Towards a Compiler for Distributed
Programs

MAE MILANO
UC BERKELEY
PRINCETON UNIVERSITY

o~/
W “J

sky

Manifesting Checkout

Manifesting Checkout

Authoritative
copy

Manifesting Checkout

Authoritative
copy

Manifesting Checkout

Authoritative
= manifest AN copy

Manifesting Checkout

Authoritative
= manifest o copy

Manifesting Checkout

Authoritative
= manifest o copy

Programmers

eed more than

—
— T

Joe Hellerstein

Prof.* Mae Milano

Chris Douglas David Chu Shadaj Laddad Dr. Tiemo Bang

The Hydro Stack

Sequential Futures Actors Functional Logic . New
Code (e.g.Ray) (e.g.Orleans) (e.g. Spark) (e.g.Bloom) DSLs

: HyDRAULIC Verified Lifting

—— s —
))

HYDROLOGIC

a

HYDRoOLYSIS Compiler

(=))

HYDROFLOW
Program

HYDROFLOW
Deployment HYDRO

ML Cloud
Frameworks " Services

Storage

The Hydro Stack

Common
intermediate
language

Allows
compositional,
multi-paradigm

reasoning

(@

HYDROLOGIC

Mix consistency
guarantees in a
single distributed
system

enforce strong
user-visible
consistency,

automatically

What makes a shopping cart so special?

What makes a shopping cart so special?

R

Merge (@2 , FHF) = o

What makes a shopping cart so special?

R

perge (FE, Merge (FH, 65))- Wi

What makes a shopping cart so special?

i

Merge(Merge(

N

g -

. . ?h
Replication for free*! O S

Lattices: when replication is easy

Join: U
merges
state

Top: T
biggest JuENEN!
value; unit value; unit
for U for M

Lattice Examples: Power Set

T={@®®/,}
T
U=t {@®}{@A}{®A}
| > <]
{@} {@&} {4}

T~ _—
L={}

Max Naturals

max = LI min = I

How do we safely

observe lattice-valued
replicated state?

Observing Replicated State

* Need guarantees about distributed state
* More restricted mutations allow more general observations

|s anyone over 1387
3X. X > 187

No concurrent mutations can violate this

34

Reliable Observations

Monotonic object: Threshold observation:
mutations are inflationary comparisons with constants
with respect to lattice order. are stable predicates

monotonic lattices

increment-only
counters

Single-writer Multi-writer

Constants) ,
registers Registers

grow-only sets

(

e

More Observations More Mutgtions

Programming monotonically

Person

named Boaty

* If state at replicas only grows... McBoatface
 And we only observe
thresholds...
. e Someone is
e Or stable characteristics... At least 18

e Our program can be correct
without coordination

L L L

36

Beyond Threshold observations

Threshold observation: General observation:
comparisons with constants
are stable predicates codomains have a finite T

allow the observation of T

(2 ¥
| - {o/}{{l }}{\<>}
X>18: 1 — | N{@,@}: — | >«
| —o (@) {&} {A}
O F \I/

Monotonic functions whose

Standing on the shoulders of giants

Consistency Analysis in Bloom: a CALM and Collect¢

Approach

Logic and Lattices for Distributed Programming

Peter Alvaro, Neil Conway, Joseph M. Hell

ABSTRACT
Distributed programming
and many programmers
consistency, availability
often rejected as an und
of transactions there are
programmers design and
We address this situat
nects the idea of distribut
monotonicity. We then ir
language that is amenat
encourages order-insensi
implementation of Bloo
We also propose a progr:
of erder in Bloom progi
may need to inject coor
illustrate these ideas with
and a distributed shoppir

1. INTRODUC'

Until fairly recently, d
a small group of experts.
distributed programmin

Conflict-Free Replic‘ated Data Types*

! INRIA, Paris, France
2 CITI, Universidade Nova de Lisboa, Portugal
8 Universidade do Minho, Portugal

L UPMC, Paris, France

s LIP6, Paris, France

Abstract. Replicating data under Eventual Consistency (EC) allows
any replica to accept updates without remote synchronisation. This en-
sures performance and scalability in large-scale distributed systems (e.g.,
clouds). However, published EC approaches are ad-hoc and error-prone.
Under a formal Strong Eventual Consistency (SEC) model, we study suf-
ficient conditions for convergence. A data type that satisfies these con-
ditions is called a Conflict-free Replicated Data Type (CRDT). Replicas
of any CRDT are guaranteed to converge in a self-stabilising manner,
despite any number of failures. This paper formalises two popular ap-
proaches (state- and operation-based) and their relevant sufficient con-
ditions. We study a number of useful CRDTs, such as sets with clean
semantics, supporting both add and remove operations, and consider in

IS I R T —— R RS . IR D 50 BT S [———————

Freeze After Writing

Quasi-Deterministic Parallel Programming with LVars

Lindsey Kuper

William R. Marczak
UC Berkeley
wrm@cs.berkeley.edu

Mare Shapiro!®, Nuno Preguica'-?, Carlos Baquero®, and Marek Zawirski'*]l(e”erStein

eley
's.berkeley.edu

application-level
lability costs of
d technique is to
s avoids the risk
er HPPI’OZ{L’h was
ves that logically
ly consistent. In
w automatically
oordination.

1 to Bloom that
om" generalizes
CALM analysis
'e show how the
efficient evalua-
sgies from logic
several practical
nilar to Amazon
afe composition
ms.

Dav
Portland ¢

maier@

in recent year:
consistency ¢
costs of strong

Two differc
significant att
Monotonic Lo

Convergent)
sulated modul
regarding mes
open-source li
a key-value st
functions™ the
This approact
19, 29, 41] as
proposed a for
cated Duta Ty
braic framewc

CvRDTs m
responsibility
mutativity, as
vide guaranie
oeneral. As an

Aaron Turon

Neelakantan R.
rishnaswami

sity of Birmingham

Ryan R. Newton
Indiana University

rrnewton@cs.indiana.edu

aswami@cs. bham.ac uk

Lasp: A Language for Distributed,

Coordination-Free Programming

Christopher Meiklejohn
Basho Technologies, Inc.

cmeiklejohn@basho.com

Abstract

We propose Lasp, a new programming model desicned 1o sim-
plify large-scale distributed programming. Lasp combines ideas
from deterministic dataflow programming together with conflict-
free replicated data types (CRDTs). This provides support for com-
putations where not all participants are online together at a given
moment. The initial design presented here provides powerful prim-
itives for composing CRDTs, which lets us write long-lived fault-
tolerant distributed applications with nonmonotonic behavior in a
monotonic framework., Given reasonable models of node-to-node
communications and node failures, we prove formally that a Lasp
program can be considered as a functional program that supports
functional reasoning and programming technigues. We have im-
plemented Lasp as an Erlang library built on top of the Riak Core
distributed systems framework. We have developed one nontrivial
large-scale application, the advertisemen! counter scenario from the
SyncFree research project. We plan o extend our current prototy pe
into a general-purpose language in which synchronization is used

Peter Van Roy
Université catholique de Louvain

peter.vanroy@uclouvain.be

and state-machine replication, grow in complexity with partial
replication, dynamic membership, and unreliahle networks, [14]

This is further complicated by an additional regquirement for
both of these applications: each must tolerate periods withoul con-
nectivity while allowing local copies of replicated state to change.
For example, mobile games should allow players to continue to ac-
cumulate achievements or edit their profile while they are riding in
the subway without connectivity; “Internet of Things™ applications
should be able 1o aggregate statistics from a power meter during a
spowstorm when connectivity is not available, and later synchro-
nize when connectivity is restored. Because of these requirements,
the burden is placed on the programmer of these applications to en-
sure that concurrent operations performed on replicated data have
both a deterministic and desirable outcome.

For example, consider the case where a user’s gaming profile
is replicated between two mobile devicd{)Concurrent operations,
which can be thought of as operations performed during the period

where both clients are online but without communication, can mod-
L RN R . By, Hrgye A . Dy

This paper: what about these?

SEQUENTIAL COMMUNICATING TRADITIONAL CODE?
PROCESSES? STATE MACHINES?

Stream Lattices

Monotonic in its
execution trace

Deterministic Function
As inputs arrive... ... outputs depart

T = [o°]
Prefix Lattice

[i1)i2/i3]
keep-longer = LI | Keep-shorter = I
[i1,1]

|
[|1] Nelgg[elgelglfe
‘ to MaxNat!

L=1]

Bounded Prefix Lattice

}5]

T= [i1;i2;i3]
keep-longer = LI | Keep-shorter = I
[i1,1]
‘ Most
. Programs
[|1] Terminate!

|
L=1]

This is sealed!

Sealed Set of Indexed Values Safe to read

J),
T — [i]_l i2) |3]

keep-value = U / | \ keep-1 =T

[iy, 05, L] li, L, i5] [L, i, i3]

O fan i
order arrival! li, L, L] [L,i,, L] [L, L, is]
1 = [L, L, L]

Isomorphic to

powerset!

Reliable Observations

grow monotonically

increment-only
counters

Single-writer Multi-writer

Constants) ,
registers Registers

grow-only sets

(

e

More Observations More Mut§6tions

Reliable Observations

grow monotonically

increment-only Single-writer
counters grow-only sets registers

-/

Multi-writer

Constants _
Registers

(

More Observations More Mutations

Let’s merge some streams!

Streams need
same origin to

[ill i21 |3] merge!

[i1/ i2103]

Enforce with a
type system!

Leveraging lattices: a
shopping cart reborn

Manifesting Checkout

= manifest

Manifesting Checkout

= manifest

length=" length=? Iength =7?

(1,1 ,. (1,1 ,.

Q =)

Manifesting Checkout

= manifest

length=" length=" length=
@ 1,1 [Ll..] [La&.]

BB =)

Manifesting Checkout

= manifest I [‘;ﬂ leng;h=2 I

Run monotonic
function: 3% -

Iength =7 length=" length=
(L, L,.] (L@]

Q =)

Manifesting Checkout

= manifest

length=2 length=2 length=2

@, L. (1, 1,.

Q a8

Manifesting Checkout

= manifest [a’ﬁ Ieng;h=2

length=2 length=2 length=2
@, L] [L, L]

Manifesting Checkout

= manifest I [@’% Ieng;h=2 I

Can Read Top!

length=2 length=2 length=2

0 [L¥]

Manifesting Checkout

- manifest length=2 Top Everywhere!
T [@,W‘] Checkout at will

length=2 length=2 length=2
(@, & (@, &
— e e o e e o

Use it Today!

Rust library implementing all lattices described here

Embedded DSL correctly implements LI, M on sequential
processes!

Beats previous record-setting performance!

Checker only, optimizer not ready

Check out our e-graphs paper for optimization story!

H hydro-project / hydroflow ' pPublic

{> Code

@ Issues

56

Il Pull requests

9

L)) Discussions

@ Actions

il Projects

@) Security

Optimizing Stateful Dataflow with Local Rewrites

Shadaj Laddad

shadajiics berkeley edu
Alvin Cheung
UC Berkeluy
akcheuny s ber keleyedu
Abstract
Optimizing a stuteful dataflow lasguage & a challenglog task.

Thete are s nerectiess constraints for preserving prop-

ertes expected by Sownstream consum

4 4 large space

compiler techniques with speci
yield unpredictable performanc

Conor Power
Rerkeley uc i\crkels:y
conorpoweri@cs berkeley edu

Tyler Hou
U Berkeley
tylerhougtherkefey edu

Joseph M. Hellerstemn
UC Berkeley
hellessteinies. berkeley.edu

Writlng piimieer for such a programming language is
a taunting task We need to apply program-wide trans forma-
Lo L the style of g query optimizes [4). but using heurlsties
oeder optimization passes can lead 10 unpredictable per-
formance, Many Hydroflow tranclormatlons result i graphs
with egual or higher intermediate cost, but can enable Later
aptimizations that dramatically reduce the final cest. Becase
Hydroflow is a compiler target, ordered passes ure especially

tiess proaf. Bt with e-graphs, we can deamatically simplify Problematic because they would place a burdea on upstream
the process of building o correet optimizer while vielding toamk Soptid f““_‘dh’ Hydrof *
more consistent results! In this shont paper, we discuss our But e-graphs [7, 8] give us o glimmer of hupe! Instead of

early work using e-graphs 1o develop an optimizer for o
the Hydroflow datatlow language, Our p pe demon-
strates that composing simple, casy-to-prove rewrite rules
i sufficient to match technigues in hand-optimized systems.

Keywords: dstributed vy den, query oplimization, e-grapie

1 Introduction

As applications scabe (0 handle grodistrbuted wers who in-
Leract i real-lime, strenming dataflow sy stems have gamed

greedily making optimization decisions, we can compose
local rewrite rules und efficiently explore the full space of
transformations. Using ¢-graphs to drive cur optimizing com
piler enables three key opportunitics:

I We can define primitive rewrites that map o core
dataflow properties (distributive, determimistic. et)
imstend of hritthe special-cases

2 Or carrectness proafs are musch simpler, because we
cam independently prove low-level rules.

3 We can implement optimizations that invelve induc-
Hive proods ever e by using equivalence predicates

Shadaj Laddad

Q Notifications

|~ Insights

% Fork 23

<% Star 316

Monotonicity for all

g |
Le

A well-typed lattice
interpretation of
streams

compositional
reasoning over both
weakly- and strongly-
synchronized replicas

Sequential code is a
special case of
monotonicity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Manifesting Checkout
	Slide 12: Manifesting Checkout
	Slide 13: Manifesting Checkout
	Slide 14: Manifesting Checkout
	Slide 15: Manifesting Checkout
	Slide 16: Manifesting Checkout
	Slide 17
	Slide 19
	Slide 20: The Hydro Stack
	Slide 21: The Hydro Stack
	Slide 22: What makes a shopping cart so special?
	Slide 23: What makes a shopping cart so special?
	Slide 24: What makes a shopping cart so special?
	Slide 25: What makes a shopping cart so special?
	Slide 26: Replication for free*!
	Slide 27: Lattices: when replication is easy
	Slide 28: Lattice Examples: Power Set
	Slide 29: Max Naturals
	Slide 31: How do we safely observe lattice-valued replicated state?
	Slide 34: Observing Replicated State
	Slide 35: Reliable Observations
	Slide 36: Programming monotonically
	Slide 37: Beyond Threshold observations
	Slide 40: Standing on the shoulders of giants
	Slide 41: This paper: what about these?
	Slide 42: Stream Lattices
	Slide 43: Prefix Lattice
	Slide 44: Bounded Prefix Lattice
	Slide 45: Sealed Set of Indexed Values
	Slide 46: Reliable Observations
	Slide 47: Reliable Observations
	Slide 49: Let’s merge some streams!
	Slide 52: Leveraging lattices: a shopping cart reborn
	Slide 53: Manifesting Checkout
	Slide 54: Manifesting Checkout
	Slide 56: Manifesting Checkout
	Slide 57: Manifesting Checkout
	Slide 58: Manifesting Checkout
	Slide 59: Manifesting Checkout
	Slide 60: Manifesting Checkout
	Slide 61: Manifesting Checkout
	Slide 62: Use it Today!
	Slide 65: Monotonicity for all
	Slide 67: Thank you!

