UNIVERSITY OF

A. Fahmy A. Jendo W. Golab WATERLOO
{a7fahmy, ajendo, wgolab}@uwaterloo.ca 2y

The lllusive Failure-Atomic Double-Width
Compare-And-Swap

ApPLIED Workshop, Nantes, France, 2024

Outline

@ Introduction

@ Literature Review
@ Discussion

@ Opportunities Ahead

@ Conclusion

The lllusive Failure-Atomic DWCAS University of Waterloo, Engineer

Introducti

Table of Contents

@ Introduction

1/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Fahmy, Jendo

Introduction

Intel Optane persistent memory

Mo
Core ‘-/
L B CLWE = fence
-or- Custom
=) CLFLUSHOPT + fance il protected domain
= -or- by 3
3 CLFLUSH |
2 eADR
13
ned oniy)
g IMinimum Required
% rotected domain
ry suk ; |
ADR

Figure: Power-fail protection domain on Intel platforms.

Image courtesy of Intel:
https://wuw.intel.com/content/dam/developer/articles/training/
pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png

2/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://www.intel.com/content/dam/developer/articles/training/pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png
https://www.intel.com/content/dam/developer/articles/training/pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png

Literature Review

Table of Contents

@ Literature Review

3/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Fahm

Literature Review

Intel’s DWCAS instruction: CMPXCHG8B/CMPXCHG16B

Description:

“Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if
operand size is 128 bits) with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored
in the destination operand. Otherwise, the value in the destination operand is
loaded into EDX:EAX (or RDX:RAX). The destination operand is an 8-byte
memory location (or 16-byte memory location if operand size is 128 bits).”

“This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.”

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-2a-manual.pdf

4/25

The lllusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf

Literature Review

64-bit mode (128-bit width) pseudo-code

DEST: destination address
RDX:RAX: comparison value
RCX:RBX: new value

ZF: zero flag (indicates equality)

TEMP128 « DEST
IF (RDX:RAX = TEMP128) THEN
ZF « 1;
DEST + RCX:RBX;
ELSE
ZF + 0;
RDX:RAX + TEMP128;
DEST + TEMP128;
FI;

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-vol-2a-manual.pdf

5/25

Fahmy, Jendo, The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf

erature Review

Comments from Andy Rudoff [5]

Progr amming

Persistent Memory

The lllusive Failure-Atomic DWCAS Univer:

ity of Waterloo, En

Literature Review

Comments from Andy Rudoff [5]

“On Intel, only an eight-byte store, aligned on an eight-byte boundary, is
guaranteed to be failure atomic.”

“Anything larger than eight bytes can be torn by power failure and must be
handled by software.”

“

. there's no single instruction that will solve that ...”

7/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Literature Review

Recent theory papers that need power-fail atomic DWCAS

| Publication

Algorithm

Attiya, Ben-Baruch, and Hendler [1]

Compare-And-Swap

Ben-David, Blelloch, Friedman, and Wei [3]

Compare-And-Swap

Ben-Baruch, Hendler, and Rusanovsky [2]

Compare-And-Swap

Jayanti, Jayanti, and Jayanti [4]

Compare-And-Swap and
Load-Linked/Store-Conditional

8/25

Fahmy, Jendo, Golab The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Literature Review

Closer look at Attiya, Ben-Baruch, and Hendler [1]

Model: persistent shared memory, individual process crash failures

Code snippet: C.CAS(<id,val>, <p,new>)
“We assume that CAS is never invoked with old = new and that values written
to C by the same process are distinct. (This assumption can be easily satisfied

by augmenting each written value with a per-process sequence number.)”

Shared state:

process ID | per-process sequence number value

9/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Literature Review

Closer look at Ben-David, Blelloch, Friedman, and Wei [3]

Model: persistent shared memory, individual process crash failures
Code snippet: CAS(x, <a, pid , seq’>, <b, i, seq>)

Shared state:

value process ID | per-process sequence number

10/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Literature Review

Closer look at Ben-Baruch, Hendler, and Rusanovsky [2]

Model: persistent shared memory, system-wide crash failures
Code snippet: C.CAS(<val, vec>, <new, newvec>)

Shared state (for N processes):

value bit vector of length IV

11/25

Fahmy, Jendo, The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Literature Review

Closer look at Jayanti, Jayanti, and Jayanti [4]

Model: persistent shared memory, individual process crash failures
Code snippet: CAS(X, (h, s), (h, 8))

Shared state:

pointer sequence number

12/25

Fahmy, Jendo, Go The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Literature Review

Summary

= Four recent algorithms perform CAS operations on variables in persistent
memory that in practice span multiple memory words [1, 3, 2, 4].

= Two of the publications [3, 4] refer to a DWCAS hardware instruction.

= All four algorithms can break if the atomic operation they rely on can be
torn by a power failure.

13/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Table of Contents

@ Discussion
14/25
Fahmy, Jendo The lllusive Failure-Atomic DWCAS University of Water Engineering

Discussion

Is DWCAS truly necessary?

Yes,

nm

itis ...

64-bit Intel processors use 48-bit pointers, 40 bits are required if address is
256-byte aligned

Linux process IDs are 16 bits, at least 8 bits are required to label 256
processes

unique sequence numbers require at least 48 bits
(2*® ops until overflow <+ millions of ops/s = years until overflow)

15/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Discussion

Does a modern Intel processor flush a cache line atomically?

Andy Rudoff on the behaviour of cache line write-backs [6]:
“It is important to distinguish between what is *likely* to happen and what is

architecturally guaranteed to happen.”

Intel’s architectural guarantees:

= ‘“an 8-byte store is failure atomic”

= “a younger store won't pass an older store to the same cache line”
(total store order)

16/25

Fahmy, Jendo, The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Discussion

Does a modern Intel processor flush a cache line atomically?
Andy Rudoff on the behaviour of cache line write-backs [6]:

/* assume the cache line starts off containing zeros */

buff[0] = 1
buff[8] = 1
CLWB buff
SFENCE

“Assuming you have taken steps to prevent the compiler from reordering the
stores, then a younger store will not pass an older store to the same cache line.
If my example code gets interrupted by a crash, on recovery either buff is all
zeros, only buff[0] is 1, or both buff[0] is 1 and buff[1] are 1. It is not possible
for buff[8] to be 1 and buff[0] to be zero.”

“Of course, on a quiet system it is very likely that you can change a full cache
line and flush it and the entire cache line travels to the persistent memory in a
single chunk. It just isn't guaranteed.”

17/25

The lllusive Failure-Atomic DWCAS University of Waterloo, Engineering

Opportunities Ahead

Table of Contents

@ Opportunities Ahead

18/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Fahm

Opportunities Ahead

Workaround?

How about emulating power-fail atomic DWCAS using PMwCAS [7]?

= correct, but ...
= only lock-free
= much slower than hardware DWCAS

19/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Opportunities Ahead

Opportunity!

Hardware DWCAS Scalability PMwCAS Scalability

1x108 T T T T T 1x107 T T T T T
e o4
e+]
e .- DR - o - e . . 4
o 1x107 4 o X108 p et 1
@ @
2 2 3
S S k
% B s . . . 4 2 R . . . E
o e R o 3 h PRBRY
3 5 -3 . R
O 1x108 | E O 100000 eeqe-o-o*"*"" E
1000 words 1000 words ——
100 words - - - - 100 words - - - -
10 words 10 words
2words —-—-— 2words ———
100000 10000 L !
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of threads Number of threads

Figure: Performance comparison of the hardware DWCAS instruction against
PMwCAS [7] on a 20-core Intel processor with Optane persistent memory.

The lllusive Failure-Atomic DWCAS

University of Waterloo, Er

Opportunities Ahead

Research questions

= How can we optimize PMwCAS for pairs of consecutive memory words?

= Can we do better if we start from scratch?

The lllusive Failure-Atomic DWCAS

Conclusion

Table of Contents

@ Conclusion

22/25

The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

Fahmy, Jendo

Conclusion

Takeaways

= atomic # power-fail atomic

= need for software implementations of power-fail atomic DWCAS

The lllusive Failure-Atomic DWCAS

References

Bibliography |

[1] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. Nesting-safe
recoverable linearizability: Modular constructions for non-volatile memory.
In Proc. of the ACM Symposium on Principles of Distributed Computing,
PODC, page 7-16, 2018.

[2] Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. Upper and
lower bounds on the space complexity of detectable objects. In Proc. of the
39th Symposium on Principles of Distributed Computing, PODC, page
11-20, 2020.

[3] Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei.
Delay-free concurrency on faulty persistent memory. In Proc. of the 31st

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA,
page 253-264, 2019.

[4] Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. Durable
Algorithms for Writable LL/SC and CAS with Dynamic Joining. In Proc of
the 37th International Symposium on Distributed Computing, DISC, pages
25:1-25:20, 2023.

24/25

The lllusive Failure-Atomic DWCAS University of Waterloo, Engineering

References

Bibliography I

[5] Andy Rudoff. Persistent memory programming. login Usenix Mag., 42(2),
2017.

[6] Andy Rudoff. How to use clwb instruction.
https://groups.google.com/g/pmem/c/R8H3sKq9sLQ/m/1tL7Kng4BAAT,
2019. [Accessed 25-05-2024].

[7] Tianzheng Wang, Justin J. Levandoski, and Per-Ake Larson. Easy lock-free
indexing in non-volatile memory. In Proc. of the 34th IEEE International
Conference on Data Engineering, ICDE, pages 461-472, 2018.

25/25

[The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering

https://groups.google.com/g/pmem/c/R8H3sKq9sLQ/m/ltL7Kng4BAAJ

	Introduction
	Literature Review
	Discussion
	Opportunities Ahead
	Conclusion
	References

