ParSwarm: A C++ Framework for
Evaluating Distributed
Algorithms for Robot Swarms

Zhi Wei Gan, Grace Cai, Noble Harasha, Nancy Lynch, Julian Shun

H B Massachusetts
I I Institute of

Technology

Robot Swarms

Many agents collectively solve complex tasks
Agents themselves have simple capabilities
No central coordinator

Simulators are important so we can explore
the behavior of algorithms experimentally

Image source: Rubenstein et al. 2012

Background

Current state-of-the-art robot swarm simulators take into account
complex physics simulations and are compatible with real-world robots,
however they are slow.

Stage [Vaughan 2008]: 10° agents at 1/50 real-time speed

Why do we care about speed?

e Rapid algorithm prototyping _ .
e Increasing the number of agents / size of experiment allows usto get | ..c source: Pinciroliet al, 2012
insights about probabilistic bounds

Mathematical Framework (Cai et al. 2023)

The model is a probabilistic, synchronous distributed
systemonagraph G=(V, E)

Vertices and agents have their own
(arbitrary) states, e.g. color, position, size

Mathematical Framework (Cai et al. 2023)

rejected
| —

| Iaccepted

On each round the agent proposes transitions based on
the vertices and agentsin a local area

Each transition is accepted or rejected based on some
rule (agents on the same vertex)

An accepted transition changes the position/state of
the agent or vertex

Parallel Framework Motivation

Current sequential implementation of the model is slow.
For task allocation: 50 x 50 grid with 100 agents and 16 tasks took 10 seconds to run ~500 iterations
Possible Approaches:

e Speed up the sequential implementation (not scalable)
e Shared-Memory Parallel Programming

Model: Shared-Memory Parallel Programming

Thread Thread Thread Thread Thread Thread

Thread Thread Thread Thread Thread Thread

A A A A A A

\ 4 \J \J \ \J \J \ 4 \J \J \J \ 4 \J

MEMORY

May run into race conditions, framework is used to abstract most of the details

ParSwarm User-Defined Functions and Classes

Agent
generate_message()
generate_transition()
position

Internal state

position

Location Configuration
update_agents()
update_locations()
is_finished()

Internal state

print_config()

—

Environment setup + Simulate

ParSwarm Workflow

Array of agents

(0,0) || (1,0) || (2,2) || (0,0) || (0,0) || (1,0) || (1,0) || (0,0)

Array of agents

(0,0) || (0,0) || (0,0) || (0,0) (2,2) (1,0) || (1,0) || (1,0)

ParSwarm Workflow

Array of agents

(0,0) || (0,0) || (0,0) || (0,0) (2,2) (1,0) || (1,0)

Update agents and locations

Task Allocation: 1000x1000 Grid, 1,000,000 Agents

Parallel Speedup for 7 =2 x 10°, D =7 x 105, A = 10’

24
24 cores. ~1 32 S / Iter 227 -_: Zeerrrllfi:i;)tr:: Transitions ’/:
> 1 8X para”ellsm 209 e Update Configuration /‘//‘/‘
184 —° 3
16 1 “

N
L

For the 50x50 experiment,
we get a 500x speedup i
over the Python il
2
0

Parallel Speedup
S 8 =

implementation

Cores

Density Estimation (Musco et al. 2016)

Setup:

e NxMtorus grid with a agents
e Agentdensity is defined as:

N x M
Algorithm:

e Agents random walk, counting the number of agents C they runinto for t rounds.

o Muscoetal.show:gz @ w.h.p.
t NxM

Density Estimation Experiments

Histogram of Estimated Densities

B 10’ agents, 100 x 100 torus
s 10 agents, 1000 x 1000 torus

S

True density is 0.1

175 -

150 4 Framework allows for larger tests to be run to
125 exhibit high probability behavior

100 1 The large experiment took 4 seconds to run

Frequency

75 - on 24 cores

0.0 0.1 0.2 0.3 0.4 0.5
Density

Future Work

rejected

Prototyping more complex algorithms L ‘

Increase user-friendliness, add more helper functions (in-progress) | Iaccepted

Add better support for experiments with many types of agents

Thank you! Questions?

