-the-world and online methods.

● Double-Checked Locking: Minimized reader lock acquisitions, enhancing system performance.

● Consistency and Recovery: Our strategies ensure data consistency, durability, and efficient system recovery.
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Future Work
● Online Snapshotting for Large Allocations: Address the current limitation in our online snapshotting mechanism for larger 

allocations.

● PMEM vs. SSD: Understand the performance differences between SSD-based and PMEM-based backup media.

● NUMA-Aware Algorithms: Optimize snapshotting algorithms to be aware of Non-Uniform Memory Access (NUMA) configurations for 

performance improvements.

● Buffered Durably Linearizable Verifier: Design and implement a verifier to efficiently test program correctness on buffered durably 

linearizable platforms.
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Related Work
● Pronto, Developed by Memaripour et al. [6]

○ Pronto uses a volatile memory allocator for snapshot creation and keeps them on PMEM.

○ However, it lacks backup protection against persistent memory hardware failures.

● In-Memory Databases

○ Copy-on-Update [7]: This method uses an extra data structure to create a duplicate of the primary dataset and a 

bit array to log the row update statuses.

○ Ping-Pong [8]: This technique involves two versions of the data; one is used for updates and the other for noting 

the progressive snapshot.
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Double-Checked Locking 
● Purpose: Minimize lock overhead by ensuring lock acquisition only when necessary.

● Application in Snapshotting:

○ Snapshotting is infrequent compared to the duration of an epoch.

○ Improves efficiency by avoiding redundant reader locks during non-snapshotting periods.
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Double-Checked Locking 
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