
ParSwarm: A C++ Framework for
Evaluating Distributed
Algorithms for Robot Swarms

Zhi Wei Gan, Grace Cai, Noble Harasha, Nancy Lynch, Julian Shun

Robot Swarms

● Many agents collectively solve complex tasks

● Agents themselves have simple capabilities

● No central coordinator

● Simulators are important so we can explore

the behavior of algorithms experimentally

Image source: Rubenstein et al. 2012

Background

Current state-of-the-art robot swarm simulators take into account

complex physics simulations and are compatible with real-world robots,

however they are slow.

Stage [Vaughan 2008]: 105 agents at 1/50 real-time speed

Why do we care about speed?

● Rapid algorithm prototyping

● Increasing the number of agents / size of experiment allows us to get

insights about probabilistic bounds
Image source: Pinciroli et al., 2012

Mathematical Framework (Cai et al. 2023)

Vertices and agents have their own
(arbitrary) states, e.g. color, position, size

The model is a probabilistic, synchronous distributed
system on a graph G = (V, E)

Mathematical Framework (Cai et al. 2023)

On each round the agent proposes transitions based on
the vertices and agents in a local area

Each transition is accepted or rejected based on some
rule (agents on the same vertex)

An accepted transition changes the position/state of
the agent or vertex

accepted

rejected

Parallel Framework Motivation

Current sequential implementation of the model is slow.

For task allocation: 50 x 50 grid with 100 agents and 16 tasks took 10 seconds to run ~500 iterations

Possible Approaches:

● Speed up the sequential implementation (not scalable)

● Shared-Memory Parallel Programming

Model: Shared-Memory Parallel Programming

Process

Thread

MEMORY

Thread

May run into race conditions, framework is used to abstract most of the details

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

ParSwarm User-Defined Functions and Classes

Agent
generate_message()
generate_transition()
position

Internal state

Location
position

Internal state

Configuration
update_agents()
update_locations()
is_finished()

print_config()

Environment setup + Simulate

ParSwarm Workflow

Semisort Agents By Position

Determine how many agents at each location with
prefix sums and filters

Array of agents

(0,0) (1,0) (2,2) (0,0) (0,0) (1,0) (1,0) (0,0)

Array of agents

(0,0) (0,0) (0,0) (0,0) (2,2) (1,0) (1,0) (1,0)

ParSwarm Workflow

Generate messages for each agent (if any)

Deposit messages at each location

Generate transitions for each agent

Update agents and locations

Array of agents

(0,0) (0,0) (0,0) (0,0) (2,2) (1,0) (1,0) (1,0)

Task Allocation: 1000x1000 Grid, 1,000,000 Agents

24 cores: ~1.32 s / iter
> 18x parallelism

For the 50x50 experiment,
we get a 500x speedup
over the Python
implementation

Density Estimation (Musco et al. 2016)

Setup:

● N x M torus grid with 𝛼 agents

● Agent density is defined as:

Algorithm:

● Agents random walk, counting the number of agents C they run into for t rounds.

● Musco et al. show: w.h.p.

Density Estimation Experiments

True density is 0.1

Framework allows for larger tests to be run to
exhibit high probability behavior

The large experiment took 4 seconds to run
on 24 cores

Future Work

Prototyping more complex algorithms

Increase user-friendliness, add more helper functions (in-progress)

Add better support for experiments with many types of agents

Thank you! Questions?

