
Lessons from HotStuff

Dahlia Malkhi, Maofan “Ted” Yin

QCQC

HotStuff, revisited.

<propose, >Value <vote>

cmd1

<vote>

Client

A

B

C

D

Lock Commit

Single-shot, two-phase Consensus

2f+1 2f+1

All-to-All Votes
Quorum Certificate

Lock: value is consistent, but info may be lost

Commit: progress is secured by some node (?)

HotStuff, revisited.

<propose, > <vote>

cmd1

<vote>

Client

A

B

C

D

LockResponsive Sync!

<vote> QC

Commit

Value QCQC

Lock: value is consistent, but info may be lost

Commit: progress is secured by some node

Sync: the highest locked value is found

Max-latency Wait? (Tendermint)
Complex QC collection? (PBFT)

<propose, > <propose, >

HotStuff, revisited.

<propose, > <vote> <vote> <vote> QC

Generic

 QCQC

Generic Generic

cmd1 cmd2 cmd3A

B

C

D

Client
Pipelined, chained Consensus

Key Contributions
● Pipelining

○ No explicit phases: a QC is an implicit phase

○ Towards “zero-cost” consensus: minimal protocol state

● Linearity
○ First to achieve O(n) complexity (optimal)

○ Inspired other works

● “Pacemaker”
○ Decouples view-synchronization from the agreement (view-change)

○ Developer-friendly

<propose, > <propose, ><propose, > <vote> <vote>

Fundamental Problems Solved!
● Asynchronous Byzantine Agreement

○ VABA [2]
■ Runs n parallel HotStuff instances

■ first optimal solution: O(n^2)

● Optimistically Asynchronous BA
○ Bolt-Dumbo [26], Jolteon and Ditto[15]

■ Two-phase HotStuff as fast path: O(n)

■ O(n^2) asynchronous as fallback

● Partially Synchronous Consensus
○ HotStuff’s linearity is for a single view-change

■ At most f view-changes: O(n^2)

■ Pacemaker’s complexity?

○ Multiple failures: towards lowering worst-case complexity!

Fundamental Problems Solved!
● Pacemaker

○ Cogsworth [32]
■ Expected linearity in Pacemaker, worst-case O(n^3)

■ f+1 “backup” leaders

○ RareSync [10] and Lewis-Pye [25]
■ Worst-case O(n^2) with O(nΔ) latency

● Two-phase HotStuff
○ Fast HotStuff [18], DiemBFT-v4 [40], Jolteon and Ditto [15]

■ Two-phase “fast-path”

■ Reverts to PBFT-style O(n^2) per view-change

○ Wendy [16] and MSCFCL [3]
■ Similar, but focuses on compressing the leader proof

○ HotStuff-2 [28]: “well, the vanilla HotStuff is very close…”
■ A “bad day” could use Δ timed wait

■ But a node can tell if it is on a good day! (then optimistically, only need δ)

Scalability Lessons
● Computational & network resources

● Parallel Computation
○ Signature verification

○ Transaction dissemination (“mempool”)

● Large Blocks
○ Protocol’ = b * Protocol

○ Increase utilization, but not indefinitely…

Protocol
Time

Round-Trip Time

Protocol ~ microseconds
Network ~ dozens-hundreds of milliseconds

Protocol / (Protocol + Network)

Scalability Lessons

● Block Waves
○ Narwhal & Bullshark [12, 37], …

○ Idea: separate network propagation from the core loop

○ A Tn phase drives a “wave” of multiple instances of Tp

● Concurrent Instances
○ FairLedger [19], Mir-BFT [38], …

○ “Shard/Slice” the replicated log/chain into parallel instances

○ Challenge: fault-tolerance for the instance allocation

Network Latency

Check out our paper!
● Interesting theoretical & practical details

● Future research directions

