
Faculty of Engineering

A. Fahmy A. Jendo W. Golab
{a7fahmy, ajendo, wgolab}@uwaterloo.ca

The Illusive Failure-Atomic Double-Width
Compare-And-Swap

ApPLIED Workshop, Nantes, France, 2024

Outline

1 Introduction

2 Literature Review

3 Discussion

4 Opportunities Ahead

5 Conclusion

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

1/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Table of Contents

1 Introduction

2 Literature Review

3 Discussion

4 Opportunities Ahead

5 Conclusion

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

2/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Intel Optane persistent memory

Figure: Power-fail protection domain on Intel platforms.

Image courtesy of Intel:
https://www.intel.com/content/dam/developer/articles/training/
pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://www.intel.com/content/dam/developer/articles/training/pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png
https://www.intel.com/content/dam/developer/articles/training/pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png

3/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Table of Contents

1 Introduction

2 Literature Review

3 Discussion

4 Opportunities Ahead

5 Conclusion

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

4/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Intel’s DWCAS instruction: CMPXCHG8B/CMPXCHG16B

Description:

“Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if
operand size is 128 bits) with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored
in the destination operand. Otherwise, the value in the destination operand is
loaded into EDX:EAX (or RDX:RAX). The destination operand is an 8-byte
memory location (or 16-byte memory location if operand size is 128 bits).”

“This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.”

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-2a-manual.pdf

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf

5/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

64-bit mode (128-bit width) pseudo-code

DEST: destination address
RDX:RAX: comparison value
RCX:RBX: new value
ZF: zero flag (indicates equality)

TEMP128 � DEST

IF (RDX:RAX = TEMP128) THEN

ZF � 1;

DEST � RCX:RBX;

ELSE

ZF � 0;

RDX:RAX � TEMP128;

DEST � TEMP128;

FI;

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-vol-2a-manual.pdf

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf

6/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Comments from Andy Rudoff [5]

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

7/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Comments from Andy Rudoff [5]

“On Intel, only an eight-byte store, aligned on an eight-byte boundary, is
guaranteed to be failure atomic.”

“Anything larger than eight bytes can be torn by power failure and must be
handled by software.”

“... there’s no single instruction that will solve that ...”

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

8/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Recent theory papers that need power-fail atomic DWCAS

Publication Algorithm

Attiya, Ben-Baruch, and Hendler [1] Compare-And-Swap
Ben-David, Blelloch, Friedman, and Wei [3] Compare-And-Swap
Ben-Baruch, Hendler, and Rusanovsky [2] Compare-And-Swap
Jayanti, Jayanti, and Jayanti [4] Compare-And-Swap and

Load-Linked/Store-Conditional

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

9/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Closer look at Attiya, Ben-Baruch, and Hendler [1]

Model: persistent shared memory, individual process crash failures

Code snippet: C.CAS(<id,val>, <p,new>)

“We assume that CAS is never invoked with old = new and that values written
to C by the same process are distinct. (This assumption can be easily satisfied
by augmenting each written value with a per-process sequence number.)”

Shared state:

process ID per-process sequence number value

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

10/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Closer look at Ben-David, Blelloch, Friedman, and Wei [3]

Model: persistent shared memory, individual process crash failures

Code snippet: CAS(x, <a, pid , seq’>, <b, i, seq>)

Shared state:

value process ID per-process sequence number

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

11/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Closer look at Ben-Baruch, Hendler, and Rusanovsky [2]

Model: persistent shared memory, system-wide crash failures

Code snippet: C.CAS(<val, vec>, <new, newvec>)

Shared state (for N processes):

value bit vector of length N

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

12/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Closer look at Jayanti, Jayanti, and Jayanti [4]

Model: persistent shared memory, individual process crash failures

Code snippet: CAS(X, (ĥ, s), (h, ŝ))

Shared state:

pointer sequence number

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

13/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Summary

Four recent algorithms perform CAS operations on variables in persistent
memory that in practice span multiple memory words [1, 3, 2, 4].

Two of the publications [3, 4] refer to a DWCAS hardware instruction.

All four algorithms can break if the atomic operation they rely on can be
torn by a power failure.

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

14/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Table of Contents

1 Introduction

2 Literature Review

3 Discussion

4 Opportunities Ahead

5 Conclusion

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

15/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Is DWCAS truly necessary?

Yes, it is ...

64-bit Intel processors use 48-bit pointers, 40 bits are required if address is
256-byte aligned

Linux process IDs are 16 bits, at least 8 bits are required to label 256
processes

unique sequence numbers require at least 48 bits
(248 ops until overflow ÷ millions of ops/s ≈ years until overflow)

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

16/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Does a modern Intel processor flush a cache line atomically?

Andy Rudoff on the behaviour of cache line write-backs [6]:

“It is important to distinguish between what is *likely* to happen and what is
architecturally guaranteed to happen.”

Intel’s architectural guarantees:

“an 8-byte store is failure atomic”

“a younger store won’t pass an older store to the same cache line”
(total store order)

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

17/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Does a modern Intel processor flush a cache line atomically?

Andy Rudoff on the behaviour of cache line write-backs [6]:

/* assume the cache line starts off containing zeros */

buff[0] = 1

buff[8] = 1

CLWB buff

SFENCE

“Assuming you have taken steps to prevent the compiler from reordering the
stores, then a younger store will not pass an older store to the same cache line.
If my example code gets interrupted by a crash, on recovery either buff is all
zeros, only buff[0] is 1, or both buff[0] is 1 and buff[1] are 1. It is not possible
for buff[8] to be 1 and buff[0] to be zero.”

“Of course, on a quiet system it is very likely that you can change a full cache
line and flush it and the entire cache line travels to the persistent memory in a
single chunk. It just isn’t guaranteed.”

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

18/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Table of Contents

1 Introduction

2 Literature Review

3 Discussion

4 Opportunities Ahead

5 Conclusion

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

19/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Workaround?

How about emulating power-fail atomic DWCAS using PMwCAS [7]?

correct, but ...

only lock-free

much slower than hardware DWCAS

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

20/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Opportunity!

 100000

 1×106

 1×107

 1×108

 0 20 40 60 80 100 120

1000 words
100 words

10 words
2 words

O
pe

ra
tio

ns
/s

Number of threads

Hardware DWCAS Scalability

 10000

 100000

 1×106

 1×107

 0 20 40 60 80 100 120

1000 words
100 words

10 words
2 words

O
pe

ra
tio

ns
/s

Number of threads

PMwCAS Scalability

Figure: Performance comparison of the hardware DWCAS instruction against
PMwCAS [7] on a 20-core Intel processor with Optane persistent memory.

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

21/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Research questions

How can we optimize PMwCAS for pairs of consecutive memory words?

Can we do better if we start from scratch?

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

22/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Table of Contents

1 Introduction

2 Literature Review

3 Discussion

4 Opportunities Ahead

5 Conclusion

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

23/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Takeaways

atomic ̸= power-fail atomic

need for software implementations of power-fail atomic DWCAS

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

24/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Bibliography I

[1] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe
recoverable linearizability: Modular constructions for non-volatile memory.
In Proc. of the ACM Symposium on Principles of Distributed Computing,
PODC, page 7–16, 2018.

[2] Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and
lower bounds on the space complexity of detectable objects. In Proc. of the
39th Symposium on Principles of Distributed Computing, PODC, page
11–20, 2020.

[3] Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei.
Delay-free concurrency on faulty persistent memory. In Proc. of the 31st
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA,
page 253–264, 2019.

[4] Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. Durable
Algorithms for Writable LL/SC and CAS with Dynamic Joining. In Proc of
the 37th International Symposium on Distributed Computing, DISC, pages
25:1–25:20, 2023.

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

25/25

Introduction Literature Review Discussion Opportunities Ahead Conclusion References

Bibliography II

[5] Andy Rudoff. Persistent memory programming. login Usenix Mag., 42(2),
2017.

[6] Andy Rudoff. How to use clwb instruction.
https://groups.google.com/g/pmem/c/R8H3sKq9sLQ/m/ltL7Kng4BAAJ,
2019. [Accessed 25-05-2024].

[7] Tianzheng Wang, Justin J. Levandoski, and Per-Åke Larson. Easy lock-free
indexing in non-volatile memory. In Proc. of the 34th IEEE International
Conference on Data Engineering, ICDE, pages 461–472, 2018.

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://groups.google.com/g/pmem/c/R8H3sKq9sLQ/m/ltL7Kng4BAAJ

	Introduction
	Literature Review
	Discussion
	Opportunities Ahead
	Conclusion
	References

