
Towards a Compiler for Distributed
Programs

MAE MILANO
UC BERKELEY

PRINCETON UNIVERSITY

Available
and

Performant!

Manifesting Checkout

Manifesting Checkout
Authoritative

copy

Manifesting Checkout
Authoritative

copy

Manifesting Checkout
Authoritative

copy= manifest

Manifesting Checkout
Authoritative

copy= manifest

Manifesting Checkout
Authoritative

copy= manifest

Checkout OK!

Programmers
need more than

shopping carts

Joe Hellerstein Prof. Alvin Cheung Prof. Natacha Crooks

Conor Power Shadaj Laddad

Prof.* Mae Milano
Mingwei Samuel

David Chu Dr. Tiemo Bang

Lucky Katahanas

Chris DouglasChris Douglas

The Hydro Stack

…

Cloud
Services

…FaaS Storage
ML

Frameworks

Actors
(e.g. Orleans)

Functional
(e.g. Spark)

Logic
 (e.g. Bloom)

Futures
(e.g. Ray)

New
DSLs

HYDRAULIC Verified Lifting

HYDROLYSIS Compiler

HYDROFLOW
Deployment

HYDROFLOW

Program

Sequential
Code

HYDRO

HYDROLOGIC

The Hydro Stack

Common
intermediate

language

Mix consistency
guarantees in a

single distributed
system

enforce strong
user-visible

consistency,
automatically

Allows
compositional,
multi-paradigm

reasoning

HYDROLOGIC

What makes a shopping cart so special?

What makes a shopping cart so special?

Merge(,) =

Commutative

Merge(

What makes a shopping cart so special?

Merge())=

Commutative

Idempotent

, ,

Merge(

What makes a shopping cart so special?

Merge())=

Commutative

Idempotent

, ,

associative

Replication for free*!

Lattices: when replication is easy

Join : ⊔
merges

state

Meet : ⊓
common

state

Top : ⊤
biggest

value; unit
for ⊔

Bottom : ⊥
smallest

value; unit
for ⊓

⊥

⊤

… …

⊔

⊓

Lattice Examples: Power Set

{ } { } { }

∪ = ⊔ ∩ = ⊓ { } { }{ }

{ }⊤ =

{ }⊥ =

Max Naturals

0

1

2

∞

max = ⊔ min = ⊓

⊤ =

⊥ =

How do we safely
observe lattice-valued
replicated state?

31

Observing Replicated State

• Need guarantees about distributed state

• More restricted mutations allow more general observations

Is anyone over 18?

∃x. x > 18?

No concurrent mutations can violate this

34

monotonic lattices

Reliable Observations

More Observations More Mutations

Constants
Multi-writer
Registers

Single-writer
registers

increment-only
counters grow-only sets

Monotonic object:
mutations are inflationary
with respect to lattice order.

Threshold observation:
comparisons with constants
are stable predicates

35

Programming monotonically

• If state at replicas only grows…

• And we only observe
thresholds…

• Or stable characteristics…

• Our program can be correct
without coordination

Someone is
at least 18

Person
named Boaty
McBoatface

36

Beyond Threshold observations

Threshold observation:
comparisons with constants
are stable predicates

General observation:
Monotonic functions whose
codomains have a finite T
allow the observation of T

x > 18 : { , } :

👀
👀

Standing on the shoulders of giants

40

This paper: what about these?

SEQUENTIAL
PROCESSES?

COMMUNICATING
STATE MACHINES?

TRADITIONAL CODE?

Stream Lattices

inputs outputs

Deterministic Function

Monotonic in its
execution trace

As inputs arrive… … outputs depart

Still a
Lattice!

Prefix Lattice

[i1,i2]

[i1]

[i1,i2,i3]

[]

[∞]

Isomorphic
to MaxNat!

keep-longer = ⊔ Keep-shorter = ⊓

⊤ =

⊥ =

Bounded Prefix Lattice

[i1,i2]

[i1]

[i1,i2,i3]

[]

keep-longer = ⊔ Keep-shorter = ⊓

⊤ =

⊥ =

👀

Most
Programs

Terminate!

Sealed Set of Indexed Values

keep-value = ⊔ keep-⊥ = ⊓

Isomorphic to
powerset!

[i1, i2, i3]

[i1, i2, ⊥] [i1, ⊥, i3] [⊥, i2, i3]

[i1, ⊥, ⊥] [⊥, i2, ⊥] [⊥, ⊥, i3]

[⊥, ⊥, ⊥]⊥ =

⊤ =

This is sealed!
Safe to read
👀

Allows out-of-
order arrival!

grow monotonically

Reliable Observations

More Observations More Mutations

Constants
Multi-writer
Registers

Single-writer
registers

increment-only
counters grow-only sets

46

grow monotonically

Reliable Observations

More Observations More Mutations

Constants
Multi-writer
Registers

Single-writer
registers

increment-only
counters grow-only sets

47

Let’s merge some streams!

[i1, i2, ⊥]

[i1, i2, ⊥]

⊔ = [i1, i2, ⊥]

i3

[i1, i2, i3]

o3

Streams need
same origin to

merge!

Enforce with a
type system!

Leveraging lattices: a
shopping cart reborn

Manifesting Checkout

= manifest

[⊥, ⊥]

Manifesting Checkout

= manifest length=2

[⊥, ⊥ ,…]
length=?

[⊥, ⊥ ,…]
length=?

[⊥, ⊥ ,…]
length=?

[⊥, ⊥]

Manifesting Checkout

= manifest

[⊥, ⊥ ,…]
length=?

[⊥, ⊥ ,…]
length=?

[⊥, ⊥ ,…]
length=?

length=2

[⊥, ⊥]

Manifesting Checkout

= manifest

[⊥, ⊥ ,…]
length=?

[⊥, ⊥ ,…]
length=?

[⊥, ⊥ ,…]
length=?

length=2length=2length=2length=2

Run monotonic
function: ∃

[⊥, ⊥]

Manifesting Checkout

= manifest

length=? length=? length=?

[⊥, ⊥ ,…] [⊥, ⊥ ,…][⊥, ⊥ ,…]

length=2

length=2length=2length=2

[⊥, ⊥]

Manifesting Checkout

= manifest

length=? length=? length=?

[⊥, ⊥][⊥, ⊥] [⊥, ⊥]

length=2

length=2length=2length=2

[⊥, ⊥]

Manifesting Checkout

= manifest

length=? length=? length=?

[⊥, ⊥][⊥, ⊥] [⊥, ⊥]

length=2

length=2length=2length=2Can Read Top!

[⊥, ⊥]

Manifesting Checkout

= manifest

length=? length=? length=?

[⊥, ⊥][⊥, ⊥] [⊥, ⊥]

length=2

length=2length=2length=2

Top Everywhere!
Checkout at will

Use it Today!

• Rust library implementing all lattices described here

• Embedded DSL correctly implements ⊔, ⊓ on sequential
processes!

• Beats previous record-setting performance!

• Checker only, optimizer not ready

• Check out our e-graphs paper for optimization story!

Monotonicity for all

A well-typed lattice
interpretation of

streams

compositional
reasoning over both

weakly- and strongly-
synchronized replicas

Sequential code is a
special case of
monotonicity

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Manifesting Checkout
	Slide 12: Manifesting Checkout
	Slide 13: Manifesting Checkout
	Slide 14: Manifesting Checkout
	Slide 15: Manifesting Checkout
	Slide 16: Manifesting Checkout
	Slide 17
	Slide 19
	Slide 20: The Hydro Stack
	Slide 21: The Hydro Stack
	Slide 22: What makes a shopping cart so special?
	Slide 23: What makes a shopping cart so special?
	Slide 24: What makes a shopping cart so special?
	Slide 25: What makes a shopping cart so special?
	Slide 26: Replication for free*!
	Slide 27: Lattices: when replication is easy
	Slide 28: Lattice Examples: Power Set
	Slide 29: Max Naturals
	Slide 31: How do we safely observe lattice-valued replicated state?
	Slide 34: Observing Replicated State
	Slide 35: Reliable Observations
	Slide 36: Programming monotonically
	Slide 37: Beyond Threshold observations
	Slide 40: Standing on the shoulders of giants
	Slide 41: This paper: what about these?
	Slide 42: Stream Lattices
	Slide 43: Prefix Lattice
	Slide 44: Bounded Prefix Lattice
	Slide 45: Sealed Set of Indexed Values
	Slide 46: Reliable Observations
	Slide 47: Reliable Observations
	Slide 49: Let’s merge some streams!
	Slide 52: Leveraging lattices: a shopping cart reborn
	Slide 53: Manifesting Checkout
	Slide 54: Manifesting Checkout
	Slide 56: Manifesting Checkout
	Slide 57: Manifesting Checkout
	Slide 58: Manifesting Checkout
	Slide 59: Manifesting Checkout
	Slide 60: Manifesting Checkout
	Slide 61: Manifesting Checkout
	Slide 62: Use it Today!
	Slide 65: Monotonicity for all
	Slide 67: Thank you!

