ApPLIED 2023

Specification and Runtime Checking
of Derecho, A protocol for Fast
Replication for Cloud Services

Kumar Shivam, Vishnu Paladugu, Yanhong A. Liu
Stony Brook University

Replication and consensus are important

Reliable distributed systems require replication and consensus among

distributed processes to tolerate process and link failures

e Replication creates replicated processes to tolerate process failures

e Consensus makes a set of processes agree on a sequence of

values—client operations—through message passing

Many algorithms for replication and consensus

Name Description Language used
1| VS-ISIS Reliable group communication, Birman-Joseph 1987 7] English (items)
2 | VS-ISIS2 Virtual synchrony, Birman-Joseph 1987 (6] English
Group 3| EVS Extended virtual synchrony for network partition, Amir et al 1995 [2,| pseudocode
Membership 3]
4 [Paxos-VS Virtually synchronous Paxos, Birman-Malkhi-van Renesse 2012 [8] | pseudocode
5 [Derecho Virtually synchronous state machine replication, Jha et al 2019 [29] | pseudocode
6 VR Viewstamped replication, Oki-Liskov 1988 [55] pseudocode
Primary-backup (coarse)

VR-Revisit

VR revisited, Liskov 2012 [46]

English (items)

Paxos-Synod

Paxos-Basic
Paxos-Fast

Paxos in part-time parliament, Lamport 1998 [39]

Single-value Paxos, Lamport 2001 [40]

TLA [38]
(single-value)
English (items)
English (items),

VvV VoV

Paxos Single-value Paxos with replicas proposing, Lamport 2006 [41]
TLA+ (18]
1 | Paxos- Single-value Paxos with external starting of leader election, Lamport- | PlusCal [42]
Vertical Malkhi-Zhou 2009 [44]
2|CT Single-value consensus with crash failures, Chandra—'f‘oueg 1996 [13]| pseudocode
Failure F3 ACT Single-value consensus in crash-recovery model, Aguilera-Chen-|pseudocode
Detectors Toueg 2000 [1]
4 | Paxos-Time | Paxos with time analysis, De Prisco-Lampson-Lynch 2001 [19] I0A [49]
Formally (single-value)
specified algos 5 [Paxos-PVS | Single-value Paxos for proof, Kellomiki 2004 [35] PVS [57]

* What's Live? Understanding Distributed Consensus

https://arxiv.org/pdf/2001.04787.pdf

More examples of algorithms for replication and
consensus

More variants >

Formally
specified algos

>

16 | Chubby Paxos in Google’s Chubby lock service, Burrows 2006 [9] English (partial
items)

17 | Chubby-Live | Chubby in Paxos made live, Chandra-Griesemer-Redstone 2007 [12] | English

18 | Paxos-SB Paxos for system builders, Kirsch-Amir 2008 [37] pseudocode

19 | Mencius Paxos with leaders proposing in turn, Mao et al 2008 [51] English (items)

20 | Zab Yahoo/Apache’s Zookeeper atomic broadcast, Junqueira-Reed-|English (items)

Serafini 2011 [30]

21 | Zab-FLE Zab with fast leader election, Medeiros 2012 [52] pseudocode

22 | EPaxos Egalitarian Paxos, Moraru-Andersen-Kaminsky 2013 [53] pseudocode

23 | Raft Consensus in RAMCloud, Ongaro-Ousterhout 2014 [56] pseudocode

24 | Paxos- Paxos made moderately complex, van Renesse-Altinbuken 2015 [62] | pseudocode,
Complex Python

25 | Raft-Verdi | Raft for proof using Coq, Wilcox et al 2015 [64] Verdi [64]

26 | IronRSL Paxos in Microsoft’s IronFleet for proof, Hawblitzel et al 2015 [26] | Dafny [45]

27 | Paxos-TLA | Paxos for proof using TLAPS, Chand-Liu-Stoller 2016 [11] TLA+

28 | LastVoting- [Single-value Paxos in Heard-Of model for proof, Drigoi-Henzinger-| PSync [20]
PSync Zufferey 2016 [20]

29 | Paxos-EPR | Paxos in effectively propositional logic for proof, Padon et al 2017 [59]| Ivy [60]

30 | Paxos-Decon | Paxos deconstructed, Garcia et al 2018 [24, 25| Scala/Akka [28]

31 | Paxos-High [Paxos in high-level executable specification, Liu-Chand-Stoller|DistAlgo [48]

2019 [47]

* What's Live? Understanding Distributed Consensus

https://arxiv.org/pdf/2001.04787.pdf

So many algorithms!!! — challenge

Understanding Correctness assurance

*Image by rawpixel.com on Freepik

https://www.freepik.com/free-photo/question-mark-icon-thinking-solution_16462411.htm

This work

e develop a rigorous specification of Derecho replication protocol that corresponds
closely to the pseudocode and is complete, precise, and directly executable

e discover and fix a number of issues in the Derecho pseudocode and helped improve

the pseudocode

e demonstrate a practical method for developing a rigorous and improved spec
through both manual inspection and automated runtime checking

These were enabled by DistAlgo language, compiler, and runtime checking framework

Bugs and fixes are checked and confirmed by the Derecho team. They also checked and
confirmed that the bugs are not in their implementation in C++.

Outline

e Derecho overview
e DistAlgo and steps in developing the spec
e Precise specification
o system state: shared state table (SST) & view
o 2 parts: steady-state execution, view change: leader selection
e Systematic runtime checking
o 3 key safety properties: validity, agreement, integrity
e Issues found and fixed in pseudocode: an example in leader selection

Derecho overview

e State machine replication using RDMA, enables direct access to remote
memory without involving CPU
e Group multicast, within a group of member processes/nodes; supports:
o Atomic Multicast: messages sent by a member node are either
delivered to all member nodes or none at all
o Total-ordered delivery: messages are delivered in the same order to
all member nodes in the group
e Uses SST (Shared State Table), a distributed shared memory for

sharing data and control information

Derecho overview - main parts

e Steady state execution
o Atomic multicast delivery of client request across nodes
e View change
o System progresses through series of view when members join

or leave the group

DistAlgo

e Language for distributed algorithms
e With a formal operational semantics
e Implemented by extending the Python compiler

Specification:

- High-level as pseudocode
- Precise with formal semantics
- Directly executable

10

Steps in the development of spec

O

english, and
pseudocode algorithm

11

Steps in the development of spec

O

english, and
pseudocode algorithm

fill in missing
details and resolve
ambiguities in
descriptions

[
! o

precise, executable
specification

11

Steps in the development of spec

careful manual
analysis and
inspection, and
automated running

»
!

»
manual analysis;

running and testing

‘ fill in missing
details and resolve

ambiguities in
descriptions

A

[
!

english, and precise, executable
pseudocode algorithm specification

Steps in the development of spec

careful manual
analysis and
inspection, and
automated running

»
!

»
manual analysis;

running and testing

‘ fill in missing
details and resolve
ambiguities in
descriptions

A
O

[
!

english, and precise, executable
pseudocode algorithm specification

Resolve
discovered issues
iteratively

11

Steps in the development of spec

careful manual
analysis and
inspection, and
automated running

»

O

english, and
pseudocode algorithm

fill in missing
details and resolve
ambiguities in
descriptions

| o8

[
! o

precise, executable
specification

A

manual analysis;
running and testing

A

»
>

specification and
checking of safety
properties

systematic runtime
checking

11

Steps in the development of spec

careful manual
analysis and
inspection, and
automated running

»

| o8

O

english, and
pseudocode algorithm

fill in missing
details and resolve
ambiguities in
descriptions

[
! o

Resolve
discovered issues
iteratively

precise, executable
specification

manual analysis;
running and testing

A

A

0 S

specification and
checking of safety
properties

systematic runtime
checking

11

Steps in the development of spec

manual analysis;
1) running and testing
<
english, and § precise, executable
pseudocode algorithm specification

o
o

O ' 2

Improves
understanding
systematic runtime

checking

Steps in the development of spec

O

english, and
pseudocode algorithm

A 4

Y

A

manual analysis;
running and testing

precise, executable
specification

A

Improves

correctness

systematic runtime
checking

11

Precise specification

e C(Close correspondence to pseudocodeo

e Filled in missing details

e Ambiguities resolution
Three main parts:

- System state
- Steady state execution

- View change

O

O

Algorithm from the
paper/pseudocode
is added on the
right side of the
code as comments

12

Specifying system state

We define classes with fields that allow the algorithm steps in DistAlgo

to match the corresponding steps in pseudocode exactly

- Shared state table (SST)

- View

13

Specifying system state: SST

|c1ass SSTRow:

""UA shared state table (SST) row that stores info about a node.

A SST has a SSTRow for each member node and is stored in each member
_size): ## initia

def __init__(self, n, window
n: ## number o

f member nodes in

lize SST columns for the row; all used in pseudocode but the last two
the group

window_size: ## length of vector of slots for storing client req msgs received by the node, directly or indirectly
self.slots = [Slot() for _ in range(window_size)] # (p.33) vector of window_size slots ## for client request msgs

self.received_num = [-1] *

self.global_index = -1

n

#H

self.latest_delivered_index = -1 # #4

self.latest_received_index

self.min_latest_received =
self.suspected = [False] *
self.wedged = False #
self.changes = [] #
self.num_changes = #
self.num_acked = @ #

self.num_committed = @ #
self.num_installed = @ #

self.ragged_edge_computed

self.active = False # (p.

= [-1] * n # #&#

##
[-11 * n # w4
n # an

(p.33) number of messages received from each node ### number-1
initialized in Node.init(), and set in receive_req()

global index of last message received from the most lagging node
min of self.global_index over all members
index of latest msg received from each node, set in recv to received_num
i.e., self.received_num-1 ### redundant, but not clear with null msgs
for each node, min of latest_received_index over all rows in SST
for each node, whether that node is suspected to have failed

true when any node is suspected
list of nodes suspected (or added from joins) to proposed as changes by the leader

number of nodes
number of nodes
##4 set in 1 place

in self.changes, i.e., length of self.changes
in self.changes acknowledged
by us, using num_changes

min of self.num_acked over not suspected nodes

number of nodes
= False # ## true
the

installed (added/removed) by the node, as proposed by the leader
for leader calling terminate_epoch or others after leader did;
call happens when leader's num_committed > self's num_installed

40) ## true when the epoch is active, only used at start ### not in pseudocode
could use logical or over sst[my_rank].suspected or even just own suspected

SST is
specified as
a list of
SSTRow
objects

14

Specifying system state: SST

class SSTRow:

"""A shared state table (SST) row that stores info about a node.

A SST has a SSTRow for each member node and is stored in each member
_size): ## initia

def __init__(self, n, window

lize SST columns for the row; all used in pseudocode but the last two

n: ## number o

f member nodes in

the group

window_size: ## length of vector of slots for storing client req msgs received by the node, directly or indirectly
self.slots = [Slot() for _ in range(window_size)] # (p.33) vector of window_size slots ## for client request msgs

self.received_num = [-1] *

self.global_index = -1

n

#H

self.latest_delivered_index = -1 # #4

self.latest_received_index

self.min_latest_received =
self.suspected = [False] *
self.wedged = False #
self.changes = [] #
self.num_changes = #
self.num_acked = @ #

self.num_committed = @ #
self.num_installed = @ #

self.ragged_edge_computed

self.active = False # (p.

= [-1] * n # #&#

##
[-11 * n # w4
n # an

(p.33) number of messages received from each node ### number-1
initialized in Node.init(), and set in receive_req()

global index of last message received from the most lagging node
min of self.global_index over all members
index of latest msg received from each node, set in recv to received_num
i.e., self.received_num-1 ### redundant, but not clear with null msgs
for each node, min of latest_received_index over all rows in SST
for each node, whether that node is suspected to have failed

true when any node is suspected
list of nodes suspected (or added from joins) to proposed as changes by the leader

number of nodes
number of nodes
##4 set in 1 place

in self.changes, i.e., length of self.changes
in self.changes acknowledged
by us, using num_changes

min of self.num_acked over not suspected nodes

number of nodes
= False # ## true
the

installed (added/removed) by the node, as proposed by the leader
for leader calling terminate_epoch or others after leader did;
call happens when leader's num_committed > self's num_installed

40) ## true when the epoch is active, only used at start ### not in pseudocode
could use logical or over sst[my_rank].suspected or even just own suspected

Definition of
SSTRow
with its fields

14

Specifying system state: SST

class SSTRow:

"""A shared state table (SST) row that stores info about a node.

A SST has a SSTRow for each member node and is stored in each member
window_size):

def __init__(self, n,

initia

n: ## number of member nodes in
window _size: ## length of vector of slots for storing client req msgs received by the node, directly or indirectly

lize SST columns for the row; all used in pseudocode but the last two
the group

self.slots = [Slot() for _ in range(window_size)]

(p.33) vector of window_size slots ## for client request msgs

self.received_num = [-T] * n # (p.33) number of messages received from each node ### number -1

initialized in Node.init(), and set in receive_req()
self.global_index = -1 # ## global index of last message received from the most lagging node
self.latest_delivered_index = -1 # ## min of self.global_index over all members

self.latest_received_index

self.min_latest_received

= [-1] * n # #&#
#H
[-1] *n # #e

self.suspected = [False] * n # 4
true when any node is suspected
list of nodes suspected (or added from joins) to proposed as changes by the leader

self.wedged = False
self.changes = []

self.num_changes =
self.num_acked = @

self.num_committed
self.num_installed

£l
#
“
#
0 #
o #

self.ragged_edge_computed

self.active = False

(p.

number of nodes
number of nodes
##4 set in 1 place

index of latest msg received from each node, set in recv to received_num
i.e., self.received_num-1 ### redundant, but not clear with null msgs
for each node, min of latest_received_index over all rows in SST

for each node, whether that node is suspected to have failed

in self.changes, i.e., length of self.changes
in self.changes acknowledged
by us, using num_changes

min of self.num_acked over not suspected nodes

number of nodes
= False # ## true
the

40) ## true when the epoch is active, only used at start

installed (added/removed) by the node, as proposed by the leader

for leader calling terminate_epoch or others after leader did;
call happens when leader's num_committed > self's num_installed
##4# not in pseudocode

could use logical or over sst[my_rank].suspected or even just own suspected

Field “slots”
is a list of
ring buffer
with
reusable
slots for
storing client
requests and
metadata

14

Specifying system state: view

class View():

"""A view that holds the information of an epoch. An epoch is the duration of a view.

def __init__(self, n, epoch=0, leader_rank=0):

n: ## number of members in th
self.epoch = epoch
self.leader_rank = leader_rank
self.members = [Nonel * n
self.failed = [Falsel * n

def add_member(self, node):
self.members.append(node)
self.failed.append(False)

def remove_member(self, node):
index = self.members.index(node)
del self,failed[index]
self.members.remove(node)

e
#

i
i
4

view

##
#
##
##

f#
#4
##

##
##
##
##

epoch number of the view; epoch and view used
index of the leader

list of member nodes in the view

for each node, whether that node is suspected

add member to the view
append node to members
add the failed attribute corresponding to the

remove node from members of the view
get index of node in members

remove failed entry for node

remove node from members

interchangeably in the paper

and thus considered failed

added node

View object to
store
information
about a view
such as leader
and members

15

Specifying system state: view

class View():

nena v

ew that holds the information of an epoch. An epoch is the duration of a view.

def __init__(self, n, epoch=0,
number of members

.epoch = epoch

leader_rank = leader_rank

n:
self
self.
self.
self.

members = [Nonel * n
failed = [False] * n

def add_member(self, node):

self.
self.

def remove_member (self,
= self.members. index(node)

index
del s
self.

members. append(node)
failed.append(False)

elf.failed[index]
members.remove (node)

node):

in the

#

i
i
4

leader_rank=0):

view

##
#
##
##

f#
#4
##

##
##
##
##

epoch number of the view; epoch and view used
index of the leader

list of member nodes in the view

for each node, whether that node is suspected

add member to the view
append node to members
add the failed attribute corresponding to the

remove node from members of the view
get index of node in members

remove failed entry for node

remove node from members

interchangeably in the paper

and thus considered failed

added node

Definition of
class View
with its fields
and methods
to add or
remove
members

15

Specifying view change

Key part of view change algorithm is the leader selection

A leader proposes changes, ie., nodes that needs to be added or

removed from the group, during a view change

16

Specifying view change: leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

| def leader_selection(): # always { ### made function and called in run
new_leader = find_new_leader (my_rank) # new_leader = find_new_leader (my_rank)
if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops
while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) { Leader selection
;-recexve_messagesl . #H yield Fo receive msgs . o selects the
needed to receive updates to SST which may result in new leader selection ### break atomicity
leader
all_others_agree = True ## moved here from outside while-loop, as explained above
for r in range(len(sst)): i for (r: SST.rows) {
if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false)
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank)
all_others_agree &&= (find_new_leader(r) == my_rank) }
if all_others_agree: # if (all_others_agree) {
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank;
output ("I am the new leader!!!")
break # break; }}}
else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 17

Specifying view change: leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run
new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank)
if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops
while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) { Ca”S
--receive_messages ## yield to receive msgs find new lead
needed to receive updates to SST which may result in new leader selection ### break atomicity er to_selec?the
all_others_agree = True ### moved here from outside while-loop, as explained above new leader
for r in range(len(sst)): i for (r: SST.rows) {
if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false)
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank)
all_others_agree &&= (find_new_leader(r) == my_rank) }
if all_others_agree: # if (all_others_agree) {
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank;
output ("I am the new leader!!!")
break # break; }}}
else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 17

Specifying view change: leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run Selects the first

new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank) non-suspected
if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank) (r10r1-faik3d)

if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second

all_others_agree = True # bool all_others_agree = true ### moved into while-loop nOde as the

if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops |eader_

while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs

needed to receive updates to SST which may result in new leader selection ### break atomicity

all_others_agree = True ## moved here from outside while-loop, as explained above
for r in range(len(sst)): i for (r: SST.rows) {

if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false)

all_others_agree = all_others_agree and (find_new_leader(r) == my_rank)
all_others_agree &&= (find_new_leader(r) == my_rank) }

if all_others_agree: # if (all_others_agree) {

curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank;

output ("I am the new leader!!!")

break # break; }}}

else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 17

Specifying view change: leader selection

def find_new_leader(r): # find_new_leader(r) {

for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run
new_leader = find_new_leader(my_rank) # new_leader = find_new_leader(my_rank)
if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops
while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs
needed to receive updates to SST which may result in new leader selection ### break atomicity If the new
. .] leader is
ill_otr.\ers_agree = True ## moved I?ere from outside while-loop, as explained above different than
or r in range(len(sst)): i for (r: SST.rows) {
if not sst[my_rank].suspected[r]: # if (sst(my_row].suspected[r] == false) the current
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank) leader, it waits
all_others_agree &&= (find_new_leader(r) == my_rank) } .
if all_others_agree: # if (all_others_agree) { Untll a” non-
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank; suspected nodes
output ("I am the new leader!!!") recognise |t as
break # break; }}}
else: #4 else: ### added else-branch, for when new leader is not self the leader
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 17

Checking

Manual inspection and automated testing

Systematic runtime checking

18

Systematic runtime checking

Enabled by general framework for runtime checking in DistAlgo*

without changes to the specification
Properties are specified at a high level
Some well-known safety properties we checked are:

e Validity
e Agreement

e Uniform Integrity
* Assurance of Distributed Algorithms and Systems, RV’'20

https://link.springer.com/chapter/10.1007/978-3-030-60508-7_3

Property checking

Agreement: “If two servers execute the ith update, then these updates
are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),

has req1=req2

* Taken from Paxos for System Builders, CNDS’'08

20

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

Property checking

Agreement: “If two servers execute the ith update, then these updates

are identical”*

each p1.sent(‘execute’, i, req1),

74

pl, p2 are
processes
(used in
place of
servers)

p2.sent(‘execute’, i, req2),

has req1=req2

* Taken from Paxos for System Builders, CNDS’'08

20

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

Property checking

Agreement: “If two servers execute the ith update, then these updates

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),

has req1=req2 refers to the
execution of

requests “reql”
and “req2” at the
“ith” index

* Taken from Paxos for System Builders, CNDS’'08

20

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

Property checking

Agreement: “If two servers execute the ith update, then these updates

are identical”*

each p1.sent(‘execute’, i, req1),

p2.sent(‘execute’, i, req2),

has req1=req2
for each, p1 that
executes reql at
the i index

* Taken from Paxos for System Builders, CNDS’'08

20

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

Property checking

Agreement: “If two servers execute the ith update, then these updates
are identical”*

each p1.sent(‘execute’, i, req1),

p2.sent(‘execute’, i, req2),

has req1=req2
and p2 that
executes req2 at
ith index

* Taken from Paxos for System Builders, CNDS’'08

20

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

Property checking

Agreement: “If two servers execute the ith update, then these updates
are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),

has req1=req2

has these
requests as same

* Taken from Paxos for System Builders, CNDS’'08

20

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

Property checking

Agreement: “If two servers execute the ith update, then these updates
are identical”*

each p1.sent(‘execute’, i, req1),

p2.sent(‘execute’, i, req2), o

O Q If the check results
has req1=req2 in a failure, it
indicates the
violation of the

property

* Taken from Paxos for System Builders, CNDS’'08 20

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf

Issues found and fixed

e Bugs in pseudocode are quite normal, since pseudocode is manually

created and there is no way to run or check
e Specification and checking approach helped identify some issues in

Derecho pseudocode
e Two examples presented in paper
o Overwriting in ring buffer

o Deadlock in leader selection

21

Deadlock in leader selection

The failure
information

propagates to
other nodes

The leader node fails |°© © O

A 4

At least one node does not suspect the leader node of failing and thus still believes it is
the leader

A 4

The next leader in-line gets stuck in a deadlock and never proposes the changes

22

Deadlock in leader selection

def find_new_leader(r): # find_new_leader(r) {

for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run
new_leader = find_new_leader(my_rank) # new_leader = find_new_leader(my_rank)
if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops
while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs
needed to receive updates to SST which may result in new leader selection ### break atomicity If the new
; _ , leader is
all_others_agree = True ## moved here from outside while-loop, as explained above)
for r in range(len(sst)): # for (r: SST.rows) { different than
if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false) the Current
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank) . .
all_others_agree &&= (find_new_leader(r) == my_rank) } |eader/ |t WaltS
if all_others_agree: # if (all_others_agree) { until all non-
curr_view. leader_rank = my_rank # curr_view.leader_rank = my_rank;
output ("I am the new 1ead:r!!!") SuspeCted
break # break; }}} nodes
else: #4 else: ### added else-branch, for when new leader is not self . .
curr_view.leader_rank = new_leader ## set current view's leader to be new leader recognlse It as
the leader

Figure 6: Specification of leader selection. 23

Deadlock in leader selection

def find_new_leader(r): # find_new_leader(r) {

for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run

new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank)

if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
##% if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops

while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs

needed to receive updates to SST which may result in new leader selection ### break atomicity

all_others_agree = True ## moved here from outside while-loop, as explained above)
for r in range(len(sst)): i for (r: SST.rows) { UseS |Oglca|
if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false) Conjunction to
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank) | .
all_others_agree &&= (find_new_leader(r) == my_rank) } CheCk If a” the
if all_others_agree: # if (all_others_agree) { | nodes agree
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank; .
output ("I am the new leader!!!") Wlth the new
break [break; }}} leader selection
else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 23

Deadlock in leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run

new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank)

if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops

while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs

needed to receive updates to SST which may result in new leader selection ### break atomicity

all_others_agree = True #aw moved here from outside while-loop, as explained above Consider that |f

for r in range(len(sst)): i for (r: SST.rows) {
if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false) a no_d_e_does

all_others_agree = all_others_agree andl(find_new_leader(r) == my_rank) not |n|t|a||y
all_others_agree &&= (find_new_leader(r) == my_rank) } r i

if all_others_agree: # if (all_others_agree) { a_g ee’ e’
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank; find_new_lea
output ("I am the new leader!!!") der returned
break 3 break; }}} .

else: #4 else: ### added else-branch, for when new leader is not self dlfferent Ieader
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 23

Deadlock in leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run

new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank)

if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops

while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs

needed to receive updates to SST which may result in new leader selection ### break atomicity

all_others_agree = True ## moved here from outside while-loop, as explained above

for r in range(len(sst)): # for (r: SST.rows) { aII_Others_ag
if not sst[my_rank].suspected[r]: # if (sst({my_row].suspected[r] == false) ree WOUId be

all_others_agree = all_others_agree and (find_new_leader(r) == my_rank)
3 all_others_agree &&= (find_new_leader(r) == my_rank) } Set tO false

if all_others_agree: # if (all_others_agree) { and never be
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank;
output ("I am the new leader!!!") Set tO true
break # break; }}} aga|n

else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 23

Deadlock in leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run
new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank)
if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops
while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs
needed to receive updates to SST which may result in new leader selection ### break atomicity
all_others_agree = True ### moved here from outside while-loop, as explained above
for r in range(len(sst)): i for (r: SST.rows) {
if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false) and the |eader
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank))
i all_others_agree &&= (find_new_leader(r) == my_rank) } SeIeCt|0n WOUId
if all_others_agree: # if (all_others_agree) { | never succeed
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank;
output ("I am the new leader!!!")
break # break; }}}
else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 23

Deadlock in leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run

new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank)

if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops

while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs

needed to receive updates to SST which may result in new leader selection ### break atomicity

all_others_agree = True ### moved here from outside while-loop, as explained above
for r in range(len(sst)): i for (r: SST.rows) { .
if not sstlmy_rank].suspected[r]: # if (sstlmy_row].suspected[r] == false) to reSO|Ve thls’
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank) we moved the
all_others_agree &&= (find_new_leader(r) == my_rank) } R H
if all_others_agree: # if (all_others_agree) { Inltlall_zat_lon to
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank; here, inside the
output ("I am the new leader!!!") VVt1i| I
break # break; }}} e Oop
else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 23

Deadlock in leader selection

def find_new_leader(r): # find_new_leader(r) {
for i in range(len(curr_view.members)): # for (int i = @; 1 < curr_view.max_rank; ++i) { ### max_rank replaced
if sst[r].suspected[i]: continue £ if (sstlr].suspected[i]) continue;
else: return i # else return i })

(p.35) ## update the current view, at the end, with the new leader

def leader_selection(): # always { ### made function and called in run
new_leader = find_new_leader(my_rank) # new_leader = find_new_leader (my_rank)
if new_leader != curr_view.leader_rank: # if (new_leader != curr_view.leader_rank && new_leader == my_rank)
if new_leader == my_rank: ### split 2 conjuncts, to add the else-branch for the second
all_others_agree = True # bool all_others_agree = true ### moved into while-loop
if not moved, if it becomes False in for-loop below, it stays False, and the while-loop never stops
while find_new_leader(my_rank) == my_rank: # while (find_new_leader(my_rank) == my_rank) {
--receive_messages ## yield to receive msgs
needed to receive updates to SST which may result in new leader selection ### break atomicity
all_others_agree = True ## moved here from outside while-loop, as explained above
for r in range(len(sst)): i for (r: SST.rows) { and added an
if not sst[my_rank].suspected[r]: # if (sst({my_row].suspected[r] == false) e|se branch to
all_others_agree = all_others_agree and (find_new_leader(r) == my_rank)
all_others_agree &&= (find_new_leader(r) == my_rank) } update the new
if all_others_agree: # if (all_others_agree) { |eader
curr_view.leader_rank = my_rank # curr_view.leader_rank = my_rank; . .
output ("I am the new leader!!!") |nf0rmat|0n for
break # break; }}) non-leaders
else: #4 else: ### added else-branch, for when new leader is not self
curr_view.leader_rank = new_leader ## set current view's leader to be new leader

Figure 6: Specification of leader selection. 23

Resulting specification size

Table 1: Specification size (in number of lines, including out-
put lines, excluding empty or comment-only lines) for Dere-
cho specification in DistAlgo (derecho.da in [40, Appendix A]
excluding method main and class Sim).

Protocol component Size
state and helper functions 95
steady-state execution, incl. delivering&executing reqs | 63
view change 132
imports, helper, choices in run 14
total 304

Conclusion

e Precise, directly executable specification of Derecho
e Runtime checking of important safety properties of Derecho

Future work
e Implementing more fault injection in checking the protocol
e Use of DistAlgo specification to help with the proof development by
the Derecho team for both safety and liveness
e Automated ways to correlate formal specification in DistAlgo with
implementations in lower-level languages such as C++

25

Thank You

