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Road Map

Disaggregated Applications
q Disaggregated Architecture
q Uniservices
q Evaluation
q Challenges
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What is Resource Disaggregation?
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Before Resource Disaggregation

• Monolithic server or “blade”
• The de facto deployment unit at current data centers
• Contains large supply of different resource types in one server

• CPUs, memory, disks, GPUs, NICs, FPGA, etc.
• Scale out by adding more monolithic servers

• even if only a subset of resource types need growth

• Resource underutilization
• Poor elasticity
• Poor energy efficiency
• Fate-sharing failure
• Hard to adopt new hardware
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Transformation to Disaggregated Servers
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Disaggregated Servers

• Disaggregated Servers
• Contain mostly one type of resources: CPU servers, memory servers, … 
• Connected by fast interconnects such as RDMA
• Scale out independently to other resource types
• Heterogeneity-friendly
• Better utilization, energy efficiency

• Monolithic server
• The de facto deployment unit at current data centers
• Contains different resource types in one server
• Scale out by adding more monolithic servers

• even if only a subset of components is needed.
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Prior Work on Resource Disaggregation

System & Hardware Application

LegoOS [OSDI’18]
Leap [ATC’20]

Infiniswap [NSDI’17]
Clover [ATC’20]

The Machine [HP]
etc.
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Today’s Cloud Applications

• Microservices and Serverless computing
• Highly modularized
• Separate state and functions

• Advantages
• Pay only for what you need
• Better elasticity
• Relatively easy failure recovery
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DeathStarBench [ASPLOS’19]



Current work: Disaggregated Logical Servers
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Logical Servers

• Applications are divided along 
logical boundaries, not physical
• Current disaggregated OSes mostly 
hide hardware disaggregation.
• Complicates OS design
• Poor performance due to lack of 

leveraging disaggregation*

*“Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs” [Zhang et. al, VLDB’20] 



Exposing Disaggregation

Hardware resource disaggregation should be exposed to 
applications (using new abstractions) rather than hidden
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Lampson’s Hints: Don’t Hide Power



Leveraging Disaggregation: Overview
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Uniservices

• Microservice specialized for a particular type of hardware resource 
• Deployed and scaled out along physical boundaries
• Uses a fast communication backbone such as RDMA
• Running on conventional operating systems
• Reusable and shareable
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Types of Uniservices

• Control-path Uniservices
• Focusing on application logic
• Examples include load balancing uniservices and web server uniservices

• Data-path Uniservices
• Focusing on data processing and transfer
• Examples include TCP uniservices and caching uniservices
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Reusable Uniservices

• Cache uniservices
• Persistent key-value store uniservices
• TCP/TLS uniservices
• ML related uniservices
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Comparing Microservices and Uniservices
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Microservices Uniservices

Deployment unit A (logical) server, such as a virtual 
machine or a container

A physical hardware platform with 
a specialized resource

Modularity level Coarse-grained, combining various 
functionalities and using multiple 

resource types

Fine-grained, focusing on managing 
a single hardware resource

Network stack Usually TCP/IP RDMA or optical switching network



Actors

A Uniservice can comprise two types of actors:
• C-functions

• stateless
• “one shot”
• non-blocking
• predictable running time
• easily re-startable after failure

• M-functions
• stateful
• long-running
• can block waiting for external services
• requires replication or re-computation of state
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Object Stores

• Goals
• provide input to C-functions and store output of C-functions
• minimize copying through flexible object references
• optimize cache locality
• enable prefetching / warm-up

• Object Types
• Streamable
• Random Access

• Object Modes
• Read-only
• Copy-on-Write
• Mutable
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Application Decomposition
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Uniservices Architecture
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invoker invoker

1. insert triggers into log
2. scheduler assigns functions 

to invokers
3. invokers load code from hubs
4. invokers launch functions
5. data movement over RDMA



Use Case: Video rescaling
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M-SPLIT

M-MERGE

C-RESIZE C-RESIZE C-RESIZE C-RESIZE

memory increased linearly as needed

core count doubled as needed



M-SPLIT scaling
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• single core enough
• AWS requires 2 cores to 

obtain sufficient memory



C-RESIZE scaling
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• Mostly compute bound
• AWS would require 

allocating 10G of 
memory (at 6 cores)



Challenges

• Converting existing applications to disaggregated applications with 
uniservices requires effort
• Solution: providing basic reusable uniservices as building blocks

• Communication among uniservices requires fast interconnects
• Leverage disaggregated memory to reduce memory copying
• Support for sending data from remote memory to sockets directly
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Challenges

Right abstractions are needed for balancing portability of uniservices 
and performance
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Summary

• Hardware resource disaggregation should be exposed to applications 
rather than hidden from them

• On disaggregated architecture, applications themselves should be 
disaggregated as well
• Decompose applications into uniservices for scaling along physical boundaries
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