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Robot Swarms

Many agents collectively solve complex tasks
Agents themselves have simple capabilities
No central coordinator

Simulators are important so we can explore
the behavior of algorithms experimentally

Image source: Rubenstein et al. 2012



Background

Current state-of-the-art robot swarm simulators take into account
complex physics simulations and are compatible with real-world robots,
however they are slow.

Stage [Vaughan 2008]: 10° agents at 1/50 real-time speed

Why do we care about speed?

e Rapid algorithm prototyping _ .
e Increasing the number of agents / size of experiment allows usto get | ..c source: Pinciroliet al, 2012
insights about probabilistic bounds



Mathematical Framework (Cai et al. 2023)

The model is a probabilistic, synchronous distributed
systemonagraph G=(V, E)

Vertices and agents have their own
(arbitrary) states, e.g. color, position, size




Mathematical Framework (Cai et al. 2023)
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On each round the agent proposes transitions based on
the vertices and agentsin a local area

Each transition is accepted or rejected based on some
rule (agents on the same vertex)

An accepted transition changes the position/state of
the agent or vertex



Parallel Framework Motivation

Current sequential implementation of the model is slow.
For task allocation: 50 x 50 grid with 100 agents and 16 tasks took 10 seconds to run ~500 iterations
Possible Approaches:

e Speed up the sequential implementation (not scalable)
e Shared-Memory Parallel Programming



Model: Shared-Memory Parallel Programming
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May run into race conditions, framework is used to abstract most of the details



ParSwarm User-Defined Functions and Classes

Agent
generate_message()
generate_transition()
position

Internal state

position

Location Configuration
update_agents()
update_locations()
is_finished()

Internal state

print_config()

—

Environment setup + Simulate




ParSwarm Workflow

Array of agents

(0,0) || (1,0) || (2,2) || (0,0) || (0,0) || (1,0) || (1,0) || (0,0)

Array of agents

(0,0) || (0,0) || (0,0) || (0,0) (2,2) (1,0) || (1,0) || (1,0)




ParSwarm Workflow

Array of agents

(0,0) || (0,0) || (0,0) || (0,0) (2,2) (1,0) || (1,0)

Update agents and locations




Task Allocation: 1000x1000 Grid, 1,000,000 Agents
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Density Estimation (Musco et al. 2016)

Setup:

e NxMtorus grid with a agents
e Agentdensity is defined as:

N x M
Algorithm:

e Agents random walk, counting the number of agents C they runinto for t rounds.

o Muscoetal.show:gz @ w.h.p.
t NxM




Density Estimation Experiments

Histogram of Estimated Densities

B 10’ agents, 100 x 100 torus
s 10 agents, 1000 x 1000 torus
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Future Work

rejected

Prototyping more complex algorithms L ‘

Increase user-friendliness, add more helper functions (in-progress) | Iaccepted

Add better support for experiments with many types of agents

Thank you! Questions?




