Lessons from HotStuff

Dahlia Malkhi, Maofan “Ted” Yin

HotStuff, revisited.

Lock: value is consistent, but info may be lost

Single-shot, two-phase Consensus Commit: progress is secured by some node (?)
Client

<propose,

2+ Lock 201 Commit

Sync: the highest locked value is found

HOtSthf, reVISIted' Lock: value is consistent, but info may be lost
e Commit: progress is secured by some node
Client ' ComploxOGcoliestion2{PBFR

1 |
| ; .
|

A

B -

C -

0

<propose, <Votg> ©

Responsive Sync! Lock Commit

HotStuff, revisited.

Pipelined, chained Consensus

Client

<propose, > <vote>

Generic Generic Generic

Key Contributions <propse

e Pipelining

>

o No explicit phases: a QC is an implicit phase
o Towards “zero-cost” consensus: minimal protocol state

e Linearity
o First to achieve O(n) complexity (optimal)
o Inspired other works

e “Pacemaker”

<vote>

<propose;

O

> <«yote>

o Decouples view-synchronization from the agreement (view-change)

o Developer-friendly

<Propose;

g o

Fundamental Problems Solved!

e Asynchronous Byzantine Agreement
o VABA[2]

m Runsn parallel HotStuff instances
m first optimal solution: O(n"2)

e Optimistically Asynchronous BA

o Bolt-Dumbo [26], Jolteon and Ditto[15]
m Two-phase HotStuff as fast path: O(n)
m O(n”2)asynchronous as fallback

e Partially Synchronous Consensus

o HotStuff’s linearity is for a single view-change
m At most fview-changes: O(n”"2)
m Pacemaker’s complexity?

o Multiple failures: towards lowering worst-case complexity!

Fundamental Problems Solved!

e Pacemaker
o Cogsworth[32]

m Expected linearity in Pacemaker, worst-case O(n”3)
m f+1“backup” leaders

o RareSync[10] and Lewis-Pye [25]
m Worst-case O(n”*2) with O(nA) latency

e Two-phase HotStuff

o Fast HotStuff [18], DiemBFT-v4 [40], Jolteon and Ditto [15]
m Two-phase “fast-path”
m Revertsto PBFT-style O(n”2) per view-change
o Wendy[16] and MSCFCL [3]
m Similar, but focuses on compressing the leader proof
o HotStuff-2[28]: “well, the vanilla HotStuff is very close...”
m A“badday” could use A timed wait
m Butanodecantellifitis onagoodday! (then optimistically, only need d)

Scalability Lessons

Computational & network resources
Parallel Computation

o Signature verification

o Transaction dissemination (“mempool”)
Large Blocks

o Protocol’ =b * Protocol

o Increase utilization, but not indefinitely...

Protocol
Time

Round-Trip Time

Protocol / (Protocol + Network)

Protocol ~ seconds
Network ~ dozens-hundreds of seconds

H_J

Scalability Lessons

5
§
>~
-0
2
g
¢
Y
Dl
v
2
8
-0

>

wave A

wave i commt

time

wave 1;‘ propose

bundle 1 bundle 2 bundle 3

...0f, one. can Pu’t
QC n o block for
some }m‘chcit bundle

con use o bundle’ to contain QC Ffor the previous bundle

e Block Waves

o Narwhal & Bullshark [12, 37], ...
o Idea: separate network propagation from the core loop
o A Tn phase drives a “wave” of multiple instances of Tp

e Concurrent Instances

o FairLedger [19], Mir-BFT [38], ...
o “Shard/Slice” the replicated log/chain into parallel instances
o Challenge: fault-tolerance for the instance allocation

Network Latency

Check out our paper!

e Interesting theoretical & practical details
e Futureresearchdirections

