
Lambda Calculi and Linear Speedups

David Sands, Jörgen Gustavsson, and Andrew Moran�

Department of Computing Science,
Chalmers University of Technology and Göteborg University, Sweden.

www.cs.chalmers.se

Abstract. The equational theories at the core of most functional pro-
gramming are variations on the standard lambda calculus. The best-
known of these is the call-by-value lambda calculus whose core is the
value-beta computation rule (λx.M)V → M [V/x] where V is restricted
to be a value rather than an arbitrary term.
This paper investigates the transformational power of this core theory of
functional programming. The main result is that the equational theory
of the call-by-value lambda calculus cannot speed up (or slow down)
programs by more than a constant factor. The corresponding result also
holds for call-by-need but we show that it does not hold for call-by-
name: there are programs for which a single beta reduction can change
the program’s asymptotic complexity.

1 Introduction

This paper concerns the transformational power of the core theory of functional
programming. It studies some computational properties of call-by-value lambda
calculus, extended with constants; the prototypical call-by-value functional lan-
guage. We show that this equational theory has very limited expressive power
when it comes to program optimisation: equivalent programs always have the
same complexity. To develop this result we must first formulate the question
precisely. What does it mean for lambda terms to have the same complexity?
What is a reasonable measure of cost? First we review the role of lambda calculi
in a programming language setting.

1.1 Lambda Calculi

Lambda-calculus provides a foundation for a large part of practical program-
ming. The “classic” lambda calculus is built from terms (variables, abstraction
and application), a reduction relation (built from beta and eta). The calculus
itself is an equational theory built from reduction by compatible, transitive and
symmetric closure of the reduction relation.

Although many (functional) programming languages are based on lambda
calculus (Lisp, Scheme, ML, Haskell), the correspondence between the classical

� Author’s current address: Galois Connections, Oregon. moran@galcon.com

T.Æ. Mogensen et al. (Eds.): The Essence of Computation, LNCS 2566, pp. 60–82, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Lambda Calculi and Linear Speedups 61

theory and the programming languages is not particularly good, and this mis-
match has given rise to a number of applied lambda calculi – calculi more finely
tuned to the characteristics of programming languages.

Plotkin’s criteria [Plo76] for the correspondence between a programming lan-
guage and a reduction calculus:

1. Standard derivations are in agreement with the operational semantics of the
programming language (abstract machine e.g. SECD)

2. Equations for the calculus are operationally sound – that is, they are con-
tained in some suitable theory of observational equivalence.

Lambda calculus (and combinatory-logic) based programming languages are typ-
ically implemented using one of two reduction strategies: call-by-value – e.g.
Scheme, various ML dialects, which dictates that arguments to functions are
evaluated before the call is made, and call-by-need, exemplified by implementa-
tions of Clean and Haskell, in which an argument in any given application is
evaluated only when it is needed – and in that case it is not evaluated more than
once.

Accepting Plotkin’s criteria, the standard lambda calculus is not a good fit
for lambda-calculus-based programming languages, since it is

– not operationally sound for call-by-value languages, since beta reduction is
not sound for call-by-value, and

– not in agreement with standard derivations for call-by-need languages, since
unlike call-by-need computation, beta reduction entails that arguments in
any given call might be evaluated repeatedly.

As a consequence a number of ”applied lambda calculi” have been studied, most
notably:

– λv calculus [Plo76] and its conservative extensions to handle control and
state [FH92]

– λneed [AFM+95] – and later refinements [AB97]

The main result of this article is that the call-by-value lambda calculus cannot
speed up (or slow down) programs by more than a constant factor. That is
to say, the equational theory, although sufficient to support computation, can
never yield a superlinear speedup (or slowdown). The corresponding result also
holds for the lesser-known call-by-need calculus – a result which was outlined in
[MS99].

In contrast, we also show that the result does not hold for the standard
lambda calculus (based on full beta reduction) and the corresponding call-by-
name computational model. In the case of full beta reduction there are a number
of subtleties – not least of which is finding a machine model which actually
conforms to the cost model of beta reduction.

62 David Sands, Jörgen Gustavsson, and Andrew Moran

1.2 Related Work

Much of the work on the border between programming languages and complexity
has focused on characterising the computational power of various restricted pro-
gramming languages. The present work relates most closely to characterisations
of the range of transformations that are possible in particular program transfor-
mation systems. A few examples of negative results exist. The closest is perhaps
Andersen and Gomard’s [AG92, JGS93]. They considered a simple form of par-
tial evaluation of flow chart programs and showed that superlinear speedups
were not possible. Amtoft suggests that even expressive systems such as unfold-
fold, in a particular restricted setting, can give only constant-factor speedups.
Incompleteness results for unfold-fold transformation include the fact that these
transformations cannot change the parallel complexity of terms [Zhu94, BK83],
where parallel complexity assumes a computational model in which all recursions
at the same nesting level are evaluated in parallel. Our earlier work [San96] on the
use of improvement for establishing the extensional correctness of memoization-
based program transformations showed that recursion-based deforestation in a
call-by-name setting cannot speed up programs by more than a constant factor.

The result in this paper was first proved for call-by-need lambda calculus
in [MS99], and the key development via an asymptotic version of improvement
theory, was also introduced there.

1.3 Overview

The remainder of the paper is organised as follows:
Section 2 formalises what it means for one program to be asymptotically

least as fast as another, beginning with a traditional definition, and strengthening
it until it is adequate to handle a higher-order language. Section 3 introduces the
call-by-value lambda-calculus and Section 4 discuss what is a reasonable model
of computation cost for the calculus. Section 5 establishes the main result via
a notion of strong improvement. Section 6 considers call-by-name computation
and show that the result fails there. Section 7 concludes.

2 Relative Complexity

The main result which we prove in this article is that:

If M = N is provable in the call-by-value lambda calculus λv then M and
N have the same asymptotic complexity with respect to the call-by-value
computational model.

In this section we make precise the notion of “having the same asymptotic
complexity” when M and N are (possibly open) lambda terms.

Lambda Calculi and Linear Speedups 63

2.1 Improvement

We will characterise the notion of one program having the same complexity as
another in terms of an improvement preorder. Let us begin with a “traditional”
view of when one program is better than another. Firstly we will assume that
we are comparing extensionally equivalent programs. Consider first the simpler
case of two programs P and Q which compute some function f ∈ D → E. Let
p and q ∈ N → N denote the time functions for P and Q respectively, where
p(n) is the worst-case number of computation steps required to compute P on
an input of size n.

In traditional algorithm analysis style one would say that P is asymptotically
at least as fast as Q (or equivalently, P is no more than a constant factor slower
than Q) if

p(n) ∈ O(q(n)).

More precisely, if there exit constants a and n0 such that

∀n > n0.p(n) ≤ a · q(n). (2.1)

We will work with a definition which is both

– stronger – yielding a stronger main result, and
– more general – since we intend to deal with lambda terms and program

fragments rather than whole programs computing over “simple” domains.

Strengthening Let us first deal with the strengthening of the condition. The
above definition is based on the notion of the size of a given input. As well as
being difficult to generalise to a lambda calculus, it also makes for a weaker
definition, since the time functions give the worst case running time for each
input size. For example, suppose we have a quicksort algorithm Q which is
O(n2) in the worst case (e.g., for fully sorted lists), but performs much better
for a large part of the input domain. According to the above definition, a sorting
algorithm B implementing bubble sort, which exhibits quadratic behaviour in
every case, would be considered asymptotically equivalent to Q.

By using a stronger notion of “asymptotic equivalence” of programs our
main result will be stronger – enabling us to conclude that bubble sort could
never be transformed into quicksort using the calculus. With this in mind, an
obvious strengthening of the notion of asymptotic speedup – without resorting to
average-case complexity – is to quantify over all inputs rather than just the worst-
case for each input size. Firstly, we note that 2.1 can be written equivalently as

∃a, b ∈ N. ∀n. p(n) ≤ a · q(n) + b (2.2)

The equivalence can be seen by taking b = max {p(m) | m ≤ n0}. This is a
useful form since it eliminates the use of the inequality relation – a prerequisite
for generalising to inputs which do not have a natural “size” measure. To make
the desired strengthening, let timeP (d) denote the running time of P on input

64 David Sands, Jörgen Gustavsson, and Andrew Moran

d, and similarly for Q. The strengthening of the definition is to say that Q is
improved by P iff

∃a, b ∈ N. ∀d ∈ D. timeP (d) ≤ a · timeQ(d) + b

We would then say that P has the same asymptotic complexity as Q if P is
improved by Q, and Q is improved by P .

Generalisation Having strengthened our notion of asymptotic improvement, we
now seek a generalisation which permits us to deal with not just whole programs
but also program fragments. The generalisation is to replace quantification over
program inputs by quantification over the contexts in which the program frag-
ment can occur. A context (for a given programming notation), written C[·], is
a program containing a hole [·]; C[M] denotes the result of replacing the hole by
program fragment M – possibly capturing free variables that occur in M in the
process.

We identify the concept of program with a closed term.

Definition 1 (Asymptotic Improvement). Given a programming language
equipped with

– a notion of operational equivalence between terms, and
– an operational model (abstract machine) which defines a partial function

timeP , the time (number of steps) to evaluate program P (i.e. timeP is well
defined whenever P terminates)

define the following relation on terms:
Let M and N be operationally equivalent terms. N is no more than a constant

factor slower than M if there exist integers a and b such that for all contexts C
such that C[M] and C[N] are closed and terminating,

timeC[N] ≤ a · timeC[M] + b

We alternatively say that M is asymptotically improved by N , and write M B≈
N . If both M B≈ N and N B≈ M then we write M CB≈ N , and say that M and N
are asymptotically cost equivalent.

A straightforward but important consequence of this definition is that B≈ is a con-
gruence relation: it is transitive, reflexive, symmetric and preserved by contexts,
i.e, M B≈ N implies that C[M] B≈ C[N].

3 The λv Calculus

We will work with a syntax containing just lambda calculus and some arbitrary
constants. This is essentially just Landin’s ISWIM [Lan66, Plo76]. We follow
Felleisen and Hieb’s presentation [FH92] fairly closely, which in turn summarises
Plotkin’s introduction of the λv calculus [Plo76].

Lambda Calculi and Linear Speedups 65

The language Λ consists of terms which are either values or applications :

Terms L,M,N ::= V | M N
Values V,W ::= b | f | x | λx.M

Values include variables and two kinds of constants, the basic constants (b ∈
BConsts) and functional constants (f ∈ FConsts). The constants are intended
to include basic types like integers and booleans, and functional types include
arithmetical and logical operations on these types. The exact meaning of the
constants is given by a partial function:

δ : FConsts × BConsts → Values0

where Values0 denotes the set of closed values (and similarly Λ0 the set of closed
terms). We impose the restriction that there is only a finite set of constants so
that operations on constants can be implemented in constant time. We adopt
the usual conventions of identifying terms which only differ in the names of their
bound variables.

Operational Semantics Computation is built up from the following basic reduc-
tion rules:

f b → δ(f, a) (δ)
(λx.M)V → M [V/x] (βv)

The operational semantics is a deterministic restriction of the application of
the basic reduction rules which follows the “call-by-value” discipline of ensuring
that arguments are evaluated before the function application can be evaluated.
The computational order can be specified by only permitting reductions to take
place in an evaluation context. Evaluation contexts are term contexts where the
hole appears in the unique position we may perform a reduction:

Evaluation Contexts E ::= [·] | EM | V E

The small-step operational semantics is then given by the rule:

E[M] −→ E[N] iff M → N

It is easy to see that this one-step computation relation is deterministic. We
write M −→n N to mean that M computes in n ≥ 0 steps to N . Complete
evaluation is defined by the repeated computation until a value is obtained:

Definition 2.

– M⇓nV iff M −→n V .
– M⇓n iff there exists V such that M⇓nV
– M⇓≤m iff there exists n such that M⇓n and n ≤ m.

When M⇓n we say that M converges in n steps.

66 David Sands, Jörgen Gustavsson, and Andrew Moran

The λv Calculus The λv calculus is the least equivalence relation (=v) containing
the basic reduction relation (→) and which is closed under all contexts:

M =v N =⇒ C[M] =v C[N]

where C denotes an arbitrary term context, and C[M] denotes the textual re-
placement of the (zero or more) holes in C by the term M . I.e., =v is the
transitive, reflexive, symmetric and compatible closure of →. When M =v N it
is also standard to write λv � M = N .

4 Cost Models for the λv Calculus

It is tempting to take the counting of reduction steps as the natural model of
computation cost for the λv calculus, since it is a simple and high level defini-
tion. But is this a reasonable choice? It is a crucial question since if we make an
erroneous choice then our results would not say anything about actual imple-
mentations and they would be of little value.

We believe that a reasonable requirement of a cost model is that it should
be implementable within a program size dependent constant factor. I.e., there
should exist a linear function h such that, for every program M , if the cost of
evaluating M in the model is n then the actual cost is within |M | · h(n) where
|M | denotes the size of M .

One could alternatively insist that the constant to be independent of the
program, i.e., that there should exist a linear function h such that for every
program M , if the cost of evaluating M in the model is n then the actual cost is
within h(n). That is a much stronger requirement, used in e.g. Jones “constant-
factor-time hierarchy” work [Jon93, Ros98]. We believe that the results in this
paper could be extended to such models, although we have not done so.

In the remainder of this section we will argue that to count reduction steps
is a valid cost model for the λv calculus in former sense. Although it may seem
intuitively obvious, it is a subtle matter as we will see when we turn to the
call-by-name case later in this paper.

4.1 An Abstract Machine

Here we present a heap based abstract machine and argue informally that it
can be implemented (e.g., in the RAM model) within a constant factor linearly
dependent on the program size. Later we will relate the number of abstract
machine steps to the model based on counting reduction steps.

For the purpose of the abstract machine we extend the syntax of the lan-
guage with heap variables, we use p to range over those and we write M [p/x]
for substitution of a heap variable p for term variable x. We let Γ and S range
over heaps and stacks respectively. Heaps are mappings from heap variables to
values. We will write Γ{p = V } for the extension of Γ with a binding for p to

Lambda Calculi and Linear Speedups 67

V . Stacks are a sequence of “shallow” evaluation contexts of the form [·]N or
V [·], given by:

Stacks S := ε | [·]N : S | V [·] : S

where ε denotes the empty stack. Configurations are triples of the form
〈Γ, M, S 〉 and we will refer to the second component M as the control of
the configuration. The transitions of the abstract machine are given by the fol-
lowing rules.

〈Γ, M N, S〉; 〈Γ, M, [·]N : S〉
〈Γ, f, [·]N : S〉; 〈Γ, N, f [·] : S〉
〈Γ{p=V }, p, S〉; 〈Γ{p=V }, V, S〉
〈Γ, b, f [·] : S〉; 〈Γ, δ(f, a), S〉 (δ)
〈Γ, λx.M, [·]N : S〉; 〈Γ, N, (λx.M) [·] : S〉
〈Γ, V, (λx.M) [·] : S〉; 〈Γ{p=V }, M [p/x], S〉 (β)

A crucial property of the abstract machine is that all terms in configurations
originate from subterms in the original program, or from subterms of the values
returned by δ(f, b). More precisely, for each term M in a configuration there
exist a substitution σ mapping variables to heap variables and a term N which
is a subterm of the original program or a subterm of the values in range(δ) such
that M ≡ Nσ. The property is sometimes called semi compositionality [Jon96].
The property is ensured because terms are never substituted for variables, thus
the terms in the abstract machine states are all subterms (modulo renaming of
variables for heap variables) of the original program. This is not the case for the
reduction semantics, where terms may grow arbitrarily large as the computation
proceeds.

Thanks to semi compositionality it is easy to see that each step can be
implemented in time proportional to the maximum of the size of the original
program and the size of the values in range(δ)1. This is the only property we
require of the machine steps.

4.2 Relating the Cost Model to the Abstract Machine

In the remainder of this section we will prove that the number of abstract ma-
chine steps required to evaluate a program is within a program independent con-
stant factor of the number of reduction steps, as stated in the following lemma.

Lemma 1. If M⇓n then there exist Γ and V such that

〈 ∅, M, ε 〉;≤6n 〈Γ, V, ε 〉
Together with our informal argument that the abstract machine can be imple-
mented within a program dependent constant factor this shows that to count
reduction steps is a valid cost model of the λv-calculus.
1 This set is finite and independent of the program in question.

68 David Sands, Jörgen Gustavsson, and Andrew Moran

We will prove Lemma 1 in two steps. In the first we show that the number of
reduction steps in the reduction semantics is the same as the number of abstract
machine transitions which use one of the rules (β) or (δ).

Lemma 2. If M⇓n then there exist Γ and V such that

〈 ∅, M, ε 〉;∗ 〈Γ, V, ε 〉

using exactly n applications of (β) and (δ)

The proof of this lemma is by standard technique relating small-step semantics
and abstract machines and is omitted. Next we claim that the total number
of abstract machine transitions is at most six times the number of (β) and (δ)
transitions.

Lemma 3. If 〈 ∅, M, ε 〉 ;m 〈Γ, V, ε 〉 using n applications of (β) and (δ)
then m ≤ 6n.

Taken together with Lemma 2 this immediately implies Lemma 1.
In the remainder of this section we prove Lemma 3. First we define a measure

�·� on terms and stacks as follows.

�M� =

{
0 if M = p

1 otherwise
�ε� = 0

�[·]M : S� = 2 + �S�
�V [·] : S� = 4 + �S�

With the help of the measure we can generalise Lemma 3 to configurations with
a non empty heap and stack.

Lemma 4. If 〈Γ, M, S 〉 ;m 〈Γ ′, V, ε 〉 using n applications of (β) and (δ)
then m ≤ 6n− �M� − �S� + 1.

Proof. The proof of Lemma 4 is by induction over m.

case m = 0: In the base case we have that n = 0 and that 〈Γ, M, S 〉 ≡
〈Γ ′, V, ε 〉. Thus

6n− �M� − �S� + 1 = 6n− �V � − �ε� + 1 = 0 = m

as required.

case m > 0: We proceed by a case analysis on the abstract machine rule in
question. We will only consider (β) and the rule for applications. The other
cases follows similarly.

Lambda Calculi and Linear Speedups 69

subcase (β): In this case 〈Γ, M, S 〉 ≡ 〈Γ, V, (λx.N) [·] : T 〉 for some V , N
and T and we know from the induction hypothesis that

6(n− 1) − �N [p/x]� − �T �+ 1 ≥ m− 1

for some p. The required result then follows by the following calculation.

6n− �M� − �S� + 1 = 6n− �V � − �(λx.N) [·] : T � + 1
= 6n− 1 − 4 − �T �+ 1
= 6(n− 1) − �N [p/x]� − �T �+ 1 + 1 + �N [p/x]�
≥ m− 1 + 1 + �N [p/x]�
≥ m

subcase (application rule): In this case 〈Γ, M, S 〉 ≡ 〈Γ, N L, S 〉 for some N
and L and we know from the induction hypothesis that

6n− �N� − �[·]L : S� + 1 ≥ m − 1.

The required result then follows by the following calculation.

6n− �M� − �S� + 1 = 6n− �N L� − �S� + 1
= 6n− �S�
= 6n− �N� − �[·]L : S� + 1 + 1 + �N�
≥ m− 1 + 1 + �N�
≥ m

2

5 Constant Factors

We instantiate the definition of asymptotic improvement with the call-by-value
computation model above. I.e., we take

timeM = n ⇐⇒ M⇓n.

In the remainder of this section we will demonstrate the proof of our claim that
the call-by-value lambda calculus cannot change asymptotic complexity. In other
words, we show that =v is contained in CB≈ .

5.1 Strong Improvement

The main vehicle of our proof is a much stronger improvement relation which
doesn’t even permit constant factors. The reason why we make use of this relation
is that it is “better behaved” semantically speaking. In particular it possesses
relatively straightforward proof methods such as a context lemma.

70 David Sands, Jörgen Gustavsson, and Andrew Moran

Definition 3 (Strong Improvement). M is strongly improved by N iff for
all contexts C such that C[M] and C[N] are closed

C[M]⇓n ⇒ C[N]⇓≤n.

Following [MS99], we write this relation as M B∼ N . If M B∼ N and N B∼ M we
say that M and N are cost equivalent and we write it as M CB∼ N .

Cost equivalence is a very strong relation since it requires that the two program
fragments use exactly the same number of computation steps in all possible pro-
gram contexts. For example (λx.M)V is not cost equivalent to M [V/x] because
the former takes up one more step than the latter each time it is executed.

5.2 The Tick

We introduce a technical device (widely used in our earlier work with improve-
ment) for syntactically representing “a single computation step” – a dummy cost
called a tick. We will denote the addition of a dummy cost to M as XM . It is not
a language extension proper since “the tick” can be encoded in the language as

XM
def= (λx.M) () where x /∈ FV (M)

where () is an arbitrary basic constant2.
We can now state the fact that a reduct is cost equivalent to its redex if we

add a dummy cost to it.

Lemma 5.

– f b CB∼ Xδ(f, a)
– (λx.M)V CB∼ XM [V/x]

Although this result is intuitively obvious, it is hard to prove it directly since
it involves reasoning about computation in arbitrary program contexts. The
complications in the proof can be packaged up in a Context Lemma [Mil77]
which provides a convenient way to show strong improvements by investigating
the behaviour of terms in evaluation contexts.

Lemma 6 (Context Lemma). Let σ range over substitutions mapping vari-
ables to closed values. If for all E and σ, E[Mσ]⇓n ⇒ E[Nσ]⇓≤n then M B∼ N .

The proof of the context lemma is a simple extension of an established tech-
nique and we omit it here. A detailed proof of the context lemma for strong
improvement for call-by-need can be found in [MS99]. With the help of the Con-
text Lemma the proof of Lemma 5 is immediate by the virtue of the fact that
computation is defined as reduction in evaluation contexts.

The next step in our proof is a claim that a tick cannot change the asymptotic
behaviour of a term.
2 An alternative would be to define tick to be an identity function. But due to the

call-by-value model, this would not give XM �−→ M .

Lambda Calculi and Linear Speedups 71

Value
V ⇓0 V

(δ)
M ⇓n0 f N ⇓n1 b

M N ⇓n0+n1+1 δ(f, b)

(βv)
M ⇓n0 λx.L N ⇓n1 V L[V/x] ⇓n2 W

M N ⇓n0+n1+n2+1 W

Fig. 1. The big-step cost semantics

Lemma 7. XM CB≈ M

The intuitive argument for why this holds is that the execution of C[XM] differs
from the execution of C[M] only in some interleaving steps due to the tick, and
these steps are dominated by the other steps. This is because the tick cannot
stack up syntacticly during the computation, and as a consequence there is
always a bound to the number of consecutive tick steps, and each such group
can be associated to a “proper” reduction.

5.3 The Main Result

We will soon turn our attention to a rigorous proof of Lemma 7 but let us first
show how our main result follows from Lemma 5 and 7.

Theorem 1.

=v ⊆ CB≈ .

Proof. Assume that M → N . We can then make the following calculation

M CB∼ XN CB≈ N

Since CB∼ is contained in CB≈ it follows by transitivity that M CB≈ N , so → is
contained in CB≈ . Since CB≈ is a congruence, we have that =v, the congruent closure
of →, is also contained in CB≈ . 2

In the remainder of this section we will prove Lemma 7. It turns out that the
proof is more conveniently carried out with the big-step semantics provided in
Figure 1, which is the standard call-by-value big-step semantics augmented with
a cost measure. The proof that the cost measure in the big-step semantics is in
agreement with the small-step semantics is a trivial extension to the standard
proof relating big-step and small-step call-by-value semantics.

Recall that a key point in the informal argument of why Lemma 7 holds is
that ticks cannot “stack up” on top of each other during computation. To make
this into a rigorous argument we introduce the ternary relation M

iX� N, i ∈ N

defined in Figure 2 which intuitively means that M can be transformed into N
by removing blocks of up to i consective ticks. A key property of the relation is
that it satisfies the following substitution lemma.

72 David Sands, Jörgen Gustavsson, and Andrew Moran

j ≤ i
jXf

iX� f

j ≤ i
jXb

iX� b

j ≤ i
jXx

iX� x

M
iX� N

j ≤ i
jXλx.M

iX� λx.N

M0

iX� N0 M1

iX� N1

j ≤ i
jX(M0 M1)

iX� (N0 N1)

Fig. 2. The tick erasure relation

Lemma 8. If M
iX� N and V

iX� W then M [V/x]
iX� N [W/x]

The lemma is easily proven by, for example, an induction over the structure of
N .

The next step is to show that
iX� is preserved by computation, and at the

same time we show that the cost of executing the tick-decorated term is within
a constant factor of the cost of executing the term without the ticks.

Lemma 9. If M
iX� N and N ⇓n W then there exists V such that

– M ⇓m V ,
– m ≤ (3i + 1)n + i and

– V
iX� W .

Proof. The proof is by well-founded induction over n. We will only consider
the case when N ≡ N0 N1. Then the derivation of N ⇓n W must be of the form

(βv)
N0 ⇓n0 λx.N2 N1 ⇓n1 W ′ N2[W

′
/x] ⇓n2 W

N0 N1 ⇓n0+n1+n2+1 W

where n = n0 +n1 +n2 +1. From M
iX� N we know that M must be of the form

jX(M0 M1), for some j ≤ i and that M0

iX� N0 and M1

iX� N1. Thus it follows by
two applications of the induction hypothesis that

– M0 ⇓m0 λx.M2, for some m0 ≤ (3i + 1)n0 + i,

– λx.M2

iX� λx.N2,
– M1 ⇓m1 V ′ for some m1 ≤ (3i + 1)n1 + i, and

– V ′ iX� W ′.

From λx.M2

iX� λx.N2 and V ′ iX� W ′ it follows by Lemma 8 that M2[V
′
/x]

iX�
N2[W

′
/x] so we can apply the induction hypothesis a third time which gives that

– M2[V
′
/x] ⇓m2 V where m2 ≤ (3i + 1)n2 + i, and

– V
iX� W .

Lambda Calculi and Linear Speedups 73

We can now construct a derivation of M0 M1 ⇓m0+m1+m2+1 V as

M0 ⇓m0 λx.M2 M1 ⇓m1 V ′ M2[V
′
/x] ⇓m2 V

M0 M1 ⇓m0+m1+m2+1 V

which gives that jX(M0 M1) ⇓m0+m1+m2+1+j V . We complete the proof with a
calculation which shows that m0 + m1 + m2 + 1 + j ≤ (3i + 1)n + i.

m0 + m1 + m2 + 1 + j

≤ ((3i + 1)n0 + i) + ((3i + 1)n1 + i) + ((3i + 1)n2 + i) + 1 + i

= (3i + 1)(n0 + n1 + n2 + 1) + i

= (3i + 1)n + i

2

Finally we prove Lemma 7, i.e., that XM CB≈ M

Proof. We will start with the straightforward proof that XM B≈ M and do
the proof of M B≈ XM thereafter. This direction is intuitively obvious since we
remove the cost due to the tick. It is also easy to prove because it follows directly
from the Context Lemma that XM B∼ M and thus XM B≈ M .

Let us turn to the other direction. Assume that C[M] is closed and that

C[M]⇓n. Clearly C[XM]
1X� C[M] so it follows by Lemma 9 that C[XM]⇓≤4n+1

as required. 2

6 Call-by-Name

A natural question to ask is whether our result carries over to other programming
languages and their respective calculi. In other words, are calculi which fulfil
Plotkin’s criteria with respect to their intended programming language limited
to linear speed-ups (or slow-downs)?

It turns out that the answer to this question is no, not in general. Here
we show, somewhat surprisingly, that the main result fails for call-by-name if
we take number of reductions as the measure of computation cost: full beta
conversion can lead to asymptotic improvements (and worsenings) for programs
in a programming language with normal order reduction. We show this with
an example program for which a single beta reduction achieves a superlinear
speedup.

We also discuss whether the number of reductions is a reasonable cost mea-
sure by comparing it to “the natural” abstract machine. It turns out – another
surprise – that to count reductions steps in the reduction semantics is not in
agreement (within a program size dependent constant factor) with a näıve ver-
sion of the abstract machine. However a small optimisation of the abstract ma-
chine achieves an efficient implementation of the reduction semantics and thus
we can justify that to count reductions is a cost measure that is implementable.

74 David Sands, Jörgen Gustavsson, and Andrew Moran

6.1 The λname Calculus

We begin by introducing the syntax and operational semantics. We will work
with the same syntax as for the call-by-value language. The calculus =name is
the congruent closure of the basic reductions:

f b →name δ(f, a) (δ)
(λx.M)N →name M [N/x] (β)

To specify the computation order we define the following reduction contexts:

Call-by-name Evaluation Contexts E ::= [·] | EM | f E

Then normal order reduction is just:

E[M] −→name E[N] iff M →name N.

6.2 The λname Calculus and Superlinear Speedups

Theorem 2. Beta-reduction can yield a superlinear speedup with respect to call-
by-name computation.

We will sketch the proof of this surprising proposition. We show that the removal
of a single tick can lead to a superlinear speedup. I.e.,

M �B≈k

XM

Since XM =name M this shows that we cannot have =name ⊆ CB≈name
.

So, how can the cost of a single tick dominate the cost of all other steps in
the computation? To construct an example where this happens, we consider the
proof for call-by-value. The point at which the call-by-value proof fails in the
call-by-name setting is the substitution lemma for M

iX� N . In a call-by-name
setting we cannot restrict ourselves to substitutions of values for variables as in
Lemma 8. Instead we would need that,

If M0

iX� N0 and M1

iX� N1 then M0[M1/x]
iX� N0[N1/x]

which clearly fails. For example Xx
1X� x and XM

1X� M but XXM
1X� M is not

true because two ticks are nested on top of each other. Thus, ticks can stack
up on top of each other during normal order computation (consider for example
(λx.Xx) (XM)). We will use this when we construct our counterexample.

The idea of the counterexample is that the computation first builds up a
term with n ticks nested on top of each other. The term is then passed to a
function which uses its argument m times. Since we are using a call-by-name
language the argument will be recomputed each time so the total time will be
O(nm). Let Cm,n denote the family of contexts given by

Lambda Calculi and Linear Speedups 75

let (◦) = λf.λg.λx.f (g x)
in let apply = λf.λx.f (Xx)

in (apply ◦ · · · ◦ apply
| {z }

n

) (λx.

m
z }| {

x + x + · · · + x + x) 1

�−→∗
name

(λf.λx.f (Xx)) ((λf.λx.f (Xx)) (. . . ((λf.λx.f (Xx)) (λx.x + x + · · · + x + x)) . . .)) 1
�−→name

(λx.(λf.λx.f (Xx)) (. . . ((λf.λx.f (Xx)) (λx.x + x + · · · + x + x)) . . .) (Xx)) 1
�−→name

(λf.λx.f (Xx)) (. . . ((λf.λx.f (Xx)) (λx.x + x + · · · + x + x)) . . .) (X1)
�−→name

(λx.(. . . ((λf.λx.f (Xx)) (λx.x + x + · · · + x + x)) . . .) (Xx)) (X1)
�−→name

(. . . ((λf.λx.f (Xx)) (λx.x + x + · · · + x + x)) . . .) (XX1)
�−→name

. . .
�−→name

(λf.λx.f (Xx)) (λx.x + x + · · · + x + x) (...XX1)
�−→name

(λx.(λx.x + x + · · · + x + x) (Xx)) (...XX1)
�−→name

(λx.x + x + · · · + x + x) (X...XX1)
�−→name

m
z }| {

(X...XX1)
| {z }

n

+(X...XX1)
| {z }

n

+ · · · + (X...XX1)
| {z }

n

+(X...XX1)
| {z }

n

Fig. 3. A transition sequence where a tick stacks up

let (◦) = λf.λg.λx.f (g x)
in let apply = λf.λx.f [·]

in (apply ◦ · · · ◦ apply︸ ︷︷ ︸
n

) (λx.
m︷ ︸︸ ︷

x + x + · · · + x + x) 1

where we have used let x = M in N as a short hand for (λx.N)M .
The terms which exhibit the “stacking” of tick are Cm,n[Xx]. Note that this

tick then occurs in the definition of apply . When the program is executed this
single tick builds up as shown by the reduction sequence in Figure 3. The term
with the ticks is then duplicated when passed to g and to compute the resulting
sum takes O(nm) time, where n is the number of calls to apply in the original
term and m is the number of occurrences of x in g. If the tick is removed from
the definition of apply then the ticks cannot build up and the resulting program
runs in O(n + m) time. Thus we have a family of contexts, namely Cm,n which

76 David Sands, Jörgen Gustavsson, and Andrew Moran

illustrate that Xx CB≈ x cannot hold, since we can make n and m sufficiently large
to defeat any constants which attempt to bound the difference in cost.

6.3 An Abstract Machine

Here we discuss whether counting reduction steps it is a reasonable cost model
for call-by-name. We are not interested in whether we can do better than call-
by-name (call-by-need and more “optimal” forms of reduction can do this), but
whether there is an implementation of the language such that the number of
reduction steps is a good model.

We start by introducing “the natural” heap based abstract machine, obtained
by a minimal modification of the call-by-value machine. It is very similar to the
call-by-value machine but the heap is now a mapping from heap variables to
terms rather than a mapping from heap variables to values. The transitions of
the machine are:

〈Γ, M N, S〉;name 〈Γ, M, [·]N : S〉
〈Γ, f, [·]N : S〉;name 〈Γ, N, f [·] : S〉
〈Γ{p=N}, p, S〉;name 〈Γ{p=N}, N, S〉 (lookup)
〈Γ, b, f [·] : S〉;name 〈Γ, δ(f, a), S〉 (δ)
〈Γ, λx.M, [·]N : S〉;name 〈Γ{p=N}, M [p/x], S〉 (β)

The machine is still semi-compositional and it is thus easy to argue that the
individual steps are implementable within a program size dependent constant
factor. But is it a good implementation of our cost measure to count reduction
steps? The answer is no, since the abstract machine may use arbitrarily more
steps:

Lemma 10. For every linear function h there is a program M which requires n
reductions and m abstract machine steps where m > |M | · h(n).

The problem with the abstract machine is that it may create chains in the heap
of the following form.

Γ{p = p1, p1 = p2, . . . , pn−1 = pn, pn = M}
To evaluate p means to follow the chain by doing n consecutive lookups. If p is
evaluated repeatedly then these lookup steps may dominate all other steps. To
see how this can happen consider the following family of programs (based on our
earlier example):

let (◦) = λf.λg.λx.f (g x)
in let apply = λf.λx.f x

in (apply ◦ · · · ◦ apply︸ ︷︷ ︸
n

) (λx.
m︷ ︸︸ ︷

x + x + · · · + x + x) 1

When we evaluate the term in this prototype abstract machine it builds up a
chain

Γ{p = p1, p1 = p2, . . . , pn−1 = pn, pn = 1}

Lambda Calculi and Linear Speedups 77

let (◦) = λf.λg.λx.f (g x)
in let apply = λf.λx.f x

in (apply ◦ · · · ◦ apply
| {z }

n

) (λx.

m
z }| {

x + x + · · · + x + x) 1

�−→∗
name

(λf.λx.f x) ((λf.λx.f x) (. . . ((λf.λx.f x) (λx.x + x + · · · + x + x)) . . .)) 1
�−→name

(λx.(λf.λx.f x) (. . . ((λf.λx.f x) (λx.x + x + · · · + x + x)) . . .)x) 1
�−→name

(λf.λx.f x) (. . . ((λf.λx.f x) (λx.x + x + · · · + x + x)) . . .) 1
�−→name

(λx.(. . . ((λf.λx.f x) (λx.x + x + · · · + x + x)) . . .) x) 1
�−→name

(. . . ((λf.λx.f x) (λx.x + x + · · · + x + x)) . . .) 1
�−→name

. . .
�−→name

(λf.λx.f x) (λx.x + x + · · · + x + x) 1
�−→name

(λx.(λx.x + x + · · · + x + x)x) 1
�−→name

(λx.x + x + · · · + x + x) 1
�−→name

m
z }| {

1 + 1 + · · · + 1 + 1

Fig. 4. A transition sequence

of length n; eventually p is substituted for x in the body of

λx.

m︷ ︸︸ ︷
x + x + · · · + x + x .

and the chain is then traversed once for every p in

m︷ ︸︸ ︷
p + p + · · · + p + p .

Thus it takes (at least) O(nm) steps to evaluate a program in this family with
the abstract machine. However if we turn to the reduction semantics it uses only
O(n + m) as we can see by the schematic reduction sequence in Figure 4. This
family of programs is enough to show that for every linear function h there is
a program M which requires n reductions and m abstract machine steps where
m > h(n). It is not enough to prove Lemma 10 since the size of the programs in
the family grows linearly in n and m. However it is possible to construct a family
of terms which grows logarithmically with n and m which uses a logarithmic

78 David Sands, Jörgen Gustavsson, and Andrew Moran

encoding of natural numbers and recursion to achieve the same phenomena. We
omit the details.

6.4 An Optimised Abstract Machine

To obtain an abstract machine that correctly “models” beta reduction we must
eliminate the possibility of pointer chains in the heap. We do so by replacing the
(β) rule with an optimised form (β′):

〈Γ, λx.M, [·]N : S 〉;name

{
〈Γ, M [N/x], S 〉 if N is a heap variable
〈Γ{p=N}, M [p/x], S 〉 otherwise

The key is that the machine now maintains the invariant that for each binding
p=N in the heap, N is not a heap variable. This ensures that consecutive lookup
steps are never performed, and it leads to the following result.

Lemma 11. If M⇓n then there exist Γ and V such that

〈 ∅, M, ε 〉;≤6n
name 〈Γ, V, ε 〉

The proof of Lemma 11 is very similar to the call-by-value case. First we
show that the number of reduction steps in the small-step semantics is the same
as the number of abstract machine transitions which use one of the rules (β) or
(δ).

Lemma 12. If M⇓n then there exist Γ and V such that

〈 ∅, M, ε 〉;∗
name 〈Γ, V, ε 〉

using exactly n applications of (β) and (δ)

The proof of this lemma is by standard techniques relating small-step semantics
and abstract machines and is omitted. Next we claim that the total number
of abstract machine transitions is at most six times the number of (β) and (δ)
transitions.

Lemma 13. If 〈 ∅, M, ε 〉;m
name 〈Γ, V, ε 〉 using n applications of (β) and (δ)

then m ≤ 6n.

Taken together with Lemma 12 this immediately implies Lemma 11.
Just as in the call-by-value case we generalise Lemma 13 to configurations

with a non empty heap and stack.

Lemma 14. If 〈Γ, M, S 〉;m 〈Γ ′, V, ε 〉 using n applications of (β) and (δ)
then m ≤ 6n− �M� − �S� + 1.

Lambda Calculi and Linear Speedups 79

Proof. The measure �·� is the same as that used in the call-by-value case and
the proof is very similar. We only consider the case for the lookup rule where we
use the invariant property of the heap. Then 〈Γ, M, S 〉 ≡ 〈Γ ′{p = N}, p, S 〉
for some p and N . From the induction hypothesis we know that

6n− �N� − �S� + 1 ≥ m− 1.

The required result then follows by the following calculation where the last step
uses the fact that N is not a heap variable and thus �N� = 1

6n− �M� − �S� + 1 = 6n− �p� − �S� + 1
= 6n− �S� + 1
= 6n− �N� − �[·]S� + 1 + �N�
≥ m− 1 + �N�
= m

2

7 Conclusions

We have shown that the core theory of call-by-value functional languages cannot
speed up (or slow down) programs by more than a constant factor, and we have
stated that the result also holds for call-by-need calculi. In conclusion we reflect
on the robustness of this result.

7.1 Machine Variations

The results are clearly dependent on particular implementations. Implementa-
tion optimisations which themselves can yield nonlinear speedups can turn inno-
cent transformations into nonlinear speedups or slowdowns. This is illustreded
in the call-by-name case. In order to build a machine which matches the beta
reduction we were forced to include an optimisation. But the syntactic nature
of the optimisation made it very fragile: simply by adding a “tick” to a subterm
we can turn off the optimisation and thus get asymptotic slowdown. If we had
taken the more näıve implementation model for call-by-name as the basis3 then
the call-by-value result also holds for this variant of call-by-name.

3 A corresponding high level semantics for the näıve implementation can be obtained
by using a modification of beta reduction:

(λx.M)N �→name′ M [
XN/x]

80 David Sands, Jörgen Gustavsson, and Andrew Moran

7.2 Language Extensions

An obvious question is whether the result is robust under language extension.
For this to be a sensible question one must first ask whether the theory itself is
sound in richer languages. Fortunately Felleisen et al [FH92] have shown that
the λv calculus is sound for quite a number of language extensions including
state and control. Given the rather direct operation nature of our proofs (they
do not rely on global properties of the language, such as static typing) we have
no reason to believe that the same result does not hold in richer languages.

But of course language extensions bring new basic reductions. We believe that
the result will also be easy to extend to include basic reductions corresponding
to state manipulations – but we have not proved this. It is also straightforward
to extend the theory with specific (and useful laws). For example, the following
context-distribution law is a strong cost equivalence:

E[if L then M else N] ∼= if L then E[M] else E[N]

and thus the result is sound if we extend the theory with this rule4 – or any other
rule which is a weak cost equivalence (it need not be a strong cost equivalence
as in this example).

We stated the main result for call-by-need calculi. What about other reason-
able calculi? The core of the proof rests on the simple cost equivalence XM CB≈ M .
Although we at first thought that this would hold for any reasonable program-
ming calculus, the counterexample for call-by-name shows otherwise. As further
work one might consider whether it holds for e.g., object calculi [AC96].

7.3 Theory Extensions: A Program Transformation Perspective

Where do speedups come from? It is folklore that many program transforma-
tion techniques cannot produce superlinear speedups. A good example is partial
evaluation (except perhaps in rather pathological cases, such as discarding com-
putations by using full beta-reduction), which, viewed abstractly as a source to
source transformation, employs little more than basic reduction rules.

One “simple” source of non constant-factor speedups is the avoidance of
repeated computation via common subexpression elimination. For example, the
transformation rule:

let x = M in C[M] → let x = M in C[x]

(where C does is assumed not to capture free variables in M) is sound for call-by-
value, and can achieve non-constant factor speedups. As an example, consider
its application to a recursive definition:

f x = if x = 0 then 1
else let z = f (x− 1) in z + f (x− 1)

4 In the language we have defined, the conditional must be encoded using a strict
primitive function, but a suitable version of this rule is easily encoded.

Lambda Calculi and Linear Speedups 81

Note that in order to achieve non-constant-factor speedups the subexpression
must be a non value (otherwise any instance of the rule is provable in λv). It is for
this reason that the memoisation in classical partial evaluation or deforestation
does not achieve more than a constant factor speedup – because the memoisation
there typically shares functions rather than arbitrary terms.

Further work along these lines would be to extend the constant factor result to
a richer class of transformation systems which include forms of memoisation. This
would enable us to, or example, answer the question posed in [Jon90] concerning
partial evaluation and superlinear speedups.

Acknowledgements

Thanks to Koen Claessen and John Hughes for spotting problems with the näıve
implementation model for call-by-name. Thanks also to Dave Schmidt for pro-
viding valuable feedback on an earlier draft.

References

[AB97] Z. M. Ariola and S. Blom, Cyclic lambda calculi, Proc. TACS’97, LNCS,
vol. 1281, Springer-Verlag, February 1997, pp. 77–106.

[AC96] M. Abadi and L. Cardelli, A theory of objects, Springer-Verlag, New York,
1996.

[AFM+95] Z. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler, A call-by-
need lambda calculus, Proc. POPL’95, the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press, Jan-
uary 1995, pp. 233–246.

[AG92] Lars Andersen and Carsten Gomard, Speedup analysis in partial evalua-
tion: Preliminary results, Proceedings of the 1992 ACM Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation (San Fran-
cisco, U.S.A.), Association for Computing Machinery, June 1992, pp. 1–7.

[BK83] Gerard Boudol and Laurent Kott, Recursion induction principle revisited,
Theoretical Computer Science 22 (1983), 135–173.

[FH92] Matthias Felleisen and Robert Hieb, A revised report on the syntactic the-
ories of sequential control and state, Theoretical Computer Science 103
(1992), no. 2, 235–271.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft, Partial evaluation
and automatic program generation, Prentice Hall International, Interna-
tional Series in Computer Science, June 1993, ISBN number 0-13-020249-5
(pbk).

[Jon90] Neil D. Jones, Partial evaluation, self-application and types, Automata,
Languages and Programming, LNCS, vol. 443, Springer-Verlag, 1990,
pp. 639–659.

[Jon93] N. D. Jones, Constant time factors do matter, STOC ’93. Symposium on
Theory of Computing (Steven Homer, ed.), ACM Press, 1993, pp. 602–611.

[Jon96] Neil D. Jones, What not to do when writing an interpreter for specialisa-
tion, Partial Evaluation (Olivier Danvy, Robert Glück, and Peter Thie-
mann, eds.), Lecture Notes in Computer Science, vol. 1110, Springer-
Verlag, 1996, pp. 216–237.

82 David Sands, Jörgen Gustavsson, and Andrew Moran

[Lan66] P. J. Landin, The next 700 programming languages, Communications of
the ACM 9 (1966), no. 3, 157–164.

[Mil77] R. Milner, Fully abstract models of the typed λ-calculus, Theoretical Com-
puter Science 4 (1977), 1–22.

[MS99] Andrew Moran and David Sands, Improvement in a lazy context: An oper-
ational theory for call-by-need, Proc. POPL’99, ACM Press, January 1999,
pp. 43–56.

[Plo76] G. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical
Computer Science 1 (1976), no. 1, 125–159.

[Ros98] Eva Rose, Linear-time hierarchies for a functional language machine
model, Science of Computer Programming 32 (1998), no. 1–3, 109–143,
6th European Symposium on Programming (Linköping, 1996).

[San96] D. Sands, Proving the correctness of recursion-based automatic program
transformations, Theoretical Computer Science 167 (1996), no. A.

[Zhu94] Hong Zhu, How powerful are folding/unfolding transformations?, Journal
of Functional Programming 4 (1994), no. 1, 89–112.

	1 Introduction
	2 Relative Complexity
	3 The λ v Calculus
	4 Cost Models for the λ v Calculus
	5 Constant Factors
	6 Call-by-Name
	7 Conclusions

