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Introduction: Logical, Decentralized, Dynamic networks

A
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U

Why should we look for good models ?

analysis of the evolution of some concrete networks

analysis of distributed algorithms running over such networks

simulations of distributed algorithms operating over such
networks (including adaptive algorithms working over dynamic
networks)
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Our model of evolution

Constrain the evolution to always stick to the target model
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Introduction: Why such an evolutionary paradigm ?

Context : evolution of P2P networks

In the literature, some good properties of the network are
maintained over time, but implies :

difficulties in update alogrithms’ conception leading to complex
procedures
dynamicity modelled by a probabilistic process (Poisson) : non
realistic [Pouwelse et al, 2005]
difficult analysis without those hypothesis (analysis under
simplistic update models : insertion only, fifo)

Typical good properties

small degree, small diameter, high connectivity, etc
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Introduction: An Optimistic First Contact Model

Local update algorithms

LOCAL model (synchronous, error-free, message passing)

Two submodels: exact size of the network known or
unknown to the participating nodes

“First Contact”: Every node has access to a global primitive
which samples uniformly a node over the entire network

RandomVertex()

An optimistic first contact but...

Optimistic: uniformity, reusability, availability

May be approximated in practice: uniform hash (Chord),
centralized cache, random walks, dissemination of tokens, etc

What about the cost model ?
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Uniform k-out graphs

Example of a 2-out graph

A

BC

GE

I

Directed graphs with no loops and where each vertex has
exactly k out-neighbours

The uniform distribution over vertex set V is equivalent to:

For each v ∈ V , the outgoing neighbourhood of v is a uniform
k-subset of V − v
All outgoing neighbourhood are independent
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Why uniform k-out graphs ?

Figure : Some statistics of 2-out random graphs.
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The uniform distribution is associated with good properties similar to

those sought for P2P networks (small degree/diameter, high

connectivity)
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Maintenance of k-out graphs : deletion 1/2

Deletion of node C

A

BC

GE

I

Node C wishes to leave the network.
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Deletion of node C

A

BC

GE

I

Node C leaves the network, and 3 loosed edges are created.

Romaric Duvignau Maintenance of random logical networks 9 / 23



Maintenance of k-out graphs : deletion 1/2

Deletion of node C

A

BC

GE

I

RV

RV

RV

Nodes A, E and I find a substitute node for node C using
RandomVertex().

In total, we need k +O(1/n) calls in average.
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Maintenance of k-out graphs : deletion 2/2

u

RV

RV

RV

RV

(a)

u

(b)

Figure : Typical deletion of node u in the two algorithms.
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Maintenance of k-out graphs: insertion 1/2

Insertion of node Z

A
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GE

Z

Node Z wishes to join the network.
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Maintenance of k-out graphs: insertion 1/2

Insertion of node Z

A

BC

GE

Z

RV

RV

Node Z chooses 2 distinct nodes as out-neighbours, using
RandomVertex().

In average, k +O(1/n) calls to the primitive are needed.
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Maintenance of k-out graphs: insertion 1/2

Insertion of node Z

A

BC

GE

Z

Node Z chooses X ∼ Binomial(n, k/n) distinct nodes as
in-neighbours, and steal one edge from each of them.

We need k +O(1/n) more calls in average to sample these vertices.
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Maintenance of k-out graphs: insertion 2/2
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Figure : Typical instances of insertion of node u in the two algorithms.
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Maintenance of k-out graphs

Theorem (Duchon, D., 14)

There exist local update algorithms in order to maintain uniform
k-out graphs and:

modifying a minimal number of links,

of average constant complexity, and using in average:

k +O(1/n) calls to RV for the insertion;
O(1/n) calls to RV for the deletion.

and these bounds are asymptotically optimal.

All insertion procedures need to know the exact size of the network
during update in order to simulate Binomial(n, k/n).

Simulation of Binomial(n, k/n) (D. 15)

This particular law can be simulated in our model with a
non-trivial combinatorics-based algorithm using < 5.2k +O(1/n)
expected calls to RV without knowing n.
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Algorithm for Binomial(n, 1/n)

1: m← 1, g ← 0, j ← 1
2: S ← {Uniform(V )}
3: loop
4: i ← Random(m + 1)
5: if i = m + 1 then
6: j ← j + 1
7: else if i > g then
8: j ← j − 1
9: g ← m + 1

10: else
11: return j
12: end if

13: x ← Uniform(V )
14: if x ∈ S then
15: if g = m + 1 then
16: return j + 1
17: else
18: return j − 1
19: end if
20: else
21: S ← S + x
22: end if
23: m← m + 1
24: end loop
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Different algorithms have different consequences 1/2
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(a) Sup-Nat-k-sortant 104 nodes
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Figure : Number of modified distances after one deletion, k = 2.

On these simulations, the second algorithm modifies 25% less
distances in the graph.
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Different algorithms have different consequences 2/2
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Figure : Number of modified distances by more than one unit, k = 2.

On these simulations, the second algorithms modify respectively
25% less distances during insertion and about 80% less distances
during deletion.
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A general question as a starting point

Coul any topology of networks arise

and last in a distributed fashion ?

random graphs build the network from scratch

nodes joining and leaving LOCAL model
(+ first contact)

And what about the cost ?

Applications: model the evolution of P2P-like networks
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Introduction: Networks modelled as Random Graphs

Some classical models of logical networks

Erdős–Rényi G (n, p):

p fixed: dense graphs, binomial degrees (similar degrees), ...
p = p(n): phase transition around log(n)/n, ...

Uniform k-regular graphs:

constant degree, high connectivity (for k ≥ 3), logarithmic
diameter, ...

Barabási–Albert (scale-free networks):

preferential attachment, power-law degree distribution, ...

Could these classical models “appear” and somehow “perdure” in
a decentralized evolution ?
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Restrain the evolution to stick to the chosen model

Are those models somehow “tolerant” to dynamicity ?

a
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i

delete(c)

µV−c
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µV

a

bc

ge

i z

µV+z

insert(z)
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Summing up studied models

Cost to insert Cost to leave

Distributions with size w/o size with size w/o size

Erdős–Rényi Graphs Θ(n) impossible 0

Pairing multigraph
(degree m)

m/2+O(1/n) 0

Preferential attachment
(degree m)

m + 1+O(1/n) not distributed

Uniform k-out graphs
k

+O(1/n)
k e2+3

2 − 1
+O(1/n)

0
+O(1/n)

k
+O(1/n)

Uniform µ-out graphs |µ|+E(µ) O(|µ|) µ(0)
+O(1/n)

E(µ)
+O(1/n)
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Conclusion

Models analysed

Erdős–Rényi: unmaintainable without knowledge of n when p
is fixed

Pairing models: efficient maintenance without size needed

Uniform k-out Graphs: interesting model with efficient
maintenance without size needed

Many interesting open questions to investigate

Maintability of Erdős–Rényi Random Graphs of varying density

Full decentralized maintenance of Barabási–Albert model

Other graph distributions (geometrical graphs, etc)

What about approximate maintenance ?
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Thank you

Thank you for your attention.
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Plan

1 Uniform k-out Random Graphs

2 Pairing and Barabási–Albert models
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Why k-out random graphs ?
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Figure : More statistics for k-out random graphs.
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Maintenance of the Barabási–Albert model

Need to remember the orientation of the edges. This information
can be recomputed but may need linear time to do so.

Simulation of preferential attachment using RandomVertex()

Sample a uniform vertex v using RV, then:
1 keep v with probability 1/2
2 select uniformly one of its outgoing neighbours with proba 1/2

Correction and Cost

Easy probability tricks :

1

n

1

2
+

∑
u∈N−(v)

1

n

1

2

δ→v (u)

k
=

1

2n
+
δ−(v)

2kn
=
δ(v)

2kn

needs on average k +O(1/n) calls to RV

To account of edges not yet present (while inserting a new vertex),
we use a simple rejection mechanism.
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Maintenance of the pairing model

v1 v2 v3 v4

(a) Perfect matching M

v1 v2 v3 v4

(b) Multigraph P(M) of degree k = 4

Only insertion needs k/2 +O(1/n) calls to RV, on average.
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Maintenance of the pairing model

v1 v2 v3 v4
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v1 v2 v3 v4
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Something else we can do with a uniform matching...

v1 v2 v3 v4 v5 v6 v7 v8

(e) Chord diagram with 16 points

v1 v2 v3 v4 v5 v6 v7 v8

(f) Constructed pseudograph

v1,2 v3,4 v5,6 v7,8

(g) after node merging

Figure : Example of Bollobás–Riordan construction.
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Barabási–Albert model

Well known scale-free distribution used to model the Web, social
networks, etc. Scale-free: proportion of node of degree k (for great
k) is about k−γ .

Description

Upon arrival a node select a constant number of edges towards
existing nodes using preferential attachment (with probability
proportional to their degree in the graph).

Explicit model – Bollobás–Riordan Multigraph model

P(vi = v) =
δi (v)

2(kn + i)− 1
pour v ∈ V

where k is the number of chosen neighbours during insertion and n
is the size of the network.

To forget the insertion order dependencies, we consider it to me
uniform: exchange of neighbourhoods after each insertion.
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Maintenance of the Barabási–Albert model

Need to remember the orientation of the edges. This information
can be recomputed but may need linear time to do so.

Simulation of preferential attachment using RandomVertex()

Sample a uniform vertex v using RV, then:
1 keep v with probability 1/2
2 select uniformly one of its outgoing neighbours with proba 1/2

Deletion: needs to maintain a chain of the nodes and keep track of
the “last inserted vertex”.

v1 v2 v3 v4

(a) Augmented Multigraph

v2 v3 v4

(b) After v1’s deletion
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v1 v2 v3 v4

(c) Augmented Multigraph

v2 v3 v4

(d) After v1’s deletion

Romaric Duvignau Maintenance of random logical networks 29 / 23



Maintenance of the Barabási–Albert model

Need to remember the orientation of the edges. This information
can be recomputed but may need linear time to do so.

Simulation of preferential attachment using RandomVertex()

Sample a uniform vertex v using RV, then:
1 keep v with probability 1/2
2 select uniformly one of its outgoing neighbours with proba 1/2

Deletion: needs to maintain a chain of the nodes and keep track of
the “last inserted vertex”.

v1 v2 v3 v4

(e) Augmented Multigraph

v2 v3 v4

(f) After v1’s deletion
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Barabási–Albert model conclusion

Maintenance of the model

Efficient insertion is possible using extra structural
information, but distributed deletion algorithms are not known

Efficient maintenance is still open without extra information
(edges orientation)

Knowledge of n does not seem to help much

Alternative model: Pairing model

based on uniform pairing (as Barabási–Albert, but the
construction of the final graph is different)

is used to prove results on scale-free graphs
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