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The Hydro Stack

Common
intermediate
language

Allows
compositional,
multi-paradigm

reasoning
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HYDROLOGIC

Mix consistency
guarantees in a
single distributed
system

enforce strong
user-visible
consistency,

automatically




What makes a shopping cart so special?
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Lattices: when replication is easy
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Lattice Examples: Power Set
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Max Naturals

max = LI min = I



How do we safely

observe lattice-valued
replicated state?




Observing Replicated State

* Need guarantees about distributed state
* More restricted mutations allow more general observations

|s anyone over 1387
3X. X > 187

No concurrent mutations can violate this
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Reliable Observations

Monotonic object: Threshold observation:
mutations are inflationary comparisons with constants
with respect to lattice order. are stable predicates

monotonic lattices

increment-only
counters

Single-writer  Multi-writer
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grow-only sets
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Programming monotonically

Person

named Boaty

* If state at replicas only grows... McBoatface
 And we only observe
thresholds...
. e Someone is
e Or stable characteristics... At least 18

e Our program can be correct
without coordination

L L L
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Beyond Threshold observations

Threshold observation: General observation:
comparisons with constants
are stable predicates codomains have a finite T

allow the observation of T
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Standing on the shoulders of giants

Consistency Analysis in Bloom: a CALM and Collect¢

Approach

Logic and Lattices for Distributed Programming

Peter Alvaro, Neil Conway, Joseph M. Hell

ABSTRACT
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Conflict-Free Replic‘ated Data Types*
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Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in
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Lasp: A Language for Distributed,

Coordination-Free Programming

Christopher Meiklejohn
Basho Technologies, Inc.
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Abstract

We propose Lasp, a new programming model desicned 1o sim-
plify large-scale distributed programming. Lasp combines ideas
from deterministic dataflow programming together with conflict-
free replicated data types (CRDTs). This provides support for com-
putations where not all participants are online together at a given
moment. The initial design presented here provides powerful prim-
itives for composing CRDTs, which lets us write long-lived fault-
tolerant distributed applications with nonmonotonic behavior in a
monotonic framework., Given reasonable models of node-to-node
communications and node failures, we prove formally that a Lasp
program can be considered as a functional program that supports
functional reasoning and programming technigues. We have im-
plemented Lasp as an Erlang library built on top of the Riak Core
distributed systems framework. We have developed one nontrivial
large-scale application, the advertisemen! counter scenario from the
SyncFree research project. We plan o extend our current prototy pe
into a general-purpose language in which synchronization is used

Peter Van Roy
Université catholique de Louvain

peter.vanroy@uclouvain.be

and state-machine replication, grow in complexity with partial
replication, dynamic membership, and unreliahle networks, [14]

This is further complicated by an additional regquirement for
both of these applications: each must tolerate periods withoul con-
nectivity while allowing local copies of replicated state to change.
For example, mobile games should allow players to continue to ac-
cumulate achievements or edit their profile while they are riding in
the subway without connectivity; “Internet of Things™ applications
should be able 1o aggregate statistics from a power meter during a
spowstorm when connectivity is not available, and later synchro-
nize when connectivity is restored. Because of these requirements,
the burden is placed on the programmer of these applications to en-
sure that concurrent operations performed on replicated data have
both a deterministic and desirable outcome.

For example, consider the case where a user’s gaming profile
is replicated between two mobile devicd{)Concurrent operations,
which can be thought of as operations performed during the period

where both clients are online but without communication, can mod-
L RN R . By, Hrgye A . Dy




This paper: what about these?

SEQUENTIAL COMMUNICATING TRADITIONAL CODE?
PROCESSES? STATE MACHINES?



Stream Lattices

Monotonic in its
execution trace

Deterministic Function
As inputs arrive... ... outputs depart
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Bounded Prefix Lattice
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This is sealed!

Sealed Set of Indexed Values Safe to read
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Reliable Observations

grow monotonically

increment-only
counters

Single-writer  Multi-writer
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Reliable Observations

grow monotonically
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Let’s merge some streams!

Streams need
same origin to

[ill i21 |3] merge!

[i1/ i2103]

Enforce with a
type system!




Leveraging lattices: a
shopping cart reborn
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Manifesting Checkout
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Use it Today!

Rust library implementing all lattices described here

Embedded DSL correctly implements LI, M on sequential
processes!

Beats previous record-setting performance!

Checker only, optimizer not ready

Check out our e-graphs paper for optimization story!
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Optimizing Stateful Dataflow with Local Rewrites

Shadaj Laddad
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Abstract
Optimizing a stuteful dataflow lasguage & a challenglog task.

Thete are s nerectiess constraints for preserving prop-

ertes expected by Sownstream consum

4 4 large space

compiler techniques with speci
yield unpredictable performanc
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Writlng piimieer for such a programming language is
a taunting task We need to apply program-wide trans forma-
Lo L the style of g query optimizes [4). but using heurlsties
oeder optimization passes can lead 10 unpredictable per-
formance, Many Hydroflow tranclormatlons result i graphs
with egual or higher intermediate cost, but can enable Later
aptimizations that dramatically reduce the final cest. Becase
Hydroflow is a compiler target, ordered passes ure especially

tiess proaf. Bt with e-graphs, we can deamatically simplify  Problematic because they would place a burdea on upstream
the process of building o correet optimizer while vielding toamk Soptid f““_‘dh’ Hydrof *
more consistent results! In this shont paper, we discuss our But e-graphs [7, 8] give us o glimmer of hupe! Instead of

early work using e-graphs 1o develop an optimizer for o
the Hydroflow datatlow language, Our p pe demon-
strates that composing simple, casy-to-prove rewrite rules
i sufficient to match technigues in hand-optimized systems.

Keywords: dstributed vy den, query oplimization, e-grapie

1 Introduction

As applications scabe (0 handle grodistrbuted wers who in-
Leract i real-lime, strenming dataflow sy stems have gamed

greedily making optimization decisions, we can compose
local rewrite rules und efficiently explore the full space of
transformations. Using ¢-graphs to drive cur optimizing com
piler enables three key opportunitics:

I We can define primitive rewrites that map o core
dataflow properties (distributive, determimistic. et )
imstend of hritthe special-cases

2 Or carrectness proafs are musch simpler, because we
cam independently prove low-level rules.

3 We can implement optimizations that invelve induc-
Hive proods ever e by using equivalence predicates

Shadaj Laddad
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Monotonicity for all
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A well-typed lattice
interpretation of
streams

compositional
reasoning over both
weakly- and strongly-
synchronized replicas

Sequential code is a
special case of
monotonicity
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