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Figure: Power-fail protection domain on Intel platforms.

Image courtesy of Intel:
https://wuw.intel.com/content/dam/developer/articles/training/
pmem-learn-more-series-part-2/PMEM_LearnMore2_2.png
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Literature Review

Intel’s DWCAS instruction: CMPXCHG8B/CMPXCHG16B

Description:

“Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if
operand size is 128 bits) with the operand (destination operand). If the values
are equal, the 64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored
in the destination operand. Otherwise, the value in the destination operand is
loaded into EDX:EAX (or RDX:RAX). The destination operand is an 8-byte
memory location (or 16-byte memory location if operand size is 128 bits).”

“This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.”

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-2a-manual.pdf
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Literature Review

64-bit mode (128-bit width) pseudo-code

DEST: destination address
RDX:RAX: comparison value
RCX:RBX: new value

ZF: zero flag (indicates equality)

TEMP128 « DEST
IF (RDX:RAX = TEMP128) THEN
ZF « 1;
DEST + RCX:RBX;
ELSE
ZF + 0;
RDX:RAX + TEMP128;
DEST + TEMP128;
FI;

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-vol-2a-manual.pdf
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Literature Review

Comments from Andy Rudoff [5]

“On Intel, only an eight-byte store, aligned on an eight-byte boundary, is
guaranteed to be failure atomic.”

“Anything larger than eight bytes can be torn by power failure and must be
handled by software.”

“

. there's no single instruction that will solve that ...”
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Literature Review

Recent theory papers that need power-fail atomic DWCAS

| Publication

Algorithm

Attiya, Ben-Baruch, and Hendler [1]

Compare-And-Swap

Ben-David, Blelloch, Friedman, and Wei [3]

Compare-And-Swap

Ben-Baruch, Hendler, and Rusanovsky [2]

Compare-And-Swap

Jayanti, Jayanti, and Jayanti [4]

Compare-And-Swap and
Load-Linked/Store-Conditional
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Literature Review

Closer look at Attiya, Ben-Baruch, and Hendler [1]

Model: persistent shared memory, individual process crash failures

Code snippet: C.CAS(<id,val>, <p,new>)
“We assume that CAS is never invoked with old = new and that values written
to C by the same process are distinct. (This assumption can be easily satisfied

by augmenting each written value with a per-process sequence number.)”

Shared state:

process ID | per-process sequence number value
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Literature Review

Closer look at Ben-David, Blelloch, Friedman, and Wei [3]

Model: persistent shared memory, individual process crash failures
Code snippet: CAS(x, <a, pid , seq’>, <b, i, seq>)

Shared state:

value process ID | per-process sequence number
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Literature Review

Closer look at Ben-Baruch, Hendler, and Rusanovsky [2]

Model: persistent shared memory, system-wide crash failures
Code snippet: C.CAS(<val, vec>, <new, newvec>)

Shared state (for N processes):

value bit vector of length IV

11/25

Fahmy, Jendo, The Illusive Failure-Atomic DWCAS University of Waterloo, Engineering



Literature Review

Closer look at Jayanti, Jayanti, and Jayanti [4]

Model: persistent shared memory, individual process crash failures
Code snippet: CAS(X, (h, s), (h, 8))

Shared state:

pointer sequence number
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Literature Review

Summary

= Four recent algorithms perform CAS operations on variables in persistent
memory that in practice span multiple memory words [1, 3, 2, 4].

= Two of the publications [3, 4] refer to a DWCAS hardware instruction.

= All four algorithms can break if the atomic operation they rely on can be
torn by a power failure.
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Discussion

Is DWCAS truly necessary?

Yes,

nm

itis ...

64-bit Intel processors use 48-bit pointers, 40 bits are required if address is
256-byte aligned

Linux process IDs are 16 bits, at least 8 bits are required to label 256
processes

unique sequence numbers require at least 48 bits
(2*® ops until overflow <+ millions of ops/s = years until overflow)
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Discussion

Does a modern Intel processor flush a cache line atomically?

Andy Rudoff on the behaviour of cache line write-backs [6]:
“It is important to distinguish between what is *likely* to happen and what is

*architecturally guaranteed* to happen.”

Intel’s architectural guarantees:

= ‘“an 8-byte store is failure atomic”

= “a younger store won't pass an older store to the same cache line”
(total store order)
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Discussion

Does a modern Intel processor flush a cache line atomically?
Andy Rudoff on the behaviour of cache line write-backs [6]:

/* assume the cache line starts off containing zeros */

buff[0] = 1
buff[8] = 1
CLWB buff
SFENCE

“Assuming you have taken steps to prevent the compiler from reordering the
stores, then a younger store will not pass an older store to the same cache line.
If my example code gets interrupted by a crash, on recovery either buff is all
zeros, only buff[0] is 1, or both buff[0] is 1 and buff[1] are 1. It is not possible
for buff[8] to be 1 and buff[0] to be zero.”

“Of course, on a quiet system it is very likely that you can change a full cache
line and flush it and the entire cache line travels to the persistent memory in a
single chunk. It just isn't guaranteed.”
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Opportunities Ahead

Workaround?

How about emulating power-fail atomic DWCAS using PMwCAS [7]?

= correct, but ...
= only lock-free
= much slower than hardware DWCAS
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Opportunities Ahead

Opportunity!

Hardware DWCAS Scalability PMwCAS Scalability
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Figure: Performance comparison of the hardware DWCAS instruction against
PMwCAS [7] on a 20-core Intel processor with Optane persistent memory.
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Opportunities Ahead

Research questions

= How can we optimize PMwCAS for pairs of consecutive memory words?

= Can we do better if we start from scratch?
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Conclusion

Takeaways

= atomic # power-fail atomic

= need for software implementations of power-fail atomic DWCAS
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