
Mohammad Moridi and Wojciech Golab

moridi@uwaterloo.ca, wgolab@uwaterloo.ca

Snapshotting Mechanisms
for

Persistent Memory-Mapped Files

mailto:moridi@uwaterloo.ca
mailto:wgolab@uwaterloo.ca

Hard Disk Drive (HDD)

Solid State Drive (SSD)

Persistent Memory (PMEM)

DRAM

Cache

Latency

Volatile

Non-Volatile

Persistent Memory in Memory Hierarchy

PAGE 2Snapshotting Mechanisms for Persistent Memory-Mapped Files

Background

PAGE 3

● Persistent memory keeps data in memory after the power is lost.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Background

PAGE 4

● Correctness Properties
○ Linearizability

○ Durable Linearizability

○ Buffered Durable Linearizability

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Model

PAGE 5

● Threads: The system consists of asynchronous entities, threads, that communicate using shared objects

● Invocation Event: It marks the initiation of an operation.

● Response Event: It signifies the conclusion of an operation.

● Crash Event: It signifies an unexpected system failure.

● History: A history models the system's execution as a finite sequence of invocation, response, and crash events.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Linearizability Example

PAGE 6

R1.write(0)

R1.read(): 0

R1.write(1)

R1.read(): 0

T1

T2

Linearizable

R1.write(0)

R1.read(): 0

R1.write(1)

R1.read(): 0

T1

T2

Non-Linearizable

Snapshotting Mechanisms for Persistent Memory-Mapped Files

● Linearizability was originally defined by Herlihy and Wing [2]

● Durable Linearizability, as defined by Izraelevitz et al. [1]

○ all threads fail together

○ on recovery, new threads are created (no immediate reuse of thread IDs)

● A history is durably linearizable if it is well-formed (i.e., the projection onto each thread is sequential) and removing

all crash events yields a linearizable history.

Durable Linearizability (Definition)

PAGE 7Snapshotting Mechanisms for Persistent Memory-Mapped Files

Durable Linearizability Example (Cont.)

PAGE 8Snapshotting Mechanisms for Persistent Memory-Mapped Files

R1.write(0)

R1.read(): 0

R1.write(1)
T1

T2
R1.read(): 1

Crash

R1.write(0)

R1.read(): 0

R1.write(1)
T1

T2
R1.read(): 0

Crash
Both are Durably

Linearizable

Buffered Durable Linearizability

PAGE 9

● Buffered Durable Linearizability, as defined by Izraelevitz et al. [1]

● It is a more relaxed concept than durable linearizability.

● It allows for the removal of operations that have already been completed.

● The modified history should be a “consistent cut” of the original history.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Consistent Cut Example

PAGE 10Snapshotting Mechanisms for Persistent Memory-Mapped Files

R1.write(0)

R1.read(0)

T1

T2

C1 C2 C3

C4: Inconsistent Cut

PAGE 11Snapshotting Mechanisms for Persistent Memory-Mapped Files

Buffered Durable Linearizability Example

R1.write(0)

R1.read(): 0

R1.write(1)
T1

T2
R1.read(): 0R1.read(): 1

Crash

R1.write(2)

Consistent Cut

Background

PAGE 12

● Memory-Mapped Files

● Montage is a buffered durable platform.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Memory-Mapped Files

PAGE 13Snapshotting Mechanisms for Persistent Memory-Mapped Files

Thread 2Thread 1

Registers

Stack

Registers

Stack

Memory-mapped fileMemory

Process 1

File on file system

Cache Line Write-Back (CLWB)

PAGE 14Snapshotting Mechanisms for Persistent Memory-Mapped Files

Thread 1

Registers

Memory-mapped fileMemory

Process 1

File on PMEM

Cache

Write to cache

Cache line write-back ● Implicit
○ Automated by the processor's cache controller

● Explicit
○ Specific software components issue cache write-backs

Montage

PAGE 15

● Montage is a general-purpose system for building buffered durably linearizable persistent data structures.

● Montage only persists changes to semantically essential payloads.

● Montage divides time into “epochs” to keep track of operations.

● Periodic persistence: changes applied in one epoch persist all together at the end of an epoch.

● On a crash, Montage’s recovery routine reverts state to an epoch boundary.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

PAGE 16

Epoch e - 2 Epoch e - 1 Epoch e Epoch e - 2UNKNOWN Epoch

W(k, v1) W(k, v2) W(k, v3) CRASH Recovery R(k): v1

Restart

It will discard all the changes in
epochs e and e−1.

It explicitly writes back all the
changes in epoch e − 2

Time

Periodic Persistence in Montage

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Snapshotting

PAGE 17

● A point-in-time copy of the state of a system.

● Create recoverable views of the memory-mapped files in the presence

of persistent memory failures.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

● Montage is vulnerable to the persistent memory failure due to hardware failures.

● Persistent memory challenges are not exclusive to Montage.

● Snapshotting provides a recoverable system state at specific moments.

● The process captures and stores the system's current state as a snapshot.

● After a failure, system can use these snapshots to recover from a persistent memory failure.

Snapshotting

PAGE 18Snapshotting Mechanisms for Persistent Memory-Mapped Files

Stop-the-World Snapshotting

PAGE 19

● This method requires pausing all changes to the memory-mapped files while

snapshotting is in progress.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Ralloc

PAGE 20

● A persistent memory allocator designed for applications that use large amounts of persistent memory like Montage [4].

Necessary information
needed for recovery

This region specifies each
superblock's block size

Each superblock is a fixed size
and contains blocks

48 KB

64 GB

64 MB

Snapshotting Mechanisms for Persistent Memory-Mapped Files

First Two Snapshots

PAGE 21Snapshotting Mechanisms for Persistent Memory-Mapped Files

Stop-the-World Snapshotting

PAGE 22Snapshotting Mechanisms for Persistent Memory-Mapped Files

Online Snapshotting

PAGE 23

● Online snapshotting is a technique used to create a point-in-time copy of

data while it is still in use.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Online Snapshotting on Montage
There are four scenarios for an application thread trying to change a chunk:

1. There is no snapshotting is going on

2. There is an ongoing snapshotting process:

■ The chunk has not been copied yet.

■ The chunk has already been copied.

■ The chunk is being copied.

PAGE 24Snapshotting Mechanisms for Persistent Memory-Mapped Files

Online Snapshotting

PAGE 25

(UN)CHANGED CHANGED CHANGED

1. Shared lock on this chunk
2. Mark
3. Release the lock

CHANGED CHANGED

Primary Chunks

Application

1. No snapshotting is going on

Primary Chunks

CHANGED

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Online Snapshotting

PAGE 26

CHANGED

1. Shared lock on this chunk
2. Mark it
3. Release the lock

COPIED CHANGED CHANGED

Primary Chunks

Backup Chunks
Application

COPIED

 2. The chunk has not been copied yet

Primary Chunks

COPIED CHANGED
(UN)CHANGED

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Online Snapshotting

PAGE 27

CHANGED CHANGED

1. Shared lock on this chunk
2. Change both primary and backup chunks
3. Release the lock

UPDATED CHANGED CHANGED

Primary Chunks

Backup Chunks
Application

UPDATED

 3. The chunk has already been copied.

Primary Chunks

COPIED CHANGED

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Online Snapshotting

PAGE 28

COPYING CHANGED

1. Tries to acquire the shared lock
2. It will fail and try again after it has

been copied.

Application

 4. The chunk is being copied.

Primary Chunks

COPIED

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Double-Checked Locking (DCL)

PAGE 29

● Minimize lock overhead by ensuring lock acquisition only when necessary.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Experimental Evaluation

PAGE 30

● A detailed examination of snapshotting algorithms is conducted, in different

experimental conditions.

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Working Environment

PAGE 31

● Testing Environment:

○ Server Specs: Four Intel(R) Xeon(R) Gold 6230 processors

with Optane persistent memory on Ubuntu 20.04.6 LTS.

● Benchmarked Data Structure: Hashmap.

● Experimental Setup:

○ Hashmap: 0.5 million elements into 1 million hash buckets.

● Thread Management:

○ Up to 20 threads: One socket, no hyperthreading.

○ 20-40 threads: Single socket with hyperthreading.

○ 40-80 threads: Two sockets.

○ 80-90 threads: Oversubscription on the first socket.

● Evaluation Details:

○ Averages over five trials

○ Standard deviation: Less than 2% of the mean

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Throughput Analysis

PAGE 32

Hashmap with 0% get, 50% insert, and 50% remove

Snapshotting Mechanisms for Persistent Memory-Mapped Files

Conclusion
● Enhanced Fault Tolerance: We've significantly improved Montage's fault tolerance through rigorous strategies.

● Buffered-Durable Consistency: Introduced a robust definition to ensure snapshot correctness.

● Snapshotting Mechanisms: Developed both stop-the-world and online methods.

● Double-Checked Locking: Minimized reader lock acquisitions, enhancing system performance.

● Consistency and Recovery: Our strategies ensure data consistency, durability, and efficient system recovery.

PAGE 33Snapshotting Mechanisms for Persistent Memory-Mapped Files

Future Work
● Online Snapshotting for Large Allocations: Address the current limitation in our online snapshotting mechanism for larger

allocations.

● PMEM vs. SSD: Understand the performance differences between SSD-based and PMEM-based backup media.

● NUMA-Aware Algorithms: Optimize snapshotting algorithms to be aware of Non-Uniform Memory Access (NUMA) configurations for

performance improvements.

● Buffered Durably Linearizable Verifier: Design and implement a verifier to efficiently test program correctness on buffered durably

linearizable platforms.

PAGE 34Snapshotting Mechanisms for Persistent Memory-Mapped Files

References
1. Izraelevitz, J., Mendes, H., and Scott, M. L. 2016. Linearizability of Persistent Memory Objects Under a Full-System-Crash Failure Model. In DISC 2016: Distributed

Computing, 313-327. Springer, Berlin, Heidelberg.

2. Herlihy, M. P., and Wing, J. M. 1990. Linearizability: A correctness condition for concurrent objects. ACM Trans. Prog. Lang. Syst. 12, 3 (July), 463-492.

3. Wen, H., Cai, W., Du, M., Jenkins, L., Valpey, B., and Scott, M. L. A Fast, General System for Buffered Persistent Data Structures.

4. Cai, W., Wen, H., Beadle, H. A., Kjellqvist, C., Hedayati, M., and Scott, M. L. 2020. Understanding and optimizing persistent memory allocation. In Proceedings of the 2020

ACM SIGPLAN International Symposium on Memory Management, 1-14.

5. Douglas C. Schmidt and Tim Harrison. Double-checked locking. In Robert Martin, Dirk Riehle, and Frank Buschmann, editors, Pattern Languages of Program Design 3.

Addison-Wesley, 1998.

6. Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. Pronto: Easy and fast persistence for volatile data structures. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming Languages and Operating Systems, page 789–806, 2020.

7. T. Cao. Fault Tolerance for Main-Memory Applications in the Cloud. PhD thesis, Cornell Univ., Ithaca, NY, USA, 2013.

8. T. Cao, M.A.V. Salles, B. Sowell, Y. Yue, A.J. Demers, J. Gehrke, and W.M. White. Fast checkpoint recovery algorithms for frequently consistent applications. In Proc. ACM

SIGMOD Int. Conf. Manage. Data, pages 265–276, 2011.

PAGE 35Snapshotting Mechanisms for Persistent Memory-Mapped Files

Mohammad Moridi and Wojciech Golab

moridi@uwaterloo.ca, wgolab@uwaterloo.ca

mailto:moridi@uwaterloo.ca
mailto:wgolab@uwaterloo.ca

Related Work
● Pronto, Developed by Memaripour et al. [6]

○ Pronto uses a volatile memory allocator for snapshot creation and keeps them on PMEM.

○ However, it lacks backup protection against persistent memory hardware failures.

● In-Memory Databases

○ Copy-on-Update [7]: This method uses an extra data structure to create a duplicate of the primary dataset and a

bit array to log the row update statuses.

○ Ping-Pong [8]: This technique involves two versions of the data; one is used for updates and the other for noting

the progressive snapshot.

PAGE 37Snapshotting Mechanisms for Persistent Memory-Mapped Files

Double-Checked Locking
● Purpose: Minimize lock overhead by ensuring lock acquisition only when necessary.

● Application in Snapshotting:

○ Snapshotting is infrequent compared to the duration of an epoch.

○ Improves efficiency by avoiding redundant reader locks during non-snapshotting periods.

PAGE 38Snapshotting Mechanisms for Persistent Memory-Mapped Files

Double-Checked Locking

PAGE 39Snapshotting Mechanisms for Persistent Memory-Mapped Files

