Disaggregated Applications
using Uniservices

Xinwen Wang
Robbert van Renesse

Cornell University

Road Map

Disaggregated Applications
J Disaggregated Architecture
M Uniservices

1 Evaluation
1 Challenges

What is Resource Disaggregation?

oS e

@»aaq fxtul ¥
Iawdlc..do ﬁﬁgzmﬂ GGDGG}GIG‘,GGGL

oe.u&&acm
m-amsa ey

" ... -
R), ey

N

e T .I_I.Illtl.'n PITSTTINCNY ..l-l.l» il

y
\ TG e I‘éf e

| | __ WhY)
_ ?? ...:..‘r
B i

i

ol

| ~amaans mhdJJiﬂ!l'O.Ml.ﬁla

Before Resource Disaggregation

* Monolithic server or “blade”
* The de facto deployment unit at current data centers

Contains large supply of different resource types in one server
* CPUs, memory, disks, GPUs, NICs, FPGA, etc.

Scale out by adding more monolithic servers
* even if only a subset of resource types need growth

Resource underutilization
Poor elasticity

Poor energy efficiency
Fate-sharing failure

Hard to adopt new hardware

Transformation to Disaggregated Servers

Storage Pool

Storage Pool

P
N

r) f ™)
CPU CPU CPU
Memory Memory Memory
Other Other Other
HW HW HW
- >, - ,

Blades of servers

S

CPU CPU CPU
_
F
Memory Memory Memory
—_———
Other Other Other
HW HW HW

N

Y,

Blades of components

CPU
blades

RAM
blades

Others

Disaggregated Servers

* Disaggregated Servers
e Contain mostly one type of resources: CPU servers, memory servers, ...
* Connected by fast interconnects such as RDMA
* Scale out independently to other resource types
* Heterogeneity-friendly
* Better utilization, energy efficiency

* Monolithic server
* The de facto deployment unit at current data centers
e Contains different resource types in one server

* Scale out by adding more monolithic servers
e even if only a subset of components is needed.

Prior Work on Resource Disaggregation

System & Hardware Application

¢

LegoOS [OSDI’18]
Leap [ATC’20]
Infiniswap [NSDI’17]
Clover [ATC’20]
The Machine [HP]
etc.

Prior Work on Resource Disaggregation

System & Hardware Application

¢

LegoOS [OSDI’18]
Leap [ATC’20] ?
Infiniswap [NSDI’17] ‘
Clover [ATC’20]
The Machine [HP]
etc.

Today’s Cloud Applications

. Microservices
@

* Microservices and Serverless computing = INSZ.
* Highly modularized e «.,
* Separate state and functions W sk

SELES,

DeathStarBench [ASPLOS’19]

& &

* Advantages
e Pay only for what you need
* Better elasticity
» Relatively easy failure recovery

Current work: Disaggregated Logical Servers

* Applications are divided along
logical boundaries, not physical

* Current disaggregated OSes mostly

hide hardware disaggregation.
* Complicates OS design

* Poor performance due to lack of
leveraging disaggregation™

-

Logical Servers

(-)
Storage Pool

g J

=)
CPU CPU CPL

\C 4

Memory Memory Memory

> 4

Other Other Other
HW HW HW
\S 7,

Blades of components

CPU
blades

RAM
blades

Others

*“Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs” [Zhang et. al, VLDB’20]10

Exposing Disaggregation

Hardware resource disaggregation should be exposed to
applications (using new abstractions) rather than hidden

Lampson’s Hints: Don’t Hide Power

11

Leveraging Disaggregation: Overview

Conventional
OS

Conventional
OS

Conventional
OS

Uniservices

Shared &

Log

S oam e mm o mm wm mw ww W

12

Uniservices

* Microservice specialized for a particular type of hardware resource
* Deployed and scaled out along physical boundaries

e Uses a fast communication backbone such as RDMA

* Running on conventional operating systems

* Reusable and shareable

TCP Uniservices NIC Servers NAnm~nnn hnd
NIC Servers Memcached Memory Servers

Memory Servers

Uniservices

Types of Uniservices

* Control-path Uniservices
* Focusing on application logic
* Examples include load balancing uniservices and web server uniservices

* Data-path Uniservices
* Focusing on data processing and transfer
* Examples include TCP uniservices and caching uniservices

Reusable Uniservices

* Cache uniservices
* Persistent key-value store uniservices
 TCP/TLS uniservices

* ML related uniservices

Comparing Microservices and Uniservices

Microservices Uniservices

Deployment unit A (logical) server, such as a virtual A physical hardware platform with
machine or a container a specialized resource
Modularity level Coarse-grained, combining various Fine-grained, focusing on managing
functionalities and using multiple a single hardware resource

resource types

Network stack Usually TCP/IP RDMA or optical switching network

Microservice

g N

Microservice

Service logic

TCP Nanoservice

&

-

Caching Nanoservice

) &

16

Actors

A Uniservice can comprise two types of actors:

e C-functions
 stateless
* “one shot”
* non-blocking
* predictable running time
» easily re-startable after failure
* M-functions
* stateful
* long-running
* can block waiting for external services
* requires replication or re-computation of state

17

Object Stores

e Goals
e provide input to C-functions and store output of C-functions
* minimize copying through flexible object references
e optimize cache locality
e enable prefetching / warm-up

* Object Types
 Streamable
e Random Access

* Object Modes
* Read-only
* Copy-on-Write
* Mutable

18

Apphcatlon Decomp05|t|on

19

Uniservices Architecture

Outside (1) (2)
Triggers Shared Log >
A A
| " Container : 5 " Container
= User = User
= code : (3) 3): |D code
Memory) A ' RS S —
Node (4) M- (4) C-
invok 5 | invok
r’ Invoker iInvoker
Func Hub ——— S
ObjStore Cache
. ~—~ ~—~
A Direct Streaming (5) A

>

Global
Scheduler

Compute
Node

insert triggers into log
scheduler assigns functions
to invokers

invokers load code from hubs
invokers launch functions
data movement over RDMA

20

Use Case: Video rescaling

memory increased linearly as needed
M-SPLIT

LN

C-RESIZE C-RESIZE C-RESIZE C-RESIZE| © @ @

\ / core count doubled as needed

M-MERGE

21

M-SPLIT scaling

M| messscsessssemsweerpesseopees © 11.0 e single core enough
— Memory U-sa'ge 2 e AWS requn'es 2 cores to
_____ Memory Limit 0.9 obtain sufficient memory
—— CPU Usage
e 10 & P CPU Limit
@ Imi 0-8’@
= @)
e = 5
= ®
= 0.6
0.5
0.9
1 | | | | 0.4
0 5 10 15 20
Time (Sec)

22

C-RESIZE scaling

Mostly compute bound
AWS would require

— Memory Usage —— CPU Usage
CPU Limit

250
Memory Limit

10 15

allocating 10G of
memory (at 6 cores)

20 25

5
Time (Sec)

23

Challenges

* Converting existing applications to disaggregated applications with
uniservices requires effort

 Solution: providing basic reusable uniservices as building blocks

« Communication among uniservices requires fast interconnects
* Leverage disaggregated memory to reduce memory copying
e Support for sending data from remote memory to sockets directly

24

Challenges

Right abstractions are needed for balancing portability of uniservices
and performance

25

summary

* Hardware resource disaggregation should be exposed to applications
rather than hidden from them

* On disaggregated architecture, applications themselves should be
disaggregated as well

* Decompose applications into uniservices for scaling along physical boundaries

