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Intel Optane persistent memory

Figure: Power-fail protection domain on Intel platforms.

Image courtesy of Intel:
https://www.intel.com/content/dam/developer/articles/training/
pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png
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Intel’s DWCAS instruction: CMPXCHG8B/CMPXCHG16B

Description:

“Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if
operand size is 128 bits) with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored
in the destination operand. Otherwise, the value in the destination operand is
loaded into EDX:EAX (or RDX:RAX). The destination operand is an 8-byte
memory location (or 16-byte memory location if operand size is 128 bits).”

“This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.”

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-2a-manual.pdf
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64-bit mode (128-bit width) pseudo-code

DEST: destination address
RDX:RAX: comparison value
RCX:RBX: new value
ZF: zero flag (indicates equality)

TEMP128 � DEST

IF (RDX:RAX = TEMP128) THEN

ZF � 1;

DEST � RCX:RBX;

ELSE

ZF � 0;

RDX:RAX � TEMP128;

DEST � TEMP128;

FI;

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-vol-2a-manual.pdf
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Comments from Andy Rudoff [5]
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Comments from Andy Rudoff [5]

“On Intel, only an eight-byte store, aligned on an eight-byte boundary, is
guaranteed to be failure atomic.”

“Anything larger than eight bytes can be torn by power failure and must be
handled by software.”

“... there’s no single instruction that will solve that ...”
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Recent theory papers that need power-fail atomic DWCAS

Publication Algorithm

Attiya, Ben-Baruch, and Hendler [1] Compare-And-Swap
Ben-David, Blelloch, Friedman, and Wei [3] Compare-And-Swap
Ben-Baruch, Hendler, and Rusanovsky [2] Compare-And-Swap
Jayanti, Jayanti, and Jayanti [4] Compare-And-Swap and

Load-Linked/Store-Conditional
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Closer look at Attiya, Ben-Baruch, and Hendler [1]

Model: persistent shared memory, individual process crash failures

Code snippet: C.CAS(<id,val>, <p,new>)

“We assume that CAS is never invoked with old = new and that values written
to C by the same process are distinct. (This assumption can be easily satisfied
by augmenting each written value with a per-process sequence number.)”

Shared state:

process ID per-process sequence number value
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Closer look at Ben-David, Blelloch, Friedman, and Wei [3]

Model: persistent shared memory, individual process crash failures

Code snippet: CAS(x, <a, pid , seq’>, <b, i, seq>)

Shared state:

value process ID per-process sequence number
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Closer look at Ben-Baruch, Hendler, and Rusanovsky [2]

Model: persistent shared memory, system-wide crash failures

Code snippet: C.CAS(<val, vec>, <new, newvec>)

Shared state (for N processes):

value bit vector of length N
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Closer look at Jayanti, Jayanti, and Jayanti [4]

Model: persistent shared memory, individual process crash failures

Code snippet: CAS(X, (ĥ, s), (h, ŝ))

Shared state:

pointer sequence number
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Summary

Four recent algorithms perform CAS operations on variables in persistent
memory that in practice span multiple memory words [1, 3, 2, 4].

Two of the publications [3, 4] refer to a DWCAS hardware instruction.

All four algorithms can break if the atomic operation they rely on can be
torn by a power failure.
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Is DWCAS truly necessary?

Yes, it is ...

64-bit Intel processors use 48-bit pointers, 40 bits are required if address is
256-byte aligned

Linux process IDs are 16 bits, at least 8 bits are required to label 256
processes

unique sequence numbers require at least 48 bits
(248 ops until overflow ÷ millions of ops/s ≈ years until overflow)
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Does a modern Intel processor flush a cache line atomically?

Andy Rudoff on the behaviour of cache line write-backs [6]:

“It is important to distinguish between what is *likely* to happen and what is
*architecturally guaranteed* to happen.”

Intel’s architectural guarantees:

“an 8-byte store is failure atomic”

“a younger store won’t pass an older store to the same cache line”
(total store order)
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Does a modern Intel processor flush a cache line atomically?

Andy Rudoff on the behaviour of cache line write-backs [6]:

/* assume the cache line starts off containing zeros */

buff[0] = 1

buff[8] = 1

CLWB buff

SFENCE

“Assuming you have taken steps to prevent the compiler from reordering the
stores, then a younger store will not pass an older store to the same cache line.
If my example code gets interrupted by a crash, on recovery either buff is all
zeros, only buff[0] is 1, or both buff[0] is 1 and buff[1] are 1. It is not possible
for buff[8] to be 1 and buff[0] to be zero.”

“Of course, on a quiet system it is very likely that you can change a full cache
line and flush it and the entire cache line travels to the persistent memory in a
single chunk. It just isn’t guaranteed.”
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Workaround?

How about emulating power-fail atomic DWCAS using PMwCAS [7]?

correct, but ...

only lock-free

much slower than hardware DWCAS
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Opportunity!
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Figure: Performance comparison of the hardware DWCAS instruction against
PMwCAS [7] on a 20-core Intel processor with Optane persistent memory.
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Research questions

How can we optimize PMwCAS for pairs of consecutive memory words?

Can we do better if we start from scratch?
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Takeaways

atomic ̸= power-fail atomic

need for software implementations of power-fail atomic DWCAS
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