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Checkout OK!



Programmers 
need more than 

shopping carts
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The Hydro Stack

…

Cloud
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…FaaS Storage
ML

Frameworks

Actors 
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 (e.g. Bloom)

Futures 
(e.g. Ray)
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Deployment
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The Hydro Stack

Common 
intermediate 

language

Mix consistency 
guarantees in a 

single distributed 
system

enforce strong 
user-visible 

consistency, 
automatically

Allows 
compositional, 
multi-paradigm 

reasoning

HYDROLOGIC
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What makes a shopping cart so special?

Merge(     ))=

Commutative

Idempotent

,    ,

associative



Replication for free*!



Lattices: when replication is easy

Join : ⊔ 
merges 

state

Meet : ⊓ 
common 

state

Top : ⊤ 
biggest 

value; unit 
for ⊔

Bottom : ⊥ 
smallest 

value; unit 
for ⊓

⊥

⊤

… …

⊔

⊓



Lattice Examples: Power Set

{ } { } { }

∪ = ⊔ ∩ = ⊓ { } { }{ }

{ }⊤ =

{ }⊥ = 



Max Naturals

0

1

2

∞ 

max = ⊔ min = ⊓ 

⊤ =

⊥ = 



How do we safely 
observe lattice-valued 
replicated state?

31



Observing Replicated State

• Need guarantees about distributed state

• More restricted mutations allow more general observations

Is anyone over 18?

∃x. x > 18?

No concurrent mutations can violate this

34



monotonic lattices

Reliable Observations

More Observations More Mutations

Constants
Multi-writer 
Registers

Single-writer
registers

increment-only
counters grow-only sets

Monotonic object: 
mutations are inflationary 
with respect to lattice order.

Threshold observation:
comparisons with constants 
are stable predicates

35



Programming monotonically

• If state at replicas only grows…

• And we only observe 
thresholds…

• Or stable characteristics…

• Our program can be correct 
without coordination

Someone is 
at least 18

Person 
named Boaty 
McBoatface

36



Beyond Threshold observations

Threshold observation:
comparisons with constants 
are stable predicates

General observation:
Monotonic functions whose 
codomains have a finite T 
allow the observation of T

x > 18 :          {    ,   } :

👀
👀



Standing on the shoulders of giants

40



This paper: what about these?

SEQUENTIAL 
PROCESSES?

COMMUNICATING 
STATE MACHINES?

TRADITIONAL CODE?



Stream Lattices

inputs outputs

Deterministic Function

Monotonic in its 
execution trace

As inputs arrive… … outputs depart

Still a 
Lattice!



Prefix Lattice

[i1,i2]

[i1]

[i1,i2,i3]

[ ]

[∞]

Isomorphic 
to MaxNat!

keep-longer = ⊔ Keep-shorter = ⊓ 

⊤ =

⊥ = 



Bounded Prefix Lattice

[i1,i2]

[i1]

[i1,i2,i3]

[ ]

keep-longer = ⊔ Keep-shorter = ⊓ 

⊤ =

⊥ = 

👀

Most 
Programs 

Terminate!



Sealed Set of Indexed Values

keep-value = ⊔ keep-⊥ = ⊓ 

Isomorphic to 
powerset!

[i1, i2, i3]

[i1, i2, ⊥ ] [i1, ⊥, i3 ] [⊥, i2, i3 ]

[i1, ⊥, ⊥ ] [⊥, i2, ⊥ ] [⊥, ⊥, i3]

[⊥, ⊥, ⊥ ]⊥ = 

⊤ =

This is sealed! 
Safe to read  
👀

Allows out-of-
order arrival!



grow monotonically

Reliable Observations

More Observations More Mutations

Constants
Multi-writer 
Registers

Single-writer
registers

increment-only
counters grow-only sets
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grow monotonically

Reliable Observations

More Observations More Mutations

Constants
Multi-writer 
Registers

Single-writer
registers

increment-only
counters grow-only sets
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Let’s merge some streams!

[i1, i2, ⊥]

[i1, i2, ⊥]

⊔ = [i1, i2, ⊥]

i3

[i1, i2, i3]

o3

Streams need 
same origin to 

merge!

Enforce with a 
type system!



Leveraging lattices: a 
shopping cart reborn



Manifesting Checkout

= manifest
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length=?
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length=?
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length=?
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[⊥, ⊥]

Manifesting Checkout

= manifest

[⊥, ⊥ ,… ]
length=?

[⊥, ⊥ ,… ]
length=?

[⊥, ⊥ ,… ]
length=?

length=2length=2length=2length=2

Run monotonic 
function: ∃
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[⊥, ⊥]

Manifesting Checkout

= manifest

length=? length=? length=?

[⊥, ⊥ ][⊥, ⊥ ] [⊥, ⊥ ]

length=2

length=2length=2length=2Can Read Top!



[⊥, ⊥]

Manifesting Checkout

= manifest

length=? length=? length=?

[⊥, ⊥ ][⊥, ⊥ ] [⊥, ⊥ ]

length=2

length=2length=2length=2

Top Everywhere!
Checkout at will



Use it Today!

• Rust library implementing all lattices described here

• Embedded DSL correctly implements ⊔, ⊓ on sequential 
processes!

• Beats previous record-setting performance!

• Checker only, optimizer not ready

• Check out our e-graphs paper for optimization story!



Monotonicity for all

A well-typed lattice 
interpretation of 

streams

compositional 
reasoning over both 

weakly- and strongly-
synchronized replicas

Sequential code is a 
special case of 
monotonicity



Thank you!
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