
Disaggregated Applications 
using Uniservices

Xinwen Wang
Robbert van Renesse

Cornell University

1



Road Map

Disaggregated Applications
q Disaggregated Architecture
q Uniservices
q Evaluation
q Challenges

2



What is Resource Disaggregation?

3



Before Resource Disaggregation

• Monolithic server or “blade”
• The de facto deployment unit at current data centers
• Contains large supply of different resource types in one server

• CPUs, memory, disks, GPUs, NICs, FPGA, etc.
• Scale out by adding more monolithic servers

• even if only a subset of resource types need growth

• Resource underutilization
• Poor elasticity
• Poor energy efficiency
• Fate-sharing failure
• Hard to adopt new hardware

4

CPU 
Sockets

Memory 
Slots



Transformation to Disaggregated Servers

5



Disaggregated Servers

• Disaggregated Servers
• Contain mostly one type of resources: CPU servers, memory servers, … 
• Connected by fast interconnects such as RDMA
• Scale out independently to other resource types
• Heterogeneity-friendly
• Better utilization, energy efficiency

• Monolithic server
• The de facto deployment unit at current data centers
• Contains different resource types in one server
• Scale out by adding more monolithic servers

• even if only a subset of components is needed.

6



Prior Work on Resource Disaggregation

System & Hardware Application

LegoOS [OSDI’18]
Leap [ATC’20]

Infiniswap [NSDI’17]
Clover [ATC’20]

The Machine [HP]
etc.

7



Prior Work on Resource Disaggregation

System & Hardware Application

LegoOS [OSDI’18]
Leap [ATC’20]

Infiniswap [NSDI’17]
Clover [ATC’20]

The Machine [HP]
etc.

?

8



Today’s Cloud Applications

• Microservices and Serverless computing
• Highly modularized
• Separate state and functions

• Advantages
• Pay only for what you need
• Better elasticity
• Relatively easy failure recovery

9

DeathStarBench [ASPLOS’19]



Current work: Disaggregated Logical Servers

10

Logical Servers

• Applications are divided along 
logical boundaries, not physical
• Current disaggregated OSes mostly 
hide hardware disaggregation.
• Complicates OS design
• Poor performance due to lack of 

leveraging disaggregation*

*“Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs” [Zhang et. al, VLDB’20] 



Exposing Disaggregation

Hardware resource disaggregation should be exposed to 
applications (using new abstractions) rather than hidden

11

Lampson’s Hints: Don’t Hide Power



Leveraging Disaggregation: Overview

12



Uniservices

• Microservice specialized for a particular type of hardware resource 
• Deployed and scaled out along physical boundaries
• Uses a fast communication backbone such as RDMA
• Running on conventional operating systems
• Reusable and shareable

13

NIC ServersTCP Uniservices
Memory ServersMemcached 

UniservicesNIC ServersTCP Uniservices NIC ServersTCP Uniservices
Memory ServersMemcached 

Uniservices Memory ServersMemcached 
Uniservices



Types of Uniservices

• Control-path Uniservices
• Focusing on application logic
• Examples include load balancing uniservices and web server uniservices

• Data-path Uniservices
• Focusing on data processing and transfer
• Examples include TCP uniservices and caching uniservices

14



Reusable Uniservices

• Cache uniservices
• Persistent key-value store uniservices
• TCP/TLS uniservices
• ML related uniservices

15



Comparing Microservices and Uniservices

16

Microservices Uniservices

Deployment unit A (logical) server, such as a virtual 
machine or a container

A physical hardware platform with 
a specialized resource

Modularity level Coarse-grained, combining various 
functionalities and using multiple 

resource types

Fine-grained, focusing on managing 
a single hardware resource

Network stack Usually TCP/IP RDMA or optical switching network



Actors

A Uniservice can comprise two types of actors:
• C-functions

• stateless
• “one shot”
• non-blocking
• predictable running time
• easily re-startable after failure

• M-functions
• stateful
• long-running
• can block waiting for external services
• requires replication or re-computation of state

17



Object Stores

• Goals
• provide input to C-functions and store output of C-functions
• minimize copying through flexible object references
• optimize cache locality
• enable prefetching / warm-up

• Object Types
• Streamable
• Random Access

• Object Modes
• Read-only
• Copy-on-Write
• Mutable

18



Application Decomposition

19



Uniservices Architecture

20

invoker invoker

1. insert triggers into log
2. scheduler assigns functions 

to invokers
3. invokers load code from hubs
4. invokers launch functions
5. data movement over RDMA



Use Case: Video rescaling

21

M-SPLIT

M-MERGE

C-RESIZE C-RESIZE C-RESIZE C-RESIZE

memory increased linearly as needed

core count doubled as needed



M-SPLIT scaling

22

• single core enough
• AWS requires 2 cores to 

obtain sufficient memory



C-RESIZE scaling

23

• Mostly compute bound
• AWS would require 

allocating 10G of 
memory (at 6 cores)



Challenges

• Converting existing applications to disaggregated applications with 
uniservices requires effort
• Solution: providing basic reusable uniservices as building blocks

• Communication among uniservices requires fast interconnects
• Leverage disaggregated memory to reduce memory copying
• Support for sending data from remote memory to sockets directly

24



Challenges

Right abstractions are needed for balancing portability of uniservices 
and performance

25



Summary

• Hardware resource disaggregation should be exposed to applications 
rather than hidden from them

• On disaggregated architecture, applications themselves should be 
disaggregated as well
• Decompose applications into uniservices for scaling along physical boundaries

26


