
Specification and Runtime Checking 
of Derecho, A protocol for Fast 
Replication for Cloud Services

Kumar Shivam, Vishnu Paladugu, Yanhong A. Liu
Stony Brook University

ApPLIED 2023



Replication and consensus are important

Reliable distributed systems require replication and consensus among 

distributed processes to tolerate process and link failures

● Replication creates replicated processes to tolerate process failures

● Consensus makes a set of processes agree on a sequence of 

values—client operations—through message passing

2



Many algorithms for replication and consensus

Group 
Membership

Primary-backup

Paxos

Failure 
Detectors

Formally 
specified algos

3* What’s Live? Understanding Distributed Consensus

https://arxiv.org/pdf/2001.04787.pdf


More examples of algorithms for replication and 
consensus

More variants

4

Formally 
specified algos

* What’s Live? Understanding Distributed Consensus

https://arxiv.org/pdf/2001.04787.pdf


So many algorithms!!! — challenge

Understanding Correctness assurance

*Image by rawpixel.com on Freepik
5

https://www.freepik.com/free-photo/question-mark-icon-thinking-solution_16462411.htm


This work

● develop a rigorous specification of Derecho replication protocol that corresponds 
closely to the pseudocode and is complete, precise, and directly executable

● discover and fix a number of issues in the Derecho pseudocode and helped improve 

the pseudocode

● demonstrate a practical method for developing a rigorous and improved spec
through both manual inspection and automated runtime checking

These were enabled by DistAlgo language, compiler, and runtime checking framework

Bugs and fixes are checked and confirmed by the Derecho team. They also checked and 

confirmed that the bugs are not in their implementation in C++.

6



Outline

● Derecho overview
● DistAlgo and steps in developing the spec
● Precise specification

○ system state: shared state table (SST) & view

○ 2 parts: steady-state execution, view change: leader selection
● Systematic runtime checking

○ 3 key safety properties: validity, agreement, integrity
● Issues found and fixed in pseudocode: an example in leader selection

7



● State machine replication using RDMA, enables direct access to remote 

memory without involving CPU

● Group multicast, within a group of member processes/nodes; supports:

○ Atomic Multicast: messages sent by a member node are either 

delivered to all member nodes or none at all

○ Total-ordered delivery: messages are delivered in the same order to 

all member nodes in the group

● Uses SST (Shared State Table), a distributed shared memory for 

sharing data and control information

Derecho overview

8



Derecho overview - main parts

● Steady state execution

○ Atomic multicast delivery of client request across nodes

● View change

○ System progresses through series of view when members join 

or leave the group

9



DistAlgo

● Language for distributed algorithms
● With a formal operational semantics
● Implemented by extending the Python compiler

Specification:

- High-level as pseudocode
- Precise with formal semantics
- Directly executable

10



english, and 
pseudocode algorithm

Steps in the development of spec 

11



precise, executable 
specification

english, and 
pseudocode algorithm

Steps in the development of spec 

11

fill in missing 
details and resolve 
ambiguities in 
descriptions



precise, executable 
specification

english, and 
pseudocode algorithm

Steps in the development of spec 

11

manual analysis; 
running and testingfill in missing 

details and resolve 
ambiguities in 
descriptions

careful manual 
analysis and 
inspection, and 
automated running



precise, executable 
specification

english, and 
pseudocode algorithm

Steps in the development of spec 

11

manual analysis; 
running and testingfill in missing 

details and resolve 
ambiguities in 
descriptions

careful manual 
analysis and 
inspection, and 
automated running

Resolve 
discovered issues 
iteratively



precise, executable 
specification

english, and 
pseudocode algorithm

systematic runtime 
checking

Steps in the development of spec 

11

manual analysis; 
running and testingfill in missing 

details and resolve 
ambiguities in 
descriptions

careful manual 
analysis and 
inspection, and 
automated running

specification and 
checking of safety 
properties



precise, executable 
specification

english, and 
pseudocode algorithm

systematic runtime 
checking

Steps in the development of spec 

11

manual analysis; 
running and testing

Resolve 
discovered issues 
iteratively

fill in missing 
details and resolve 
ambiguities in 
descriptions

careful manual 
analysis and 
inspection, and 
automated running

specification and 
checking of safety 
properties



precise, executable 
specification

english, and 
pseudocode algorithm

systematic runtime 
checking

Steps in the development of spec 

11

manual analysis; 
running and testing

Improves 
understanding



precise, executable 
specification

english, and 
pseudocode algorithm

systematic runtime 
checking

Steps in the development of spec 

11

manual analysis; 
running and testing

Improves 
correctness



Precise specification

● Close correspondence to pseudocode

● Filled in missing details

● Ambiguities resolution

Three main parts:

- System state

- Steady state execution

- View change

12

Algorithm from the 
paper/pseudocode 
is added on the 
right side of the 
code as comments



13

Specifying system state

We define classes with fields that allow the algorithm steps in DistAlgo 

to match the corresponding steps in pseudocode exactly

- Shared state table (SST)

- View



Specifying system state: SST

SST is 
specified as 
a list of 
SSTRow
objects

14



Specifying system state: SST

14

Definition of 
SSTRow
with its fields



Specifying system state: SST

14

Field “slots” 
is a list of 
ring buffer 
with 
reusable 
slots for 
storing client 
requests and 
metadata



Specifying system state: view

View object to 
store 
information 
about a view 
such as leader 
and members

15



Specifying system state: view

15

Definition of 
class View
with its fields 
and methods 
to add or 
remove 
members



16

Specifying view change

Key part of view change algorithm is the leader selection

A leader proposes changes, ie., nodes that needs to be added or 

removed from the group, during a view change



Leader selection 
selects the 
leader 

Specifying view change: leader selection

17



Specifying view change: leader selection

17

Calls 
find_new_lead
er to select the 
new leader



Specifying view change: leader selection

17

Selects the first 
non-suspected 
(non-failed) 
node as the 
leader. 



Specifying view change: leader selection

17

If the new 
leader is 
different than 
the current 
leader, it waits 
until all non-
suspected nodes 
recognise it as 
the leader



Checking

Manual inspection and automated testing

Systematic runtime checking

18



Systematic runtime checking

Enabled by general framework for runtime checking in DistAlgo* 

without changes to the specification

Properties are specified at a high level

Some well-known safety properties we checked are:

● Validity

● Agreement

● Uniform Integrity
19* Assurance of Distributed Algorithms and Systems, RV’20

https://link.springer.com/chapter/10.1007/978-3-030-60508-7_3


Property checking

Agreement: “If two servers execute the ith update, then these updates 

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),
has req1=req2

20* Taken from Paxos for System Builders, CNDS’08

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf


Property checking

Agreement: “If two servers execute the ith update, then these updates 

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),
has req1=req2

20* Taken from Paxos for System Builders, CNDS’08

p1, p2 are 
processes 
(used in 
place of 
servers)

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf


Property checking

Agreement: “If two servers execute the ith update, then these updates 

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),
has req1=req2

20* Taken from Paxos for System Builders, CNDS’08

refers to the 
execution of 
requests “req1” 
and “req2” at the 
“ith” index

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf


Property checking

Agreement: “If two servers execute the ith update, then these updates 

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),
has req1=req2

20* Taken from Paxos for System Builders, CNDS’08

for each, p1 that 
executes req1 at 
the ith index

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf


Property checking

Agreement: “If two servers execute the ith update, then these updates 

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),
has req1=req2

20* Taken from Paxos for System Builders, CNDS’08

and p2 that 
executes req2 at 
ith index

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf


Property checking

Agreement: “If two servers execute the ith update, then these updates 

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),
has req1=req2

20* Taken from Paxos for System Builders, CNDS’08

has these 
requests as same

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf


Property checking

Agreement: “If two servers execute the ith update, then these updates 

are identical”*

each p1.sent(‘execute’, i, req1),
p2.sent(‘execute’, i, req2),
has req1=req2

20* Taken from Paxos for System Builders, CNDS’08

If the check results 
in a failure, it 
indicates the 
violation of the 
property

https://www.cnds.jhu.edu/pub/papers/cnds-2008-2.pdf


Issues found and fixed

● Bugs in pseudocode are quite normal, since pseudocode is manually 

created and there is no way to run or check

● Specification and checking approach helped identify some issues in 

Derecho pseudocode

● Two examples presented in paper

○ Overwriting in ring buffer

○ Deadlock in leader selection

21



Deadlock in leader selection

The leader node fails

22

The failure 
information 
propagates to 
other nodes

At least one node does not suspect the leader node of failing and thus still believes it is 
the leader

The next leader in-line gets stuck in a deadlock and never proposes the changes



Deadlock in leader selection

23

If the new 
leader is 
different than 
the current 
leader, it waits 
until all non-
suspected 
nodes 
recognise it as 
the leader



Deadlock in leader selection

23

Uses logical 
conjunction to 
check if all the 
nodes agree 
with the new 
leader selection



Deadlock in leader selection

23

Consider that if 
a node does 
not initially 
agree, ie, 
find_new_lea
der returned 
different leader



Deadlock in leader selection

23

all_others_ag
ree would be 
set to false 
and never be 
set to true 
again



Deadlock in leader selection

23

and the leader 
selection would 
never succeed



Deadlock in leader selection

23

to resolve this, 
we moved the 
initialization to 
here, inside the 
while loop



Deadlock in leader selection

23

and added an 
else branch to 
update the new 
leader 
information for 
non-leaders



Resulting specification size

24



Conclusion

● Precise, directly executable specification of Derecho
● Runtime checking of important safety properties of Derecho

Future work

● Implementing more fault injection in checking the protocol
● Use of DistAlgo specification to help with the proof development by 

the Derecho team for both safety and liveness
● Automated ways to correlate formal specification in DistAlgo with 

implementations in lower-level languages such as C++
25



Thank You

26


