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What is Resource Disaggregation?
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Before Resource Disaggregation

* Monolithic server or “blade”
* The de facto deployment unit at current data centers

Contains large supply of different resource types in one server
* CPUs, memory, disks, GPUs, NICs, FPGA, etc.

Scale out by adding more monolithic servers
* even if only a subset of resource types need growth

Resource underutilization
Poor elasticity

Poor energy efficiency
Fate-sharing failure

Hard to adopt new hardware




Transformation to Disaggregated Servers
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Disaggregated Servers

* Disaggregated Servers
e Contain mostly one type of resources: CPU servers, memory servers, ...
* Connected by fast interconnects such as RDMA
* Scale out independently to other resource types
* Heterogeneity-friendly
* Better utilization, energy efficiency

* Monolithic server
* The de facto deployment unit at current data centers
e Contains different resource types in one server

* Scale out by adding more monolithic servers
e even if only a subset of components is needed.



Prior Work on Resource Disaggregation

System & Hardware Application
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Leap [ATC’20]
Infiniswap [NSDI’17]
Clover [ATC’20]
The Machine [HP]
etc.
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Today’s Cloud Applications

. Microservices
@

* Microservices and Serverless computing = INSZ.
* Highly modularized e «.,
* Separate state and functions W sk

SELES,

DeathStarBench [ASPLOS’19]
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* Advantages
e Pay only for what you need
* Better elasticity
» Relatively easy failure recovery




Current work: Disaggregated Logical Servers

* Applications are divided along
logical boundaries, not physical

* Current disaggregated OSes mostly

hide hardware disaggregation.
* Complicates OS design

* Poor performance due to lack of
leveraging disaggregation™
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*“Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs” [Zhang et. al, VLDB’20]10



Exposing Disaggregation

Hardware resource disaggregation should be exposed to
applications (using new abstractions) rather than hidden

Lampson’s Hints: Don’t Hide Power
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Leveraging Disaggregation: Overview
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Uniservices

* Microservice specialized for a particular type of hardware resource
* Deployed and scaled out along physical boundaries

e Uses a fast communication backbone such as RDMA

* Running on conventional operating systems

* Reusable and shareable

TCP Uniservices NIC Servers NAnm~nnn hnd
NIC Servers Memcached Memory Servers

Memory Servers

Uniservices




Types of Uniservices

* Control-path Uniservices
* Focusing on application logic
* Examples include load balancing uniservices and web server uniservices

* Data-path Uniservices
* Focusing on data processing and transfer
* Examples include TCP uniservices and caching uniservices



Reusable Uniservices

* Cache uniservices
* Persistent key-value store uniservices
 TCP/TLS uniservices

* ML related uniservices



Comparing Microservices and Uniservices

Microservices Uniservices

Deployment unit A (logical) server, such as a virtual A physical hardware platform with
machine or a container a specialized resource
Modularity level Coarse-grained, combining various Fine-grained, focusing on managing
functionalities and using multiple a single hardware resource

resource types

Network stack Usually TCP/IP RDMA or optical switching network

Microservice
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Actors

A Uniservice can comprise two types of actors:

e C-functions
 stateless
* “one shot”
* non-blocking
* predictable running time
» easily re-startable after failure
* M-functions
* stateful
* long-running
* can block waiting for external services
* requires replication or re-computation of state
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Object Stores

e Goals
e provide input to C-functions and store output of C-functions
* minimize copying through flexible object references
e optimize cache locality
e enable prefetching / warm-up

* Object Types
 Streamable
e Random Access

* Object Modes
* Read-only
* Copy-on-Write
* Mutable
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Uniservices Architecture
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Use Case: Video rescaling

memory increased linearly as needed
M-SPLIT
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M-SPLIT scaling
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C-RESIZE scaling

Mostly compute bound
AWS would require
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Challenges

* Converting existing applications to disaggregated applications with
uniservices requires effort

 Solution: providing basic reusable uniservices as building blocks

« Communication among uniservices requires fast interconnects
* Leverage disaggregated memory to reduce memory copying
e Support for sending data from remote memory to sockets directly
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Challenges

Right abstractions are needed for balancing portability of uniservices
and performance
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summary

* Hardware resource disaggregation should be exposed to applications
rather than hidden from them

* On disaggregated architecture, applications themselves should be
disaggregated as well

* Decompose applications into uniservices for scaling along physical boundaries



