

ApPLIED 2023 Workshop, PODC 2023

Invited Paper: Oblivious Transfer Protocol without Physical Transfer of Hardware Root-of-Trust

Harishma Boyapally *****, **Chandan Kumar Chaudhary ***, Debdeep Mukhopadhyay *****

† Secure Embedded Architecture Laboratory (SEAL),

Indian Institute of Technology Kharagpur, India

*Temasek Laboratories, Nanyang Technological University, Singapore

Contents

Era of Internet of Things (IoT)

SECURITY?

Ma CNBC

Amazon debuts its new delivery drone

Amazon's head of worldwide consumer Jeff Wilke unveiled its latest delivery drone at the re:MARS conference in Las Vegas on June 5, 2019. 05-Jun-2019

Distributed Computing in IoTs

From Distributed Computing to Multi-Party Computation

Image Source: Google.com

Cryptographic Primitives

Classical Cryptography

Requires Secure Storage of Secret Keys

Hardware-based Solutions

Requires Trusted Third Party & Heavy Computation on Server

Solution: Physically Related Functions (PReFs)

Oblivious Transfer (OT): A Building Block of MPC

1-out-of-2 OT Protocol

2. Bob can only know message (M_b) and remains clueless about M_{1-b} .

1-out-of-n OT Protocol

Oblivious Transfer (OT): Building Block of MPC

Let us consider a particular case of 2-parties.

1-out-of-2 OT Functionality

2-party AND protocol

□ Correctness of OT → Correctness of the AND protocol
 □ Privacy of OT → privacy of the AND Protocol

Oblivious Transfer (OT): For PAKE, PSI and others

Private Set Intersection (PSI)

Oblivious Transfer in Resource Constrained IoT

Physically Unclonable Functions (PUFs)

- Hardware intrinsic primitive.
- Due to inherent physical variations in electronic devices.
- Generates unique and unpredictable responses.
- Digital Fingerprint of a chip.

 $y_1 \neq y_2$

Oblivious Transfer using PUFs

Oblivious Transfer using PUFs: SOTA

2010	2014	2012
2010	2011	2013
Oblivious Transfer Based on	/ Physically Unclonable	On the practical use of
Physical Unclonable	Functions in the Universal	physical unclonable functions
Functions: Ulrich Ruhrmair	Composition Framework:	in oblivious transfer and bit
proposed OT protocol	Brzuska, Fischin, Schroder, and	commitment protocol:
implemented on Strong	Katzenbeisser augmented the	Ruhrmair Ulrich and Dijk Van
PUFs. In this paper, for the	PUF based protocol like	Marten presented an attack
first time, PUFs are used	oblivious transfer,	on OT and BC protocol by
beyond the known schemes	commitments, and key	Brzuska et al. and proposed a
for identification and Key	exchange in universal	new OT protocol with better
Exchange.	composability (UC) framework.	// security.

Oblivious Transfer: State-of-the-art

Public Key Primitives

- Heavy Computation
- DDH or **ECDDH** uses exponentiation

Bob

OT Extensions

- Lighter than public key
- Still not suitable for distributed systems like loTs.

M_{0}, M_{1} M_h Alice

Bob

Hardware based primitives

- Physically Unclonable functions (PUF)
- Lighter than Previous setting
- Need storage for Challenge Response Pair.
- Device Need to be transferred to other party

Hardware based primitives

- Physically Related functions (PReFs) ٠
- Lighter computation
- Need least storage for Related input storage
- No need to transfer the device to other party

Physically Relatable Functions (PReFs): In Nut Shell

Physically Related Functions (PReFs): In Nut Shell

Physically Related Functions (PReFs): Properies

$$x \notin X_{A,B}$$

 $y_A = 10110101$
 $y_B = ?$

Pseudorandomness

Physically Related Functions (PReFs): Properties

Let D_1 and D_2 are two devices with input space X and output space Y.

Invited Paper: Oblivious Transfer Protocol without Physical Transfer of Hardware Root-of-Trust

Physically Relatable Functions (PReFs): Properties

Decisional Relation Hiding:

Given: $x \in X_{12}$ and $x' \leftarrow X$

Difficult for adversary A to **distinguish between** x and x', without (knowing the functionalities) having physical access to D_1 and D_2 .

Computational Relation Hiding:

Given: related input set X_{12}

Difficult for adversary A to generate related input x' such that $HD(y_1, y_2) \le \delta$, without (knowing the functionalities) having physical access to D_1 and D_2 .

Universality:

Given: $x \in X_{12}$

Difficult for adversary A to **distinguish between** $D_1(x)$ and y such that $y \leftarrow Y$.

PReFs from PUFs: An Instance

Correlation Analysis

Hamming Distance

Identifying and Generating Related Inputs

Modeling before deployment

Related Input has to be generated by a **Trusted Third Party.**

XOR-PReF: Removing Third Party

x = (u, v), where $u \in X_1, v \in X_2$ $f_1(u) = f'_1(u)$ $f_2(v) = f'_2(v)$ $\mathsf{D}(x) = f_1(u) \oplus f_2(v)$ $\mathsf{D}'(x) = f'_1(u) \oplus f'_2(v)$

 (D_1, D'_1) – PReF Device Pair (D_2, D'_2) – PReF Device Pair

(D, D') – PReF Device Pair

XOR-PREF based OT: Setup Phase

1. Oblivious Transfer using PReFs: Semi-malicious Receiver

Proof of correctness:

$$S_b \oplus D'(u,v) = S_b \oplus D'(u,u \oplus w) = m_b \oplus D(u,v_b) \oplus D'(u,u \oplus w) = m_b \oplus \overline{D(u,u \oplus w_b) \oplus D'(u,u \oplus w)}$$

 $= m_b$

1. Oblivious Transfer using PReFs: Malicious Receiver

Possible Malicious Behaviour:

• **Case1:** Both w_0 and w_1 are chosen s.t. $D(u, v_0) = D'(u, v_1)$ and $D(u, v_1) = D'(u, v_1)$ meaning, $D(u, u \oplus w_0) = D'(u, u \oplus w_0)$ and $D(u, u \oplus w_1) = D'(u, u \oplus w_1)$

Which is, knowing only input $w \in X$, the malicious receiver can generate two inputs w_0 , $w_1 \in X$ Breaking **Computational relation hiding property**.

1. Oblivious Transfer using PReFs: Malicious Receiver

Possible Malicious Behaviour:

• **Case2:** Both w_0 and w_1 are chosen s.t. $D(u, v_0) = D'(u, v_1)$ and $D(u, v_1) \neq D'(u, v_1)$

meaning, $D(u, u \oplus w_0) = D'(u, u \oplus w_0)$ and $D(u, u \oplus w_1) \neq D'(u, u \oplus w_1)$

Which is, knowing only input $w \in X$ and without having access to device D, the malicious receiver can distinguish two outputs $D(u, v_0)$ and $y \in Y$, breaking **Conditional Pseudorandomness property**.

2. Oblivious Transfer using PReFs: Semi-malicious Receiver

Proof of correctness:

$$S_b \oplus D'(u,v) = S_b \oplus D'(u,u \oplus w) = m_b \oplus D(u,v_b) \oplus D'(u,u \oplus w) = m_b \oplus \overline{D(u,u_b \oplus w) \oplus D'(u,u \oplus w)}$$

 $= m_b$

2. Oblivious Transfer using PReFs: Malicious Receiver

Possible Malicious Behaviour:

• **Case1:** Both u_0 and u_1 are chosen s.t. $D(u_0, v_0) = D'(u_0, v_0)$ and $D(u_1, v_1) = D'(u_{,1} v_1)$ meaning, $D(u_0, u_0 \oplus w) = D'(u_0, u_0 \oplus w)$ and $D(u_1, u_1 \oplus w) = D'(u_1, u_1 \oplus w)$ Which is, knowing only input $w \in X$, the malicious receiver can generate two inputs $u_0, u_1 \in X$ Breaking **Computational relation hiding property**.

2. Oblivious Transfer using PReFs: Malicious Receiver

Possible Malicious Behaviour:

• **Case2:** Both w_0 and w_1 are chosen s.t. $D(u, v_0) = D'(u, v_1)$ and $D(u, v_1) \neq D'(u, v_1)$

meaning, $D(u_0, u_0 \oplus w) = D'(u_0, u_0 \oplus w)$ and $D(u_1, u_1 \oplus w_1) \neq D'(u_1, u_1 \oplus w_1)$ Which is, knowing only input $w \in X$ and without having access to device D, the malicious receiver can distinguish two outputs $D(u, v_0)$ and $y \in Y$, breaking **Conditional Pseudorandomness property**.

Applications: PAKE using **OT-PReF**

PAKE: Password Authenticated Key Exchange

Applications: PSI using **OT-PReF**

PSI: Private Set Intersection

Advantages of PReFs based OT protocol

 Secure against malicious receiver and security depends on one's own primitive. Pseudorandomness property helps honest party maintain security if the inputs are honestly generated.

 No physical transfer of device can assist in adopting to build complex MPC protocols. 4. The protocol is Lightweight and does not require any other cryptographic blocks.
It need only 2 message communication requirement.

Conclusion

MPC helps in achieving security and privacy in distributed computing.

We build lightweight OT protocols from XOR_PReFs, a fundamental building block for MPC.

3

We eliminate the long-standing physical transfer requirement of hardware primitive.

We additionally show new applications like PSI and PAKE

