UNIVERSITY OF LONDON
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
DEPARTMENT OF COMPUTING

CALCULI FOR TIME ANALYSIS
OF

FuNcTIONAL PROGRAMS

David Sands

A thesis submitted for the degree of
Doctor of Philosophy of the University of London
and for the Diploma of the Imperial College

September 1990

ABSTRACT

Techniques for reasoning about extensional properties of functional programs are
well-understood, but methods for analysing the underlying intensional, or opera-
tional properties have been much neglected. This thesis presents the development
of several calculi for time analysis of functional programs.

We focus on two features, higher-order functions and lazy evaluation, which con-
tribute much to the expressive power and semantic elegance of functional languages,
but serve to make operational properties more opaque.

Analysing higher-order functions is problematic because complexity is dependent
not only on the cost of computing, but also on the cost of applying function-valued
expressions. Techniques for statically deriving programs which compute time-cost
in the presence of arbitrary higher-order functions are developed. The key to this
process is the introduction of syntactic structures called cost-closures, which enable
intensional properties to be carried by functions. The approach is formalised by
the construction of an appropriate cost-model, against which the correctness of the
derivation is proved. A specific factorisation tactic for reasoning about higher-order
functions out of context is illustrated.

Reasoning about lazy evaluation (i.e. call-by-name, or more usually, call-by-need)
is problematic because the cost of evaluating an expression cannot be understood
simply from the costs of its sub-expressions. A direct calculus for reasoning about a
call-by-name language with lazy lists is derived from a simple operational model. In
order to extend this calculus with a restricted form of equational reasoning, a non-
standard notion of operational approximation called cost-simulation is developed,
by analogy with (bi)simulation in CCS.

The problem with calculi of the above form, based directly on an operational
model, is that they do not yield a compositional description of cost, and cannot model
lazy evaluation (graph-reduction) easily. We show how a description of the context
in which a function is evaluated can be used to parameterise two types of time-
equation: sufficient-time equations and necessary-time equations, which together
provide bounds on the exact time-cost of lazy evaluation. This approach is extended

to higher-order functions using a modification of the cost-closure technique.

ACKNOWLEDGEMENTS

I am indebted to Chris Hankin, whose supervision and encouragement were invalu-
able to the evolution and completion of this thesis.

[have benetfited greatly from numerous discussions and direct contributions from
my colleagues and good friends Jesper Andersen and Sebastian Hunt. Many Thanks.
I have also benefited from the research environment at Imperial, and in particular
I would like to thank Geoff Burn, Tony Field, Pete Harrison, Thomas Jensen and
Bent Thomsen as well as many other members of the Theory and Formal Methods
and Functional Programming sections, for their various inputs. Thanks to Paul Tay-
lor for TEXnical assistance, and to Anita Sasson for her meticulous proof-reading.
Outside IC, I would like to thank Daniel Le Métayer for his constant interest and en-
couragement, Richard Bird for some useful ideas and advice, and Torben Mogensen
for various helpful suggestions.

This work was funded in part by a studentship from the Science and Engineering
Research Council of Great Britain, and ESPRIT project BRA 3124, Semantique.
Thanks to Big Ron, Roony the House, Kosh the Dosh and The DB for miscella-
neous(!) financial support.

Thanks to my mum and dad for providing a frequent (and often windy) haven
from the grime of London life. Most of all thanks to Anita, not just for putting up

with me, but for giving me the encouragement that I needed.

Dave Sands
September 1990

Contents

Abstract

Acknowledgements

1 Introduction
1.1 Approaches to Time-Analysis
1.2 The Analysis of Imperative Programs
1.3 The Analysis of Functional Programs
1.3.1 The Automatic Approaches
1.3.2 Analysing Higher-Order Functions
1.3.3 Analysing Lazy Evaluation
1.4 Overview of the Thesis,
1.4.1 Some Notes to the Reader
Computational-Models and Cost-Functions
2.1 Introduction
2.2 A First-Order Language,
2.3 Operational Semantics 0oL
231 Style . oo
232 Typing Issues oL
2.3.3 Dynamic Semantics: General Form
2.3.4 A Dynamic Semantics
2.3.5 Basic Properties of the Semantics
2.4 Defining Time Cost
2.4.1 Step-counting Semantics Lo
2.5 Cost-Functions o
2.6 Correctness
2.7 DISCUSSION v oo e e

11
12
13
14
14
16
16
17
19

6 CONTENTS

2.7.1 Denotational Descriptions 31
2.7.2 Other Operational Formalisms 31

3 Higher-Order Analysis 32
3.1 Introduction 32
3.1.1 The Problem 32
3.1.2 Overview 33

3.2 A Restricted Higher Order Language 33
3.2.1 Examples 37

3.3 A Higher-Order Curried Language 39
3.3.1 The Problem 39
3.3.2 Cost-closures L 41
3.3.3 Basic Optimisations 44
3.3.4 Further Example 0000 46

3.4 Correctness A7
3.4.1 An Operational Semantics 48
3.4.2 Step countingo 50
3.4.3 Correctness Criterion 50

3.5 Generalisations of Cost-Functions 61
3.6 Factoring Higher-Order Cost-Functions 62
3.6.1 Reasoning about Cost-Functions 62
3.6.2 Context-Free Cost 64
3.6.3 Generalising Factorisation 68
3.6.4 Further Exampleso 69

3.7 Analysis of Call-by-Name via Translations 71
3.7.1 Example: A Simple Translation Method 72
3.7.2 A Translation-Based Time-Analysis 74
3.7.3 Exampleo 5
3.7.4 Classes of Translation 79
3.7.5 Discussiono 80

3.8 Related Work 81
4 An Operational Calculus for Time Analysis 85
4.1 Introduction L 85
4.2 Syntax 86
4.3 Semantics L 86

4.3.1 Semantic Rules 7

CONTENTS 7

4.4 Deriving Time-Equations 89
4.4.1 A Refined Definition 90

4.5 Direct Time Analysis o 90
4.5.1 Exampleo 91
452 Example oo 92

4.6 A Theory of Cost-Simulation. 93
4.6.1 Motivation 94
4.6.2 Cost-Simulation o o Lo 95
4.6.3 Relating > and 5 96
4.6.4 Precongruence 98

A7 DISCUSSION . . v v v v e e e e e 102
5 Lazy Time Analysis 104
5.1 Compositionality Through Descriptions of Context 104
5.2 Modelling Contexts with Projections 106
5.2.1 Projections for Strictness oo 107
5.2.2 The Projection ABS 108
5.2.3 The Projection Lattice 109
5.2.4 List Projections Lo 109
5.2.5 Determining Safe Projections 110

5.3 Sufficient-Time Analysis 0oL 111
5.3.1 Context-Parameterised Cost-Functions 111
5.3.2 Correctness 114

5.4 Necessary-Time Analysis 119
5.4.1 Necessary-Cost Functions 120
54.2 Example oo 122
5.4.3 Approximation and Safety 124

5.5 Higher-Order Lazy Time Analysis 130
5.5.1 Context Information, 130
5.5.2 Language 130
5.5.3 The Projection Transformers 131
5.5.4 Accumulating Cost-Functions 131
5.5.0 Examples 136
5.5.6 Correctness L 138
5.5.7 Limitations and Improvements. 138

5.6 Conclusions 140

8 CONTENTS
5.6.1 Related Work oo 141

5.6.2 Determining Appropriate Projections 142

5.6.3 Higher-Order Analysis 143

6 Conclusions 144
6.1 Summary e e 144
6.1.1 Higher-order functions 144

6.1.2 Lazy evaluation L. 145

6.2 Further Work 147
6.3 Applications 148
6.3.1 Program Transformation 148

6.3.2 Efficient Parallel Evaluation 150

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4

First-order language Syntax L. 22
Dynamic Semanticso oL o 25
Step-Counting Semantics L Lo 27
Cost-Function Construction Map 28
Expression Syntax Lo o 34
Simple Higher-Order Cost-Program Scheme 36
Translation Vo 36
Translation 7 37
Higher-Order Program Scheme 40
Higher-Order Expression Syntax 40
Function Modification Map, V 43
Cost-Expression Construction Map, 7 43
Higher-Order Cost-Program Scheme 43
Dynamic Semanticso L oo 49
Step-Counting Semantics Lo 51
Trace-Expression Construction Map, TR[] 62
Simulation Mapo Lo 74
Program Scheme oo o 76
Simulating Cost-Program Scheme 76
Simulating Cost-Program 77
Expression Syntax o o 86
Dynamic Semanticso Lo 88
Derived Time-Equations 90
Some list-manipulating functions o0 91
Definition of T[]« o oo oo 113
Definition of T[] o o oo 121

10

2.3
5.4
3.5
5.6

LIST OF FIGURES

Insertion Sort 122
Necessary-Cost Functions 123
The function modification map V, 135

The cost-function construction map 7, 135

Chapter 1
Introduction

Proponents of functional programming provide some compelling arguments as to
the expressive power of modern functional languages [Tur81, Hug89, Hud89]. Much
of this expressive power is due to the use of data-abstraction facilities, higher-order
functions, and lazy evaluation. Data abstraction provides modularity and clar-
ity, and, via static typing, a degree of security. Higher-order functions (functions
treated as first-class objects) provide an elegant structuring mechanism for build-
ing programs, and lazy evaluation (call-by-need together with delayed evaluation
of data-structures) supports programming styles in which “infinite” data-structures
are manipulated, and, to some degree, frees the programmer from concern with
underlying operational issues.

Although many programming languages contain (some of) the above features, it
is the underlying mathematical tractability of functional languages which is respon-
sible for much of the interest in functional programming. The phrase referential
transparency is used to describe a key mathematical property of functional pro-
grams: the ability to universally substitute equals for equals. The importance of
referential transparency is that simple, but powerful equational reasoning (akin to
“everyday mathematics”) may be used to reason formally about programs.

These properties make functional languages particularly suited to activities such
as program transformation, which seeks to harmonise the conflicting requirements
of program clarity and efficiency by the synthesis of correct and efficient programs
from clear initial solutions. There are various manifestations of this paradigm, from
viewing transformation as a mathematical programming activity [Mee86, Bir86], to
the construction of prototype systems to partially mechanise the formal development
of correct software [DHK*89, PS83]. In addition to the syntactic manipulation of

programs, semantics-based techniques for determining sound optimisations of func-

11

12 CHAPTER 1. INTRODUCTION

tional programs, such as strictness analysis, have received much attention [AH8T].

Another significant area of interest is in the execution of functional programs on
novel parallel architectures, by the exploitation of the implicit parallelism fostered
by referential transparency.

The suitability of functional programs for these activities is largely due to the
ease with which the extensional properties of a program are understood—above all
the ability to show that operations on programs preserve meaning. Prominent in the
study of algorithms in general, and central to formal activities such as program trans-
formation and parallelization, are questions of efficiency, i.e. the running-time and
space requirements of programs. These are intensional properties of a program-—
properties of how the program computes, rather that what it computes. However
the study of intensional properties is not immediately amenable to the algebraic
methods with which extensional properties are so readily explored, and very little
attention has been given to the formal study of the computational cost of algo-
rithms expressed as functional programs. Furthermore, the declarative emphasis
of functional programs, together with some of the features that afford expressive
power, namely higher-order functions and lazy evaluation, serve to make intensional
properties more opaque.

In this thesis we intend to address some of the problematic issues that arise in
the time-analysis of functional programs for which traditional methods are inade-
quate. We explore calculi for expressing the time-cost of programs with higher-order
functions, and programs employing non-strict evaluation orders. In the remainder
of this introduction we discuss the background, review related work, and outline the

structure of the thesis.

1.1 Approaches to Time-Analysis

One way to measure the performance of a program is to benchmark it on some
“suitably chosen” set of inputs, and observe the performance directly (the stop-watch
approach) or via appropriate profiling tools. Our focus is not on this experimental
approach, but on more analytic methods. To analyse time-cost analytically, one
attempts to express properties of the running time (such as worst-case or expected
time) by using mathematical techniques. Whilst to some extent the experimental
and analytic techniques are complementary, the latter approach is attractive since
it leads to a more informed judgement of an algorithms performance and has the

possibility of being influential during the software-design process, for example by

1.2. THE ANALYSIS OF IMPERATIVE PROGRAMS 13

guiding program transformation steps, or by assisting in the choice of annotations
for parallel evaluation.

The time complezity of a program is usually taken to mean a function mapping
the “size” of the input to the worst-case time required. What is meant by “time”
is not the number of seconds on a particular machine, but a more abstract discrete

count of certain evaluation steps or operations.

Micro vs. Macro Descriptions

How we choose to represent time-steps roughly divides such analyses into two cate-
gories: macro-analysis and micro-analysis. Macro-analysis expresses time-complexity
in terms of a dominant operation, or operations of an algorithm. For example,
sorting algorithms are characterised by the number of comparisons used, array ma-
nipulation by the number of arithmetic operations—see [AHU74| for many classic
examples. In a micro-analysis we seek to express complexity in terms of the number
of each type of elementary operation performed, such as Knuth’s use of a hypo-
thetical machine MIX [Knu68] to express complexity in terms of individual machine
instructions executed. More abstract notions of micro-analysis are possible: for one

example see [Coh82].

1.2 The Analysis of Imperative Programs

Much of the work on the analysis of algorithms was initiated by Knuth. The three
volumes of The Art of Computer Programming [Knu68, Knu69, Knu73] contain a
great many program analyses, and illustrate many of the fundamental mathemati-
cal tools necessary. A good introduction to the analysis of time-complexity can be
found in [AHU74, AHUS82]. The focus of these works is the study of specific im-
portant algorithms, rather than general techniques. The time-analysis of algorithms
expressed in a simple imperative language begins by intuitively clear but informal
construction of time-equations, where loops lead informally to the summation-terms,
and recursive procedures lead to the construction of recurrence equations. These
informal derivations are easily justified because the algorithms are expressed in an
imperative style which is “operationally declarative”. This process can however be
formalised using Floyd-Hoare logics, either by adding a time-count into the program
(e.g. [WegT6b]) and using the standard proof techniques directly, or by extending
Hoare logic’s to include a treatment of time as in [Nei84] (where it is argued that this

leads to a more natural formalisation of the informal approach). The significantly

14 CHAPTER 1. INTRODUCTION

more difficult problem of analysing the expected (average) time-complexity has also

been studied using Hoare-like logics e.g. [Ram79].

1.3 The Analysis of Functional Programs

Relatively little research into time-analysis has focused on the study of algorithms
expressed as functional programs, although some attention has been given to the

mechanisation of complexity analysis.

1.3.1 The Automatic Approaches

The first work in this area was that of Wegbreit [Weg75]. Wegbreit’s METRIC system
takes “simple” first-order pure LISP programs, and aims to automatically produce
closed-form expressions for various aspects of time-complexity, expressed in terms
of the size of the inputs to the program. The first step is the construction of
recursive equations which describe the exact time-cost in terms of the inputs of
the program. The system uses heuristics to determine a size-measure in which it
will attempt to express complexity. This process derives (conditional) recurrence
equations for which a solution is sought using a collection of standard recurrence
techniques, together with some additional methods required to obtain average-case
analyses. Direct extensions to these techniques to cope with a broader range of
data-structures and algorithms are discussed in [ZZ89).

The ACE (Automatic Complexity Evaluator) system of Le Métayer [LeM85,
LeM88b] analyses the worst-case behaviour of programs in FP ([Bac78]). The aim of
the system is to derive a non-recursive closed-form FP expression (which can include
functions like length) which describes an upper-bound on the running-time of a given
function. The main idea here is that by performing the analysis at the FP level,
the system can take advantage of the rich algebra of FP programs to perform much
of the algebraic simplifications necessary. The method begins with the construction
of a recursive function which computes the time-cost exactly, followed by simplifi-
cations using FP’s axioms, together with an extendible rule-based transformation
system which attempts to find non-recursive representations.

A similar functional perspective is taken by Rosendahl [Ros86, Ros89]. Here
the language under analysis is a first-order pure lisp subset. As in Le Métayer’s
approach, the process begins with the construction of functions which take the same

arguments as the original functions in the program and compute the time-cost. The

1.3. THE ANALYSIS OF FUNCTIONAL PROGRAMS 15

main contribution of Rosendahl’s work is to show how denotational-based analysis
techniques related to abstract-interpretation can be used to construct a time-bound
function tb from a step-counting function 7', roughly satisfying T' < tbo S, where S is
some supplied size-measure. Further analyses and syntactic techniques are used to
simplify the time-bound functions, leading ultimately to recurrence equations which
can sometimes be solved using a library of a few standard methods.

Other work in this area focuses on the problems of average case analysis of simple
recursive functions. This includes Flajolet’s study of mathematical techniques nec-
essary to solve the combinatorial problems that arise in the average-case analysis of
certain classes of (recursive) algorithms [Fla85, FS81]. An account of the average-
case analysis of FP programs is considered in [HC88|. A probabilistic semantics is
used to express the expected complexity in terms of probability distributions. To
handle structured data attributed probabilistic grammars are introduced.

The above works focus solely on the analysis of algorithms expressed as (pure)
first-order recursion equations which are (implicitly) given a call-by-value opera-
tional semantics!. It could be argued that the aim of these works is purely the
mechanisation of complexity analysis, and that the choice of a simple functional

language is just a convenience:

e First-order recursion equations enable equations (cost-functions) describing ex-

act time-cost to be constructed in a simple mechanical fashion.

e Cost-functions can be conveniently expressed in the original language, simpli-
fying much of the necessary symbolic manipulation, and fall under the purview

of techniques such as program transformation.

e Recursion equations lead more directly to the construction of mathematical
recurrences, where there are well-studied methods for determining solutions

(as well as automatic systems e.g. [CKT7T7]).

Our interest is in the development of general techniques for reasoning about func-
tional programs, rather than the choice of appropriate languages and methods for
the mechanisation of complexity analysis. Since higher-order functions and lazy
evaluation are essential elements of functional languages, we intend to consider the
complexity issues that arise from their presence. There has been very little work
which addresses these issues. Here we briefly review the work in this area, most of

which will be considered in more detail within the relevant sections of the thesis.

1This means that arguments to a function are fully evaluated before the call

16 CHAPTER 1. INTRODUCTION

1.3.2 Analysing Higher-Order Functions

The problems involved in analysing the time-complexity of higher-order functions
have been considered by Shultis [Shu85]. Shultis’ study begins with the definition
of a non-standard denotational semantics of a higher-order call-by-value functional
language, which models both value and time-cost. This semantics provides a testing-
ground for the development of an axiomatic theory for reasoning about time-cost.
The theory is presented in the form of a logic in which properties about values
and costs can be inferred. The key to this logic is the notion of the toll of an
expression. The zeroth toll of an expression is just its evaluation cost. The first toll
of an expression describes a function which gives the cost of an application of the
expression. Tolls may be of an arbitrarily high level, reflecting the arbitrary levels
of functional abstraction possible in the language.

A similar approach to the treatment of higher-order functions is considered by
Le Métayer [LeM88a], where a range of (functional) program analysis problems
are encoded in the language under analysis, and solved by program transformation
techniques. In the time (and space) analysis of higher-order functions, associated
with each function in the program we have a family of cost-functions. The first
cost-function determines the cost of applying the function to one argument, the 7t
(given 7 arguments) the cost of the :** application.

The correctness of the above approaches are not considered in any detail (al-
though Shultis provides a cost-model against which the logic could be validated).
A general theory of Lisp-like computation which encompasses intensional proper-
ties has been considered by Talcott [Tal85b]. This provides a framework in which
program calculi for reasoning about intensional properties of Lisp-like computations

can be formalised.

1.3.3 Analysing Lazy Evaluation

In the analysis of programs under lazy evaluation, one of the main problems is the
lack of compositionality: the cost due to an expression is not a simple composition
of the costs of the sub-expressions. This is because, as the term “lazy” is intended
to suggest, sub-expressions are not evaluated more than necessary, which implies
that cost is context-dependent. In Bjerner’s thesis [Bje89] a compositional theory
for time analysis of the programs of Martin-Lof type-theory (a primitive-recursive
functional language) is presented. The idea of compositional time-analysis is to

parameterise the cost of computing an expression by a description of the amount

1.4. OVERVIEW OF THE THESIS 17

of the result that is needed by the context in which it appears. For this Bjerner
develops a calculus for reasoning about context based on the notion of “evaluation
degrees”.

A characterisation of “need” (more accurately “not-need”) provided by a new
form of strictness analysis [WH8T7] enabled Wadler to give a simpler account of
Bjerner’s approach [Wad88], applied to a (general) first-order functional language.
The strictness-analysis angle of this approach also gives a natural notion of ap-
prozimation of context-information, and gives rise to techniques for automatically

reasoning about (approximate) contexts.

1.4 Overview of the Thesis

Our exploration of calculi for time analysis of functional programs focuses explicitly
on the problems introduced by higher-order functions and lazy evaluation.
Underlying any treatment of time-complexity, either explicitly or implicitly, is
some model of computation in which one is able to include descriptions of time-cost.
In Chapter 2 we introduce some of the basic ideas and techniques that will be used
for developing and formalising calculi for time analysis. Using the example of a sim-
ple call-by-value first-order language, we define an abstract form of computational
model via a structural operational semantics. Relative to this semantics, a suitable
uniform “macro” measure of time is chosen, and for convenience this is integrated
into the semantics to give the step-counting semantics. An externalisation of this
semantic property by its encoding into the language itself provides a calculus for
reasoning about time-cost. The time-cost for the evaluation of each of the func-
tions in the program is computed by what we call cost-functions, which (following
[LeM85]) are expressed in the original language. The cost functions are defined by
a simple syntactic mapping over the function definitions, so for example a function

like sum which sums the elements of a list:
sum(xs) = if null(xs) then 0 else hd(xs) + sum(tl(xs))

has the associated cost-function csum (which computes cost in terms of the number

of recursive function calls)
csum(xs) = 1 + if null(xs) then 0 else csum(tl(xs))

which, using the usual proof methods for functional programs can be shown to be

equal to 1 + length(xs). The correctness of the derivation step is easily shown

18 CHAPTER 1. INTRODUCTION

against the step-counting semantics, and the approach forms the basic framework
in which we consider the problems in a higher-order language.

In Chapter 3 we develop techniques for reasoning about the time-cost of pro-
grams in an untyped call-by-value language with higher-order functions. The prob-
lem with constructing cost-functions for a language containing higher-order functions
is that cost is dependent not only on the cost of computing the value of, but also
on the cost of applying function-valued expressions. The first step towards the suc-
cessful externalisation of time-cost via cost-functions is to modify the program so
that function-valued expressions now come in the form of a (cost-function, function)
pair. This method permits the construction of cost-functions, but only works for a
restricted higher-order language. To extend the method to a general higher-order
language we introduce structures called cost-closures. Cost-closures are (concrete)
structures containing information about functions together with their corresponding
cost-functions, and some essential arity information that is present in the underly-
ing operational closures which implement the higher-order features. The methods
developed are shown to be correct with respect to an appropriate operational model.
Next we show how higher-order cost-functions can be factored in a way that reveals
the cost-structure of higher-order functions in a more compositional manner. Fi-
nally in this chapter we show how an indirect application of these techniques can be
applied to the analysis of call-by-name evaluation, via cost-preserving translations.
Suitable classes of translations and the practicalities of this approach are discussed.
A practical limitation is the cumbersome nature of the translated programs, which
motivates a more direct approach.

In Chapter 4 an approach to the time-analysis of a call-by-name language with
“lazy” lists is developed. Instead of the construction of cost-functions (which is by
no means straightforward), we consider a direct approach in which a suitably concise
operational semantics forms the basis of simple equations for reasoning about time-
cost. An advantage of this approach is its simplicity, but unlike the cost-function
approaches we do not have the rich algebraic theories of functional programs at our
disposal. In order to buy back some of the powers of equational reasoning we develop
nonstandard notions of operational approximation and equivalence. A theory of
cost simulation, a strong notion of operational approximation which includes time-
cost, is developed by analogy with the notion of (bi)simulation in CCS [Mil89]. The
central property of cost-simulation is that it is a precongruence relation, and this is
proved.

Two drawbacks of the calculus in chapter 4 are firstly that it models call-by-

1.4. OVERVIEW OF THE THESIS 19

name, when most non-strict languages are implemented using call-by-need, and
secondly that it is not compositional. In Chapter 5 we consider compositional
calculus for reasoning about lazy (call-by-need) functional programs. In the first
half of this chapter we develop a significant refinement of the approach in [Wad88].
Using context information in the form of a certain class of projections, we intro-
duce two types of time-equation: sufficient-time equations which use information
about “not-neededness” to give an upper-bound to the time for lazy evaluation, and
necessary-time equations, a dual lower-bound, with better safety properties, which
use information about “neededness” (strictness). The next step is the extension of
these techniques to higher-order functions. In the absence of concise techniques for
handling descriptions of “context” in the presence of higher-order functions? in the
style of [WH8T7], we combine the first-order approach with a modified form of the
cost-closure technique developed in chapter 3 to give an account of time-analysis in
a higher-order lazy language.

Chapter 6 summarises the contributions of this thesis, and discusses directions

for further work.

1.4.1 Some Notes to the Reader

This work goes some way towards allowing functional programmers to reason about
intensional properties of their programs with something like the ease with which
they currently reason about the extensional ones. There are a number of good in-
troductions to functional programming, of which [BW88] and [FH88]| are particularly
recommended. Some background knowledge of functional-language semantics, both
operational (in the structural style—see [Plo81, Kah87]), and denotational (see e.g.
[Sch86]) are useful, but not essential.

The calculi we present are far from complete, not only in the sense implied by
standard halting-problem arguments, but also in the range of methods that are con-
sidered. In general the mathematical techniques that are useful for the (average and
worst-case) solution of equations describing time-cost are innumerable, and virtu-
ally none are considered here. However, the calculi reveal enough of the algorithmic
structure of operationally opaque functional programs to permit the use of the more
traditional techniques developed in the context of imperative programs—for an in-

troduction the reader is referred to Aho, Hopcroft and Ullman’s classic textbook

Zalthough a recent generalisation of projections using partial equivalence relations [Hun90a] has
opened up new possibilities in this area

20 CHAPTER 1. INTRODUCTION

[AHUT74]. For an introduction to many pertinent mathematical methods see for
example [GKP89].

Elements of chapters 3 and 5 have also been presented at The 1989 Glasgow
Functional Programming Workshop [San89], and (in a shorter form) in the Third
Furopean Symposium on Programming, [San90]. Chapter 4 is largely self contained,
as are the elements of Chapter 5 which refer to a first-order analysis, and these can

be read independently from the rest of the thesis.

Chapter 2

Computational-Models and
Cost-Functions

2.1 Introduction

In this chapter we begin our investigation of the time-analysis of functional programs
by considering elements of the relatively well-studied analysis of a simple first-order
language with a call-by-value semantics.

Our aim here is to give an introduction to some of the basic concepts explored
in this thesis. We define a simple functional language and provide an abstract
formulation of a cost-model, with which we can give a formal treatment of the idea
of cost-functions. Our formulation of time-cost will be in terms of a structured
operational semantics. This allows us to justify formally the derivation of cost-

functions, which compute this time-cost property.

2.2 A First-Order Language

We begin with a simple first-order functional language, which will serve as an ex-
emplar for the various simple functional languages introduced in this thesis. Ex-
pressions in this language are evaluated in the context of a set of mutually recursive

function definitions of the form:

fl(Il,...,Inl) = €6

fe(zr, .. 20,) = e

21

22 CHAPTER 2. COMPUTATIONAL-MODELS AND COST-FUNCTIONS

For simplicity we assume that there are distinct indexed function names, and that
the formal parameters of the definitions are also indexed. This convention will
simplify the following semantic and syntactic definitions, but will be dropped in the

presentation of examples.

e = filer,... €n) user-function applications
| pler,...,en) primitive-function applications
| if e; then ey elsees conditionals
| = identifiers
| ¢ constants

Figure 2.1: First-order language Syntax

The syntax of expressions is given in figure 2.1. The exact set of primitive func-
tions and constructors, ranged over by p, is unspecified here, although we will assume
in our examples that we have a list constructor, and its associated head and tail

operations, together with arithmetic and boolean functions.

2.3 Operational Semantics

2.3.1 Style

The meaning of terms in this language is given by an operational semantics, since
it is clear that we will need some form of operational description of the language in
order to reason formally about time-cost. In defining an operational semantics we
do not follow the process of defining program execution (interpretation) via some
specific abstract machine, but adopt the more abstract style of Plotkin’s “Structural
Operational Semantics”. Our reason for adopting this approach is that it allows us
to provide a semantics which contains sufficient detail to describe appropriate ab-
stract measures of time-cost, but do not introduce more operational details than are
necessary for this task. It is because the semantics must give sufficient operational
details that we prefer this style of operational semantics to operational descriptions
based on rewriting ideas [K1o80], since these approaches generally do not make suffi-
cient commitment to evaluation-order, but require additional machinery, a reduction
strategy , to capture these notions.

Generally, in the structural operational semantics approach, the semantics of a

language is defined by a set of axioms and inductive rules. These define a logical

2.3. OPERATIONAL SEMANTICS 23

system which allows us to infer semantic properties such as “ expression e has type

77, or, “expression e evaluates in a single step to expression ¢'”.

2.3.2 Typing Issues

Most modern functional languages are strongly typed, and are polymorphic in the
style of ML, [HMT88]. Whilst strong polymorphic types are important feature,
we will not explicitly address typing issues for the simple languages presented in
this thesis since strong typing is a static (compile-time) issue, and plays no direct
role in the dynamic (run-time) behaviour of the language. Similarly, (parametric)
polymorphism may be informally understood by the way in which each instance of
a polymorphic function behaves operationally in the same way.

Recursive data-types do have relevance to complexity analysis, since they govern
the classes of mathematical problems that arise (see, for example, [FS81]), but since
this area is outside the scope of this thesis, for illustrative purposes we will simply

assume a built-in list-type.

2.3.3 Dynamic Semantics: General Form

Here we give a general outline of the formulation of operational semantics in this
thesis. Kahn et al [Kah87] focus on a particular style of structured operational
semantics, which they call Natural Semantics, because of (superficial) similarities
with natural deduction systems!. This work is concerned with characterising many
aspects of programming language semantics, including type-systems and translation.
We are only interested in the dynamic properties of languages, but the semantics

we give is in the style of the dynamic elements of “natural semantics”.

Sentences

The semantics for our language is defined as an inference system (a set of rules and
axioms) which allows us to prove sentences of the form p e — v . These sentences,

or judgements are read as
Given environment p, expression e evaluates to value v

What we mean exactly by values and environments will be specific to the semantics

defined.

!Semantics with a more genuine natural deduction flavour (i.e. the premises of a rule may be
hypothetical) can be found in [BH87]

24 CHAPTER 2. COMPUTATIONAL-MODELS AND COST-FUNCTIONS

Semantics of this kind are sometimes referred to as large step semantics, because
the judgements give us an “evaluation” relation between expressions and values. In a
small step semantics the rules define smaller “reduction” steps. It is straightforward
to convert a large-step semantics to a small-step version: see [Ast89] for examples.
Our preference for the large-step style is because of its simplification of proofs of

evaluation properties.

Rules and Axioms

The semantic definition is via an unordered collection of named rule schemas. Vari-
ables contained in a rule can be instantiated to give a specific instance of that rule
(providing all instances of a variable are instantiated with the same term).

The numerator of a rule contains the premises; given proofs of (instances of) the
premises we can construct a proof of (an instance of) the consequent (denominator).
Rules containing no premises are called azioms.

In addition the rules may have side-conditions. These are applicability conditions

not expressible as sentences.

2.3.4 A Dynamic Semantics

We use the above formalism to give a dynamic semantics for our language. The
semantic rules are given in figure 2.2. Before we consider the properties of the

semantics we give a brief explanation.

Environments

The environment to the left of the turnstile is used to map identifiers onto values.
This environment is represented by a list, (vq,...,v,) where the :'* element, v;, is
the value bound to identifier z;. Rule Id illustrates the notation used: the value-

environment, p is a list of values, where p; denotes the :** element.

Values

The domain of values includes the constants of the language, so that we have an
axiom of the semantics that says that a constant evaluates to itself (rule C). (NB
Since we will treat data type constructors as primitive functions, the set of values will
also contain their concrete representations, but we do not give an explicit treatment

here, other than for lists.)

2.3. OPERATIONAL SEMANTICS 25

C phsc—c

Foer— vy o phyen, = v, (V1,00 00,) Foeg — v
P Py €l 1 P "¢ En, G) e if ¢(fi) = e
[)|_¢ fi(elw"?eni)_)v
F,oeq — 01 - F, e, — v, .
p Py €1 1 P lprply(P,<'U1,~~~,'Un>):'L’
p"¢p(€1,...,€n)—>'v
1 phser — true phyes — v
’ p s if €1 then e; else ez— v
F, eq — false pltye3 — v
2 L2 ke

p s if €1 then e; else ez— v

Figure 2.2: Dynamic Semantics

User-defined functions

We assume that we have a function-environment ¢ which maps function names to the
body of that function, according to its definition. The judgements are parameterised

by this environment, thus a sentence p gy e — v is read as

Given environment p, in the context of definitions ¢ expression e evaluates

to value v

We will not make the construction of this environment explicit; this can either be
thought of as a separate semantic phase, or as part of rules which give meaning to

programs, rather than expressions.

Primitive functions

The meaning of the primitive functions is given by a partial function Apply—
further specification of this function is not given, although we assume that it is

deterministic.

2.3.5 Basic Properties of the Semantics

The semantics specifies a call-by-value evaluation order—clearly illustrated in the

rule for function application. There is a rule or axiom associated with each syntactic

26 CHAPTER 2. COMPUTATIONAL-MODELS AND COST-FUNCTIONS

construct, with the exception of the (non-strict) conditional expression for which
there are two rules whose applicability depends on the value of the condition.

To reason about time complexity using this semantics as a basis we rely on some
basic properties of the system. An important property of the semantics is that it
describes deterministic computation. An important (meta) property of the semantic
system, from the point of view of its suitability as a cost-model, is that proofs are

unique.

PROPOSITION 2.3.1 For all p, ¢, e, if A is a proof of plty e — v for some v and
A" is a proof of plky e — v for somev', then A = A" and v ="

PROOF Straightforward induction on the structure of A, by cases according to
the last rule applied. a

2.4 Defining Time Cost

In this thesis, for notational simplicity, but without loss of generality we choose to
express time complexity as a macro-analysis. As a suitable “dominant” operation
we will choose to express cost in terms of the number of non-primitive function calls,
since this will always be sufficient to express asymptotic behaviour of programs, pro-
vided that we make the assumption that the primitive functions are simple “atomic”

operations and hence do not “hide” computation.

2.4.1 Step-counting Semantics

In figure 2.3 we define an extended version of the semantics which has judgements
of the form

phs e (vt)
whose intended reading is

Given environment p, in the context of definitions ¢, expression e evaluates

to value v, involving t non-primitive function applications.

If we think of the standard semantics as defining a partial function S from an
environment and an expression to a value, then the corresponding step-counting
function SS has the same domain (i.e. is as well-defined) and satisfies S = first o
SS. The step-count component of the value is an externalisation of the number of

instances of the rule F in the corresponding proof in the standard semantics. We

2.4. DEFINING TIME CoOST 27

can formalise this connection by defining 7'(A) to be the number of instances of
rule F in proof A. T is defined inductively in the structure of the (labeled) proof

(our convention will be to label instances of a rule on the right).

7 (Al, .
T(A) + -+ T(Ag) otherwise

A r) B {1—|—T(A1)—|—---—|—T(Ak) ifr=F
S

T(S) = 0 if Sis an instance of an axiom

Now we can state the correspondence as

PROPOSITION 2.4.1 For all p, ¢, e, v, 1, we have

pls e (v,t)
iff there exists a proof A of pkye —v and T(A) =1

Again it should be clear that the proof is a straightforward induction, and is safely

omitted.

Id; phyai = (ps,0)
C, P |_¢ ¢ <C,O>

phoer = (visth) - phyen, = (vn,tn,)
<‘U17 .. .,’Uni> |_¢ €; = <'Uat>

¥ s if o(fi) = e
t pbs filer, ... en) = (v, 1+t 4+t 4+ +1,,)
P, P "qﬁ € — <’Ulat1> .-s' P "dz €n — <'Un7tn> if Apply(p, (v1,...,vn)) = v
/)|_¢ p(el,...,en) — <U7t1_|_+tn>
g _Pleen = (truety) phyes = (v, o)
. p g if €; then e, else ez— (v, 1 + t3)
1,2 e — (false,t1) phy es = (v,t3)

pls if e; then ey else e3> (v, 1) + t3)

Figure 2.3: Step-Counting Semantics

28 CHAPTER 2. COMPUTATIONAL-MODELS AND COST-FUNCTIONS

2.5 Cost-Functions

The step-counting semantics can be viewed as a (specification of) a simple profiling
interpreter. However, as a basis for reasoning about time-complexity it is a cum-
bersome tool, analogous to using the standard semantics as a basis for reasoning
about extensional properties of functions. It would be more desirable to employ a
calculus which would allow us to exploit “algebraic” and equational properties of
the language, for example in the transformational style of [BD77], and the algebraic
structure of the value domain. In this section we introduce cost-functions. These
are functions corresponding to the functions in the program, which given the same
argument values, compute the cost (corresponding to the step-count in the second
component of the step-counting semantics).

For this language we can build such cost-functions as follows: For each equation

of the form
filz, o an) =€

we construct an equation which computes the cost (in terms of the number of non-

primitive function calls) of applying f; to a tuple of values. The cost equation is

defined as:
cfi(xr, ..., an) =14+ Te]

where 7 is a syntax-directed mapping defined in figure 2.4.

Tle] = 0
T[z] = 0
T[if €1 then ey elsees] = T[er] + if e; then T [es] else T [es]

Tlper,....e)] = Tlea]+---+T[ed]
TIfiCer,...,e)] = cfiCer,..yen) + Tlea] + -+ Tlen]

Figure 2.4: Cost-Function Construction Map

Syntax directed derivations of this form, for similar first order languages can be
found in [Weg75, LeM85, Ros89]. These works focus on the techniques by which the
recursive cost equations can be manipulated to achieve a non-recursive equation.
Wegbreit refers to the first step (deriving cost-functions) as “local cost analysis”, in
which all the operations are counted using symbolic time-constants, while Rosendahl
derives cost-functions which compute the number of primitive-function applications,

which is referred to as “the step counting version” of the program.

2.6. CORRECTNESS 29

Example

As a simple example of the above scheme, consider the list-append function defined

as:
append(x,y) = if null(x) then y
else cons(hd(x), append(tl(x),y))

From this definition, applying 7 we obtain the cost-function which computes the

number of non-primitive function applications:

cappend(x,y) = 1 + if null(x) then 0
else 0 + cappend(tl(x),y) + 0 + 0

From this it is simple to show that

cappend(x,y) = 1 + length(x)

2.6 Correctness

The standard, and step-counting semantics provide the necessary machinery to rea-

son about the correctness of cost-programs. The correctness is derived as follows:

DEFINITION 2.6.1 If ¢ is some function environment which describes some function
definitions

filzr, oo an) =€

then let ¢' denote the environment which extends ¢ with the cost functions

cfi(ze, ..., xn,) =14+ Te

THEOREM 2.6.2 For all expressions e, and value environments p, and function-

environments ¢, if there exists a value v such that
phs e (vt
for some t then it follows that

p |_¢/ ’]'[[e]] — 1

30 CHAPTER 2. COMPUTATIONAL-MODELS AND COST-FUNCTIONS

Note that this is not a total correctness (&)—it says nothing about non-termination
or run-time errors in the evaluation of the original program. It is easy to see that
non-termination will be inherited by the cost program, whereas run-time errors
(e.g.hd(nil)) may not, and so the cost-program may be more defined than the
original.

The proof follows by induction on the structure of the proof in the step-counting

semantics, by cases according to the last rule applied.

PROOF We consider the case of function-application as an example. In this case

the last rule must have the following form:

Fi phe = <vl’t1> e p g en = <'Unntnz‘>
<vl7 . '7vni> '_gb € — <‘U,t>
Py fi(el?"'vem‘)i)<'U71+t‘|‘t1‘|‘"'—|-tnl.>

The inductive hypothesis is that the theorem holds for the antecedents of the rule,
so we have
p|_¢/ T[[ej]]%tj,jzl...ni (21)

Now T[fi(e1,...,en)] = cfiler,...,en,) + Ter] + -+ + T [en,] by definition, and
¢'(cfi;) = 1 + T[e;] by definition 2.6.1. The inductive hypothesis also gives us

(U1, .y 0n) P Tles] — ¢ (2.2)
and hence from the standard-semantics it is easily shown that
(V1,0 vn) For cfiler, .o en) = 14+

which combined with 2.1 allows us to conclude (formally, via applications of rule P

for the primitive function “+7) that

[)|_¢I T[[fi(el,...,eni)]]—>1—|—t—|—t1—|----—|-tni

as required. a

2.7 Discussion

Our emphasis in this chapter has been on establishing an approach to time analysis

by showing how cost-functions can be correctly constructed with respect to some

2.7. DISCUSSION 31

appropriate cost-model. Since cost-functions in a first-order strict language are very
straightforward and intuitive, they are usually derived (e.g. [LeM85, WegT5, Z789))
without formal justification. The importance of the explicit cost-model will be seen
in the next chapter where we consider the less obvious treatment of a language with

higher-order functions.

2.7.1 Denotational Descriptions

An alternative approach to providing a cost-model would be to present a non-
standard denotational semantics describing the operational property of interest,
but unrelated to the standard semantics (in the manner of, for example, Hudak’s
reference-count semantics [Hud87]), or via an “instrumented” semantics such as the
step-counting semantics given in the later account of Rosendahl’s work [Ros89]. Al-
though formulating properties as least fixed point equations is appealing from the
mathematical point of view, it is not entirely satisfactory since unless a formal con-
nection to the actual operational property of interest is made, such a nonstandard
denotational semantics is somewhat arbitrary. A possible justification in these cases
is that the semantics is obviously correct with respect to the operational property

of interest, but this is, at best, only convincing for first-order languages.

2.7.2 Other Operational Formalisms

There is much correspondence between the issues involved in the operational descrip-
tion of time-cost and elements of Talcott’s intensional theory of Lisp-like computa-
tions [Tal85a]. In Talcott’s terminology the step-counting function over proofs, 7' is
an instance of a derived property (in general, analogous to properties of proof-trees),
and the cost-function which computes it is a derived program. The operational pre-
sentation we have adopted is however based on the older and rather more familiar
operational semantics style due to Plotkin, and is not so specialised to describing

Lisp-like computation.

Chapter 3

Higher-Order Analysis

3.1 Introduction

In this chapter we develop a calculus for reasoning about a strict higher-order func-
tional language. The calculus takes the form of that in the previous chapter: the
main problem we solve is the construction of equations which compute the time-
complexity of a given program. For the first-order, strict language this has been
shown to be very intuitive and straightforward, and a few systems have been devel-
oped to mechanise the manipulation of the derived cost-functions. In this chapter
we show how to derive cost-equations for a higher-order language. The derivation
yields a functional program, is mechanisable, and thus provides a concise calculus
for reasoning about the time-complexity of higher-order functions, and by further
exploiting the functional nature of the equations could form the basis for an analysis

tool for higher-order languages in the style of Rosendahl and Le Métayer’s systems.

3.1.1 The Problem

To restate our formulation of the problem: given a program (which we will consider
to be any expression, plus a set of mutually recursive functions) we seek to find a
(syntax—directed) means of constructing a new program which computes the cost (in
terms of the number of certain elementary operations) of executing any expression.
Once again, without loss of generality we measure cost in terms of the number of
non-primitive function applications.

We identity certain desirable criteria for such a cost-program:

e The cost program should be in a functional language — because we want to take

advantage of the rich class of program transformation techniques and algebraic

32

3.2. A RESTRICTED HIGHER ORDER LANGUAGE 33

properties of functional programs.

e The cost program should be in the same language as the original program (al-
though we may wish to consider a new semantic domain of costs) — this is de-
sirable since it immediately gives an unambiguous semantics to cost-programs,
and the existing technology can be used to execute them. (For example, the cost
analysis of a strict first-order language, as presented in the previous chapter,
does not require a language with higher-order functions). In addition, infor-
mal reasoning about cost can be tested against cost-function execution, and
partially optimised cost-functions could provide a machine independent rapid

profiling.

3.1.2 Overview

The solution to the problem of deriving cost-functions in a higher-order language is
developed by first considering a restricted form of higher-order language in which
the only functional values are named functions in the program (i.e. no lambda-
expressions or curried functions). This motivates part of our solution, but the
language is only “first-and-a-bit” order. This language is then extended to allow
currying, (giving a fully general higher-order language) and the problems of deriv-
ing cost-functions are retackled.

The development of cost-functions presented in this chapter is via an informal
motivation of the “translation schemes” for deriving cost-functions in a higher-order
language. This is followed by a more rigorous study of correctness based on the
operational semantics of the language.

We go on to show the pertinence of our methods by illustrating how a form
of factorisation allows us to reason about higher-order cost-functions in a more
compositional manner, based on an intuitive notion of inherent, or context-free cost
in a higher-order function.

Finally we show how these techniques can be applied indirectly to the analysis
of call-by-name evaluation, via cost-preserving translations. Classes of translations

and the practicalities of this approach are considered.

3.2 A Restricted Higher Order Language

In this section we present a means of deriving cost programs for a simple higher

order language. The cost program satisfies our criteria in that it is expressed in the

34 CHAPTER 3. HIGHER-ORDER ANALYSIS

same functional language as the original program.
Firstly we define our language. As before, a program consists of a set of recursive
function definitions, together with a closed expression to be evaluated in the context

of these definitions. The syntax of expressions in this language is defined in figure 3.1

e = ele,...,¢€5) (application)
| fi (function)
| p (primitive function)
| (identifier)
| ¢ (constants)
| if e; then e; else e3 (conditional)

Figure 3.1: Expression Syntax

We choose the same class of primitive functions p as in the previous chapter,
namely, any strict (first-order) basic function (or constructor). Thus we have a
restricted form of higher-order language with no currying—the language is not fully
general because each expression that returns a function can only return one of the
named functions in the program, or an uncurried primitive function.

To develop a method of analysing this language, consider the following simple

example—an apply function defined as:
apply(f,x) = f(x)
The cost function associated with apply should have the form:
Capply(f,x) = 1 + the cost of applying £ to x.

But how do we syntactically refer to the cost function associated with £7 We do not
wish to introduce a function which returns the cost function (at run time) associated
with its argument, since this would not be supportable in a functional programming
language (it would require a non-referentially transparent pointer-equality test).

Our solution (which is the key to the analysis) is to modify the original function
definitions so that each unapplied user defined function is paired with its associated
cost function. In addition, whenever an identifier is applied to its argument (a tuple),
since the identifier must be bound to such a pair, the appropriate component of the
pair must be applied to the tuple.

For example, given the simple program :

3.2. A RESTRICTED HIGHER ORDER LANGUAGE 35

f(x)

x + 1

apply(f,x)

inc(x)

apply(inc,x)

As an intermediate step, the program is modified to:

fun (f) (x)

x + 1

apply’ (f,x)

inc’ (x)

apply((inc’,Cinc) ,x)

The unapplied instance of inc is translated to the pair (inc’,Cinc) and the func-

tion inc’ is extracted by the new primitive selector function fun. We can now

derive the complete cost-program:

apply’ (f,x) = fun(f) (x)

inc’ (x) = x + 1
Capply(f,x) = 1 + cost(f)(x)
Cinc(x) = 1

Capply((inc’,Cinc),x)

Generalising these ideas, the cost of evaluating any expression e is defined by the

program scheme in figure 3.2.
The purpose of the function V is to translate unapplied user defined functions £

into a pair (£’,cf), and, when a functional parameter is applied the appropriate

CHAPTER 3. HIGHER-ORDER ANALYSIS

fliler...zn) = V]ed]

Frler.xn) = Ve
cfiar . an,) = 14+ ToV[e]

cfpear...xn) = 14+ ToV[e]

T oV[e]

Figure 3.2: Simple Higher-Order Cost-Program Scheme

V] = ¢ (3.1)

Vz] = = (3.2)

V[if e; then e; elsees] = if V[e;] then V[ez] else V]es] (3.3)
Vipler,...,e)] = pWV]ed], ..., V[en]D (3.4)
VifiCer...e)] = fiV[ed] ... V]e.]) (3.5)

VIfl = (fiefi) (3.6)

VIl = (pcp) (3.7)

VieCer,...,e)] = funV[e]) V]ed], ..., Ven]) (3.8)

Figure 3.3: Translation V

3.2. A RESTRICTED HIGHER ORDER LANGUAGE 37

component of this pair (i.e. £’) must be applied (extracted by the selector fun). V
is a syntactic translation defined on the structure of expressions e in figure 3.3.

Rules (3.6) and (3.7) are relevant when functions are unapplied—they ensure that
the functions are passed with their cost. Rule (3.8) ensures that the appropriate
component of such a pair is applied when an expression evaluates to a function.
Note that (overlapping) rules 3.4 and 3.5 are not strictly necessary, but give a small
optimisation.

In figure 3.4 we define the cost-function constructor 7, over the syntax of the

expressions V[e].

Tl = 0 (3.9)

Tle] = 0 (3.10)

T[if e; theney elsees] = T[e1] + if e; then 7 [ez] else Tes] (3.11)

Tlpler...e)] = Tle]+ -+ Texn] (3.12)

T[flCer...e)] = Tlea]+---4+Tlea] + cfiCer...en) (3.13)
T[fun(e)(ey...e)] = Tle]+Ter] + -+ Ten]

+ cost(e)(ey...e,) (3.14)

TI(fefD] = 0 (3.15)

T[(p,ep)] = 0 (3.16)

Figure 3.4: Translation 7

Rules (3.9) to (3.13) are as in the first order analysis. In rule (3.14), the general
application, we sum the cost of evaluating the function, the cost of evaluating each
component of its argument tuple and the cost of the actual application. As before

we take the costs associated with primitive function application to be zero.

3.2.1 Examples

Here is a simple example:

38 CHAPTER 3. HIGHER-ORDER ANALYSIS

fmap(l,v) = if null(l) then nil
else cons (hd(1)(v), fmap(tl(1l),v))
inc(x) = x + 1
id(x) = x
incpair(x) = fmap(cons(id, cons(inc, nil)), x)

incpair(9)

The cost program derived from this is (with a few trivial simplifications):

fmap’ (1,v) = if null(l) then nil

else cons (fun(hd(l)) (v), fmap’(t1(1),v))
inc’ (x) = x + 1
id’ (x) = x

incpair’ (x) fmap’ (cons((id’,cid),cons((inc’,cinc),nil)), x)

cfmap(1l,v) = 1 4+ if null(l) then O
else cost(hd(1))(v) + cfmap(t1l(l),v)
cinc(x) = 1
cid(x) = 1
cincpair(x) = 1 +

cfmap(cons((id’,cid),cons((inc’,cinc),nil)), x)

cincpair(9)

The (non—primitive) reduction steps in the (informal') evaluation of incpair(9)

'Rewriting expressions according to the defining equations using a (leftmost) innermost strategy.
Evaluation will in fact be formalised in terms of a relational-style semantics, rather than term
rewriting, however this presentation gives a good intuitive overview.

3.3. A HIGHER-ORDER CURRIED LANGUAGE 39

are :
incpair(9) -->
--> fmap(cons(id, cons(inc, nil)), 9)
--> cons (1d(9), fmap(cons(inc, nil),9))
--> cons (9, fmap(cons(inc, nil),9))
--> cons (9, cons(inc(9), fmap(nil,9)))
--> cons (9, cons(10, fmap(nil,9)))
--> cons (9, cons(10, nil))

The evaluation of Cincpair’ :

cincpair(9) -->

1 + cfmap(cons((id’, cid), cons((inc’, cinc), nil)), 9) -->
1 + 1 + ¢cid(9) + cfmap(cons((inc’,cinc), nil), 9) --> ...
-=> 1+ 1+ 1+ 1+ cinc(9) + cfmap(nil, 9) --> ...

--> 6

as expected.

In the next section we extend the analysis to cope with curried functions, thus
treating higher-order functions in their full generality.. The difficulty here is that no
evaluation inside the body of a function occurs until the function is supplied with
at least the number of arguments in its defining equation. The solution involves

extending the pairs (f, cf) to include the arity of the function.

3.3 A Higher-Order Curried Language

3.3.1 The Problem

In this section we show how we can handle a fully curried language, so first we intro-
duce such a language. The syntax of a program is shown in figure 3.5. Expressions
syntax is defined in figure 3.6 (the two classes of expression, exp and e are simply
used to disambiguate application). In the previous analysis, instances of unapplied
user-defined functions were paired with the appropriate cost-function. In the context

of currying we now have the possibility of partially applied functions:

DEFINITION 3.3.1 The arity of a user-defined function is the number of arguments
in the left-hand side of its defining equation.

40 CHAPTER 3. HIGHER-ORDER ANALYSIS

fizr oz, = expy
fex1.. .z, = expy
exp

Figure 3.5: Higher-Order Program Scheme

exp = expele
e 1= 1if e; theney elsees| (exp) | fi|
pilale

Figure 3.6: Higher-Order Expression Syntax

We shall refer to the arity of function f; as n;.

DEFINITION 3.3.2 A user-defined function is partially applied when it is applied to

fewer arguments than its arity.

O

For reasons of efficiency and simplicity, there is no evaluation inside the body
of a partially applied function—this is because such an evaluation strategy avoids
(potentially expensive) name clashes, and is therefore a feature of most functional
language implementations.

For each definition
fixy. .. xn, = exp;
we wish to construct a cost function

. . !
cfixy... .z, = exp;

which computes the cost of applying f; to n; values. In the previous analysis,

(syntactic) instances of unapplied functions were paired with their associated cost

3.3. A HIGHER-ORDER CURRIED LANGUAGE 41

functions; we extend this for our curried language by also pairing partially applied
functions.

This alone is not a sufficient extension. Consider the apply function:
apply £ x = f x

We know that £ will be bound to a fun/cost pair. In the non—curried language we

also know that f has arity 1, and so this function is translated into:
apply’ £ x = fun f x

In a curried language £ may have arity greater than one, and in this case we wish to
construct a new fun/cost pair. This can be achieved by applying both components
of the fun/cost pair (which is bound to f) to x. However, since we do not, in general,
know the arity of the fun/cost pair that will be bound to £, we propose to extend

the fun/cost pair to include some arity information.

3.3.2 Cost-closures

We extend the fun/cost pair by also including arity information. Thus an unapplied
user-defined function f; is translated into a triple (f;, cf;,n;). This structure con-
tains some of the information present closure which is constructed at run-time for
partially applied functions®. We shall refer to this triple as a cost-closure.

Returning to our simple example, we introduce a selector function arity which
returns the arity component of the cost—closure.

The translated apply function will now be:

apply’ £ x = if (arity f = 1) then (fun f x)
else (fun f x, cost f x, arity f - 1)

i.e. if the arity of f is greater than one, a new cost—closure is built (just as, in the
execution of the original definition, a new closure would be built). We can construct

the corresponding cost function from this definition:

capply £’ x = 1 + if (arity £’ = 1) then (cost £’ x)

else 0O

2This arity-count is the size of the closure environment subtracted from the number of arguments
in the function definition. In efficient implementations this is often represented explicitly, and for
convenience will be present in the operational semantics given later.

42 CHAPTER 3. HIGHER-ORDER ANALYSIS

The cost of building the closure is 0 since no evaluation takes place other than the
construction of the closure, and (somewhat arbitrarily) we choose not to count this
step.

We can use apply as the basis for our analysis, since this definition is in fact
sufficient to deal with any application, since any application can be translated into
an instance of apply: exp e is equivalent to apply (exp)e. In order that we do not
count this application of apply in our analysis we treat it as a primitive function,
by removing the “1 + 7 in the definition of capply’ above.

To aid presentation, we shall use @ as the left—associative infix version of apply’,
and similarly c@ as the infix form of capply’. For example, apply’ (apply’ f x) y

is equivalent to £ @ x @ y. To summarise, functions @ and c@ satisty:

he ifa=1
(he,ge,a—1) otherwise

(h,g,a)@e = {

0 otherwise

ifa=1
(h,g.a)cee = {ge N

As before we shall define two syntax-directed translation maps V and 7.

e The purpose of V (figure 3.7) is to derive modified versions of the original
functions such that all functions appear in the form of cost-closures, and all

applications are via Q.

e 7 (figure 3.8) defines the cost-expressions, using c@ to extract the cost-component

of the cost-closures.

The cost of evaluating any expression exp with respect to definitions
fixi.ooxp, =exp;, t=1,...k

is then defined by the program given in figure 3.9.
The syntax of V-translated expressions is:
exp’ = exp @€ | ¢
¢/ 1= if €} then e, elsees | Ceap) | (f!, cfi , ni)|
(pi 5 cpi » m;) | x| c| constant

T is consequently defined over the syntax of expressions exp’ and ¢’ generated by V,

in figure 3.8.

3.3. A HIGHER-ORDER CURRIED LANGUAGE 43
V]exzpe] = V]exp] @ V]e] (3.17)

V[if e; then e; else ez] = if V[e;] then V]ez] else V[es] (3.18)
V[Cezp)] = V][exp]) (3.19)

VIE] = ff s cfismi) (3.20)

VIpl = isoepi s mi) (3.21)

V[] = ¢ (3.22)

V[z] = =z (3.23)

Figure 3.7: Function Modification Map, V

T exp' @ €]

T[if €} then €}, else e4]
TCesp)]

T[(pi s epi 5 mi)]
T[S s efi s ni)]

T[]

= Texp’] +T[e] + Cexp’ c@e’)

= T[ei] +if €} then T[e,] else T[e]
= (Tea])

= 0

= 0

= T[z] = 0

Figure 3.8: Cost-Expression Construction Map, 7

flhiar..x,, = V]e]

e xn, = Ve
cf; ...

efp i o xn, = 14T oV]ek]

o, = 1+7 oV]e]

7T oV]e]

Figure 3.9: Higher-Order Cost-Program Scheme

44 CHAPTER 3. HIGHER-ORDER ANALYSIS

3.3.3 Basic Optimisations

The code derived by the above translation schemes is rather more cumbersome
than is necessary. This is because schemes introduce instances of @ and c@ for
every application. Below we give some straightforward optimisations that simplify
the cost-program considerably. It is worth noting that these simplifications can
be achieved by building more elaborate translation schemes (as in the non-curried
version) that identify the higher-order components of a program so as to introduce
only the essential cost-closures. This approach would sacrifice the overall clarity of
the method, and its subsequent proof.

The first simplification involves expressions of the form:
ey @...0 e;
where the expression e is a syntactic instance of a cost-closure:
(function , costfunction , n)

When we have an expression of this form (i.e. we know n at compile-time) we can
symbolically evaluate the @’s (and hence eliminate them). This is a trivial partial

evaluation, and can be achieved by the following rules:

(i) If j = n the above expression simplifies to:

function €} ... ¢
1 DR]'

This optimisation was included in the non-curried language, where n = 1 for

all functions.
(ii) If j > n the above expression simplifies to:
function €} ...€,@ ¢ ,,@ ...0Q ¢
This is simply an instance of the above case.

(iii) When j < n, the cost-closure is equivalent to

/ . / / :
i, costfunclion e} ...€; ,n—j)

- 7
(function €] ... e ’

although this is not necessarily an optimisation.

3.3. A HIGHER-ORDER CURRIED LANGUAGE 45

The second simplification (invoked after the above) involves expressions of the form:
(function , costfunction , n) c@¢’

This is simplified (by evaluation of c@) to

{ costfunction ¢’ when n =1

0 otherwise
Example
The following example illustrates the optimisation:

map £ x = if (null x) then nil
else (cons (f (hd %)) (map £ (t1 x)))

The step counting program derived from this is:

map’ £ x = if ((null,cnull,1) @ x) then nil
else (cons,ccons,2) @ (f @ ((hd,chd 1) @ x))
@ ((map’,cmap,2) @ £ @ ((tl,ctl,1) @ x)))
cmap f x = 1 + ((null,cnull,1) c@ x) +

if ((null,cnull,1) @ x) then O

else (((cons,ccons,2) c@ (f @ ((hd,chd 1) @ x))
+ ((cons,ccons,2) @ (f @ ((hd,chd 1) @ x))
c@ ((map’,cmap,2) @ £ @ ((t1l,ctl,1) @ x)))
+ f c0 ((hd,chd,1) @ x) + ((hd,chd,1) c@ x)
+ ((map’,cmap,2) @ £ c@ ((tl,ctl,1) @ x)))
+ ((map’,cmap,2) c@ £) + ((t1l,ctl,1) c@ x))

where we have simplified the body of the cost-function according to exp + 0 =
0 + exzp = exp. Using the basic optimisations above, and removing the costs of

applying primitive functions we get:

map’ £ x = if (null x) then nil
else (cons (f @ (hd x)) (map’ £ (t1 x)))
cmap £ x = 1 + if (null x) then O

else (f c@ (hd x)) + (cmap £ (t1 x))

In the remainder of our examples we will assume these basic optimisations.

46 CHAPTER 3. HIGHER-ORDER ANALYSIS

3.3.4 Further Example
Some Notation

For convenience we introduce a simple notation for the cost closures corresponding

to the named functions in the program.

DEFINITION 3.3.3 For all (literal) functions f (i.e. unapplied primitive or user-
defined functions), let f*° denote the cost-closure V[f].

O

The following example is chosen because it makes extensive use of currying: (It

shows how curried higher-order functions can be used to represent lists):

CONSxy f = fxy
HEAD x = X hed
hed a b = a
TAIL x = x tal
tal a b =

HEAD (CONS p q)

Evaluation of this expression yields, after three reductions:

HEAD (CONS p q) -->

CONS p q hed -=>
hed p q -->
P

The stepcounting program derived is as follows: (after simplification, and using the

cost-closure notation)

3.4. CORRECTNESS 47

CONS’ xyf = f@xQy
HEAD’ x = x @ hed*
hed’ a b = a
TAIL’ x = x 0@ tal®
tal’ a b = b
cCONS x yf = 1+ (f@xc@y) + (f c@ x)
cHEAD x = 1 + (x c@ hed®)
ched a b = 1
cTAIL x = 1 + (x c@ tal®)
ctal a b = 1
cHEAD (CONS* @ p @ q)

Evaluation of this expression yields the expected answer 3 (non-primitive re-
duction steps). Note that the V translation preserves the meaning of expressions

(modulo: a partially applied function will evaluate to a cost-closure):

HEAD’ (CONS®“ @ p @ q) > .
fun (CONS’ p q, cCONS p q , 1) hed®™ -->
CONS’ p q hed* -—> ...
fun (hd’, chd,2) p q -=>
hd” p q > p

In the next section we are required to formalise this property of V in the consideration

of the overall correctness.

3.4 Correctness

The derived program computes the number of times a certain “step” is performed
in the evaluation of the program. We formalise our intuitive model of “evaluation
steps” via an operational semantics in the style of the previous chapter. We prove
that the number of steps our derived program computes is correct with respect to

the actual operational behaviour of the original program.

48 CHAPTER 3. HIGHER-ORDER ANALYSIS

3.4.1 An Operational Semantics

The semantics is presented in much the same style as that in the previous chapter.

Environments

The environments used for binding identifiers to values, the value-environment (lists)

will be written in the form:
(V1,0 ., 0p)

and values are appended to the right of a value environment using operator “+4+7.

DEFINITION 3.4.1 The infix function ++ adds a value to the end of a list (environ-
ment):

(U1, c oy On)+HV = (U1, ..., 0n, V)

If p is a list of values, then p; denotes the :** element.

We will assume that we have constructed a function-environment which maps the
function-names to the right-hand-side of their definition. Informally we parameterise
the turnstile in the sentences by this environment—it would be straightforward to

include the construction of this environment in the semantic rules.

Values

The set of values will be the constants of the language, plus lists etc., together with
closures to represent functional values. A closure is represented by a triple, written
(f,n,p), where f is a function name (i.e. one of the f; or p;), n is a positive integer
representing the arity of the closure, and p is the value-environment which binds
zero or more of the formal parameters of f (from left to right). For any closure

(fi, k, p), the following property holds
| p |+ k=n;

where | p | is the number of values in (i.e. the length of) p, n, is the arity of the
function f;, and 1 < k < n;.

Figure 3.10 defines the standard dynamic operational semantics of the language.
App.1 is the case where application evaluates to a closure (i.e. a function). When
a closure receives its final argument (App.2/3), the function can be evaluated in

the context of the environment (with the final value appended onto the end). In the

3.4. CORRECTNESS

49

App.1

App.2

App.3

Cond.1

Cond.2

Brac

Userf
Primf
Ident

Const

. ot o
phoexp = (fin'p) phye—v o0

ptyexpe— (fin' —1,p ++0")

procap = (ful,p) phse—v gy 8(fi) = v

phsezpe —v

pbsexp— (pi,1,p) phye—1

if Apply(p:, (p'4++v")) = v
plsexpe—v

phser — true phyey— v

p s if e then e; else e — v

plser — false phyes —w

p s if e then e; else e — v

plsexp—wv

s (cap) — v
pbts fi = (fisnis ()

pFepi — (pi,mi () if m = arity(p;)
Py xj— p;

phsc—c

Figure 3.10: Dynamic Semantics

50 CHAPTER 3. HIGHER-ORDER ANALYSIS

case of a user defined function (App.2), the body of the function is evaluated in
the value-environment. We package the meaning of the primitive functions (App.3)
using a semantic function Apply, which is assumed to be a deterministic partial

function.

3.4.2 Step counting

The intuitive idea of an “evaluation step” corresponds to a rule application in the
elaboration of an expression. The steps our cost program is intended to count
correspond to rule App.2 in the above semantics. Again we externalise this via a

step-counting semantics whose judgements are of the form:
pts exp = (v,1)
which is read as

Given environment p and function environment ¢, evaluation of expression

exp yields value v, with ¢ reductions of non-primitive function applications.

The step-counting semantics is defined in figure 3.11, and is constructed by extend-
ing the value component of the standard semantics with a count of the number of
instances of rule App.2. We will not formalise the relationship between the stan-
dard and step-counting semantics any further, although this is straightforward (see

proposition 2.4.1).

3.4.3 Correctness Criterion

The above semantics will enable us to state and prove some properties about the

cost-program.

DEFINITION 3.4.2 If ¢ is a function environment representing some definitions

fixr.. . xn, = exp;

i=1,...,k, then let 7V denote the function environment representing functions
flay ...z, = V]eap;]
cfixy...xn,, = 14+ ToV[exp]

3.4. CORRECTNESS

SApp.1

SApp.2

SApp.3

SCond.1

SCond.2

SBrac

SUserf
SPrimf
SIdent

SConst

phoexp = ((fin' o)) phse= (ina) o,

phsexpe = ((fin' =1, p'+0"),m0 + ng)

p s exp = ((fi,1,0), 1)
phs e (v'ny)
pr by G(f:) = (v, ma)

pFes expei><'v,n1—|—n2—|—n3—|—1>

pbsexp > ((pi,1,p).m) phye> (v ng)

pbs expe = (v,n1 +ny) if Apply(pi, (p'++0')) = v

phy e = (true,ni) phyer = (v,n)

pls if e; then ey else ez — (v,ny + ny)

phs el = (false,ny) phy ez = (v, ny)

pFs if e; then ey else ej =N (v,n1 + na)

phy exp = (v,n)

o Fs (exp) = (0,n)

p by fi = ((fisni: (), 0)

p by pi = ((piymi, (), 0) if my = arity(pi)
p e xi = (p;,0)

ply ¢ = (c,0)

Figure 3.11: Step-Counting Semantics

52 CHAPTER 3. HIGHER-ORDER ANALYSIS

The basic correctness criteria for cost-programs can then be stated as:

THEOREM 3.4.3 (Correctness Criterion) For all expressions exp, and function-

environments ¢, if there exists a value v such that
() b eap = (v,n)

for some n, then

() Fyrv ToV[exp] — n

Note once more that this is not a total correctness (<=)—it says nothing about
nontermination or run-time errors in the evaluation of the original program. It is
easy to see that nontermination will be inherited by the cost program, whereas run-
time errors (e.g. hd(nil)) may not, and so the cost-program may be more defined
than the original, or may not terminate when the original program terminates with

a run-time error.

Properties of V

In order to prove the correctness of the cost-program scheme, we first need to con-
sider properties of the cost-closure introduction map V. The basic property that we
need to show is that V preserves the “meaning” of expressions: since) translates
functions into cost-closures, this will not be an equivalence. By a small abuse of
notation, we define a mapping (-)° to relate values in the cost-program to values in

the original program.

DEFINITION 3.4.4

(v, 5 v) if v = (o1, vx)
v = ((fimep%), (efin, p),m) if v =(fin,p)
v other values

O

Thus closures are related to a three element list (the semantic representation of a
cost-closure) in the cost program. (NB We are taking the semantics of a cost closure
to be that of a three element list in order to show that we do not need an extended
language to implement them). We extend this mapping to environments (i.e. a list
of values) pointwise in the obvious way.

In addition, V introduces @ as a means of cost-closure application. To avoid

extending the semantics to deal with this operation (i.e. to show that we do not

3.4. CORRECTNESS 53

need to extend the semantics) we take the operational meaning of the term exp’ @ ¢’

to be equivalent to that of the expression

if ((arity (exp’)) = 1) (3.24)
then (fun(exp’) ¢e’)
else (fun(exp’) e’, cost(exp) €', (arity(exp’)) - 1)

Since we are taking the semantics of the cost-closure to be that of a three element
list (containing two semantic closures), fun, cost and arity have their obvious
meanings in terms of list-primitives hd and t1.

The following lemma states that V preserves the meaning of programs, modulo .
LEMMA 3.4.5 For all expressions exp, if there exists a value v such that
plsexp—w

then it follows that
pe¢ Fyrv V]exp] — v

PROOF The proof is by induction on the structure of the proof of the judgement:
plsexp—w

The base cases correspond to use of the azioms (atomic derivations); the inductive
cases correspond to use of each rule (by which a derivation is constructed from a set
of smaller derivations). The inductive hypotheses for each case are that the lemma
holds for the antecedents of the rule.

The proof of each inductive case is presented as a derivation tree (in the standard
semantics), in which the leaves (subtrees) are the inductive hypotheses (or axioms).
We abbreviate the evaluation of cost-closures, and their selector functions fun, cost

and arity to simplify presentation.

Userf phky fi — (fi,ni, ()

From the definition of V, V[f.] = (f! , ¢fi , n;). Cost closures are treated as

three element lists, so we have

pcc |_¢TV V[[fl]] - <(fi/7ni7 <>)7 (C is T4, <>)7n2>

H4 CHAPTER 3. HIGHER-ORDER ANALYSIS

Now by definition of ¢,

(finis ()% = (i mi; (), (efismis (), i)

and so p° Fyrv V[fi] — (fi,ni, () as required.

Primf

Similar to above.

Ident p |—¢ T; — p;

Now V[xz;] = x; by definition, and so by definition of

pee |_¢‘TV V[[:E]]] — pccj = (p]-)cc

Const, Brac

Straightforward.

ptsexp— (fin',p) phye—
pksexpe— (f,n —1,p'+0")

App.1 ifn' > 1

Using the fact that
(fons o) = {(f', 0", p), (cf o, p°), 1)
the inductive hypothesis gives:
P byrv VIexp] — ((f', 0, p"), (cf, 0, p0),) (3.25)

where n’ > 1, and

pee Fyrv V[e] — v'*° (3.26)

We must now show that

o v Vieap €] = (£’ = 1, p)

3.4. CORRECTNESS 55

By definition we have

Viexp e] = V]exp] @ V[e]

and
(fyn' = Lo o) = ((f',n' = L (p4+0)%),
(cf,n' =1, (p'+40')%),
n' —1)
From the inductive hypotheses we can derive
(3.25)
: fun defn

p°¢ Fyrv fun V[[ex.p]] — (f'yn, ") (3.26) (3.27)

App.1
p* byrv fun V[exp]V[e] — (f',n' — 1, p"*+0'%)

where the function fun simply extracts the first component of the cost-closure—the

inferences have been omitted. Similarly we can derive

(3.25)
: cost defn. .
pe Fyrv cost V]exp] — (cf,n', p'*) (3.26) Avol (3.28)
pp-
p°¢ byrv cost V[exp]V[e] — (cf,n’ — 1, p'**4++0v"*°)
and
(3.25)
: arity defn. (3_29)
p* Fyrv arity V[exp] — n'
Applying the primitive function rules, we also have
pe byrv (arity V]exzp]) - 1 —n' -1 (3.30)

Putting 3.27, 3.28 and 3.30 together, (with the assumption that cost-closures are
implemented as lists) we have
p*¢ Fyrv (Fun(V[exp']) €', cost(V[exp']) V[e’], (arity(V[exp'])) - 1) —
<(fl7 n/ _ 17 plcc_l__I_v/cc)7 (Cf, ,n/ _ 17 plcc_l__i_v/cc)’n/ _ 1>

(3.31)
Since n’ > 1 then we expect that
p*¢ Fyrv (eq (arity (V[exp])) 1) — false (3.32)
Now we have
(3.32) (3.31) Cond.2
p°¢ byrv V[eaplaV[e] — ((f',n' — 1, p'+40"), (3.33)
(Cf, n/ _ 1’ plcc_l_|_v/cc)7 '

n' —1)

56 CHAPTER 3. HIGHER-ORDER ANALYSIS

and the required result follows from the equivalence:

plcc+_|_,vlcc — (pl+_|_,vl)cc

ptsexp— (fi,1,p) phye—v" p+v' by od(fi) = v
phsexpe—v

App.2

In this case the inductive hypothesis gives:

P gy V[ewp] — ((fi, 1, p"), (cfi, 1,p"), 1) (3.34)
pe gy V]e] — v’ (3.35)
(P H0") v VIo(fi)] — 0 (3.36)

From the definitions of ¢7Y we have
o(fi) = es = ¢"V(f]) = V[eil

So (3.36) is equivalent to the sentence

plcc_l__l_v/cc |_¢‘TV ¢Tv(fi/) — pee (337)
We can also infer
(334)
: fun defn (338)
p°¢ Fyrv fun V[exp] — (f', 1, p")
(334)
: arity defn. (339)

p*¢ Fyrv arity V]exp] — 1

and in this case we also have
p* Fyrv (eq (arity (V[exp])) 1) — true. (3.40)

Finally we can infer
(3.40) p* Fyrv funVexp]V[e] — v
pe¢ Fyrv V]expleV[e] — v

App.2
Cond.1

as required.

3.4. CORRECTNESS 57

App.3

Similar to previous case except that we must make the following restriction on

primitive functions:

cc

Apply(pi, p) = v = Apply(p;, p*) = v

for any environment p. This class of primitive functions includes any first-order
function (since first-order objects are unchanged by V) (e.g. sub,eq) and potentially
higher-order ones like head, as well as cons. Primitive functions outside this category

would need a specific translation in V.

F. e — true F, eq — v
Cond.1 Pls o1 Plec

p s if ey then e; else ez — v

The induction hypothesis gives:

p°® Fyrv V[ei] — true™ (3.41)

pe Fyrv V[ea] — v*° (3.42)
Now since true® = true (from the definition of *°), we can derive

(3.41) (3.42)

Cond.1
p Fif V]e1] then V[ey] else V[es] — v*°
as required
Cond.2
Similar to the previous case. a

Properties of 7

The correctness criterion is an immediate corollary of the theorem below. The

meaning of the cost-apply function (exp’ c@ ¢) is taken to be that of the expression
if (eq (arity (exp’)) 1) then (cost (exp’) e’) (3.43)
else O

In addition we define the cost-functions associated with primitive functions to be

zero, i.e. ¢7V(cp;) = 0.

58 CHAPTER 3. HIGHER-ORDER ANALYSIS

THEOREM 3.4.6 For all expressions exp, function environments ¢, and value envi-

ronments p, if there exists a value v such that
p bty exp = (v,1)

for some t, then
p* Fyrv T oV[exp] — 1

PROOF Proof by induction on the structure of the derivation of
p by exp = (v,1)

There is a case for each rule in the semantics.

SUserf pty fi = ((fi,n4,()),0)

T oV[fi] = 0 by the definition of 7 and V. Therefore p* Fyrv ToV[fi] — 0.

SPrimf, SIdent, SConst, SBrac

Similar to above.

P |_¢ exp = <(f7 nlapl)7n1> P |_¢ e = <‘U/7n2>

SApp-1 : if n' > 1
phsexpe = ((fin' =1 p'++0),n1 + na)
The induction hypothesis gives us
p*¢ Fyrv ToV[exp] — ny (3.44)
p*¢ Fyrv ToV[e] — ny (3.45)
Now from the definition of 7and V we have:
T oV[exp e] = ToV[exp] + T oV[e] + V]exp] ce V[e] (3.46)

The theorem requires us to show

pe¢ Fyrv ToV]exp e] — ny + ny

3.4. CORRECTNESS 59

From the inductive hypotheses it will be sufficient to show that
p* Fyrv V[exp] c@ V[e] — 0
From lemma 3.4.5, and from the fact that
pFsexp = ((f,n',p'),m) = phyexp— (f,n',p)
it follows that:
p° v V]exp] — ((f',n, "), (cf,n', p*0), 1) (3.47)

where n’ > 1, and so

p* Fyrv V[exp] c@ V[e] — 0

(by evaluation of c@ —straightforward derivation omitted), as required.

SApp 9 P |_¢ exp = <(f27 1,p'),n1> P |_¢ e = <‘U/7n2> p,—l—l_v, |_¢ ¢(f2) = <'U7n3>
pFes exp e = (v,ny +ny+ns+ 1)

The induction hypothesis gives us

p*¢ Fyrv T oV[exp] — m (3.48)
p*¢ Fyrv ToV[e] — ny (3.49)
(p'++v") Fyrv ToV[o(fi)] — ns (3.50)

The theorem requires us to show
pe¢ Fyrv ToV[expe] — ny +ny+ns+ 1
From the inductive hypotheses and (3.46) it will be sufficient to show that
p* Fyrv V[exp] c@ V]e] — n3z+1
From lemma 3.4.5, in this case we have:
o bry Vleap] = (11,6, (efi, 1,5, 1) (3.51)

and

pee Fyrv V[e] — v’ (3.52)

60 CHAPTER 3. HIGHER-ORDER ANALYSIS

From the definitions of ¢ and °° we have ¢(f;) = e; for some expression e;, and that
(p/_l__I_v/)cc — plcc_l__i_v/cc

So we can restate (3.50) as the sentence

P40 Fyrv T oV]e]| — ns (3.53)

From (3.51) we can infer
p byrv (eq (arity (V[exp])) 1) — true (3.54)
p*¢ Fyrv cost (V[exp]) — (cfi, 1, p") (3.55)

Now ¢TV(cf;) = 1 + T oV]e;] by definition of the cost program, and so from 3.53
we can infer
preettv by 9TV (ef;) = 1 +ny (3.56)
We can now derive
(3.55) (3.52) (3.56)
(3.54) p* Fyrv cost(V]exp])V[e] — 1 + ns
pe¢ Fyrv V[exp] c@ V[e] — 1+ ns

App.2
Cond.1

and so

pe¢ Fyrv ToV[expe] = 1+ ny + ny + ng

as required

SApp.3

Similar to previous case, taking cost-functions for all primitive functions to be zero.

SCond.1 _ Peer = (trueny) phyes = (v,no)

pFs if e; then ey else ej =N (v,n1 + ng)

The induction hypothesis gives us

P Fyrv ToV[e] — nq (3.57)
p*¢ Fyrv T oV[es] — ny (3.58)

3.5. GENERALISATIONS OF COST-FUNCTIONS 61

By definition of 7and ¥V we have:

T oV[if e; then e; else e3] =
ToV[ei] + if V[e1] then ToV[ez] else T oV][es]

and from lemma 3.4.5 we have p® F,7v V[e1] — true and so
p°¢ Fyrv ToV[if e; then e; else e3z] — ny + ny

(by rules Cond.1 and App.3) as required.

SCond.2

Result follows in the same way as the previous case, using lemma 3.4.5 and Cond.2.
O

3.5 Generalisations of Cost-Functions

In the previous chapter we noted that there were many variations of cost-function
definitions possible: cost-functions which count the number of primitive functions,
cost functions which give a “micro” result as a sum of symbolic cost-identifiers for
every action in the style of [Weg75, Coh82]. There are many other possibilities for
deriving functions which compute some property of an operational semantics proof.

The cost-closure technique can be easily adapted to give many of these these
variants. The reason for this is that the properties of V do not depend on the
definitions of the cost functions themselves. This enables us to reuse V to construct
other “cost” programs by just supplying alternative versions of 7.

As a small example, consider replacing 7 by the mapping 7R[| defined in fig-
ure 3.12.

In this definition, the function <> is an infix list-append. The trace-apply func-

tion tra@ is similar to c@, with the zero-cost 0 replaced by the zero-trace, nil:

cfe ifn=1

nil otherwise

(frefon) tree = {
These definitions together with V are used to construct trace functions for each f;:
cf; x1...x,, = cons "f;i" TRoV[e]

The trace functions compute a list of the function names called in the evaluation

of the program. In terms of the standard semantics this corresponds to a list of

62 CHAPTER 3. HIGHER-ORDER ANALYSIS

TR[exp’ @ '] = TR[exp'] <> TR[e'] <> (exp' tr@e’)
TR[if ¢} then ¢} elsees] = TR[e|] <> if ¢} then TR[e}] else TR[es]
TR[(Cexp)] = (TR[exp'])
TR[(p; , cpi , m;)] = nil
TR[C(f! , efi y n;)] = nil
TR[c] = nil

Figure 3.12: Trace-Expression Construction Map, 7R[|

the function-name look-ups in the function environment, ordered by a left to right
traversal of the proof tree, corresponding to a left to right evaluation order. To do
this formally, we would simply need a new version of theorem 3.4.6.

Trace semantics, and related ideas could form the basis of debugging tools, or
could be approximated statically to perform analyses along the lines of [Ses89,

BHB88], and like cost-functions, are amenable to functional programming technol-

ogy.

3.6 Factoring Higher-Order Cost-Functions

3.6.1 Reasoning about Cost-Functions

An important property of cost-programs is that whilst the cost of evaluating any
expression 1s described in terms of the functions and cost-functions of the cost-
program, the definitions of the cost-functions are independent of the ways in which
they are used by the program. This fact is clearly seen in some of our previous
examples where we reason about the performance of individual functions rather
than whole programs.

Traditionally, the aim of an analysis is to find a closed-form solution to the cost-
equations in terms of some size-measure of the input. In general an exact solution is
not possible, and so upper-bound, and average-case solutions are sought, by making
suitable probabilistic assumptions [Fla85, HC88]. These “traditional” methods are
largely applicable to reasoning about first-order functions, but break down in the
case of functions with function-valued inputs: to reason about such functions “out
of context” we would require not only assumptions about the possible values yielded

by application of functional arguments, but also about the possible costs incurred

3.6. FACTORING HIGHER-ORDER COST-FUNCTIONS 63

by these applications. For our formulation of cost-functions, this might mean giving

some probabilistic description of the possible cost-closures bound to some variable,

which is clearly not a sensible activity!

One solution to this is to only reason about such functions (like map) in a par-

ticular context, i.e. when the functional arguments (and hence the cost-closures)

are known. Another simple solution is to make sweeping approximations about

higher-order parameters. These approximations are of two types:

(i)

Intensional assumptions involve making assumptions about the cost of ap-
plying unknown functional arguments. For example, an expression of the form
x; c@ exp can be replaced by a symbolic constant, to represent an average or
upper-bound cost. Replacing such applications by an actual constant can be
viewed as a specialisation of cost-functions. For example, the map function of

section 3.3.3 has the following cost-function:

cmap’ £ x = 1 + if (null x) then O
else (f c@ (hd x)) + (cmap’ £ (t1 x))

The presence of the unknown cost-closure £ prohibits further manipulation of
this expression. If we replace £ c@ (hd x) by the symbolic constant f. then

we can easily show that
cmap’ £ x ~ 1+ (f. + Dn

where n = length x. The meaning of ~ is then dependent on our interpreta-
tion of f. as a lower, average or upper bound on the cost of applications of £

to elements of x.

Extensional assumptions involve assumptions or approximations about the
function-component of an unknown cost-closure, i.e. typically an expression of
the form x; @ exp. Particularly useful are structural assumptions which arise,
for example, in the following way: suppose we have analysed some cost-tfunction
cf x = e (corresponding to some definition of a function £) and we have shown

it to be equivalent to some function of it’s input length, i.e.
cf x = g (length x)

for some function g. Analysing an instance of the form cf(y @ exp) where y
is an unknown, we can make some progress by considering a class of functions

(i.e. cost-closures) y satisfying

length (y @ exp) < length exp

64 CHAPTER 3. HIGHER-ORDER ANALYSIS

For example £ may be some sorting function, and we consider the class of
contexts in which (the function-component of) y is a filter (i.e. only removes

some elements from the list).

3.6.2 Context-Free Cost

When manipulating programs one quite reasonably expects to transform higher-
order functions to give more efficient versions without considering specific contexts.
The basis of such activities are intuitions about invariant costs associated with
such functions: we refer to this component of inherent cost in a higher-order func-
tion, which is however independent of the specific functional parameters, as the
context-free cost. In the remainder of this section we show how it is possible to
reason about context-free cost by illustrating how higher-order cost-functions can

be factored into a sum of context-free and context-sensitive cost-functions.

Analysing a higher-order function

Consider the following definition of a function pam which maps a function over a

list, producing the result in reverse order:

pam £ x = if (null x)
then nil
else append (pam f (tl x)) (cons (£ (hd x)) nil)

append x y = if (null x)
then y
else cons (hd x) (append (tl x) y)

Deriving the cost expression for pam we obtain:

cpam f x = 1 + if (null x) then 0
else cappend (pam f (t1 x)) (cons (£ @ (hd x)) nil)
+ cpam £ (t1 x)
+ f c@ (hd x)

The cost-function for append is, as given in chapter 2, equal to
cappend x y = 1 + length x

Substituting this in the equation for cpam gives

3.6. FACTORING HIGHER-ORDER COST-FUNCTIONS 65

cpam f x = 1 + if (null x) then 0
else 1 + length (pam f (t1 x))
+ cpam £ (t1 x)
+ f co0 (hd x)

The following result is easily shown by induction in a:
PROPOSITION 3.6.1 length (append a b) = length a + length b

This is used to show that length (pam f (t1 x)) is independent of the functional

parameter, viz.,

PROPOSITION 3.6.2 length (pam f a) = length a

PROOF Induction in a:
e Base (a = nil): length (pam f nil) = length nil { pam defn. }
e Induction (a = cons x xs):

length (pam f (cons x xs))

= length (append (pam f xs) (cons (f @ x) nil))
{null, if, hd, t1 laws}

= length (pam f xs) + length (cons (f @ (hd x)) nil)
{Proposition3.6.1}

= length xs + length (cons (f @ (hd x)) nil)
{hypothesis}

= length xs + 1

= length (cons x xs)

Substituting this result back into cpam gives:

cpam £ x =1 + if (null x) then 0
else 1 + length (t1 x)
+ cpam £ (t1 x)
+ f c@ (hd x)

We cannot achieve a closed form expression for this complexity, since the total
cost is dependent on the specific function £. However, there is useful “context—free”
information within this definition, namely the cost information which is independent

of the function f.

66 CHAPTER 3. HIGHER-ORDER ANALYSIS

Factoring the cost-function

If we can represent the recursive cost-function cpam as a sum of two (recursive)
functions, cpamF and cpamS, where cpamF computes the context-Free cost and cpamS
the context-Sensitive cost, then we can potentially derive some closed-form result
about the context-free component.

Examining the above equation for cpam, we see that the main obstacle is the
context-sensitive cost, £ c@ (hd x). We begin with the eureka step of defining the

function cpamS which counts only these components of cost:

cpamS f x = if (null x) then O
else £ c@ (hd x)
+ cpamS f (tl x)

Now to complete a factorisation we need to derive a function cpamF satisfying
cpamF f x = (cpam f x) - (cpamS f x) (3.59)

Starting with this as our definition, we can easily synthesise a recursive version.

Instantiating x in 3.59 with nil and unfolding gives

cpamF f nil =1 -0

Similarly instantiating x in 3.59 with (cons x xs), and unfolding gives:

cpamF f (cons x xs) 1 + length xs
+ 1
+ cpam f xs
+ f c0 x

- (f c@ x + cpamS f xs)

= 2 + length xs
+ cpam f xs

- cpamS f xs
Now we can fold an instance of 3.59 on the right-hand-side to give:

cpamF f (cons x xs) = 2 + length xs

+ cpamF f xs

3.6. FACTORING HIGHER-ORDER COST-FUNCTIONS 67

We now have a recursive definition for cpamF in which the parameter £ is redundant,
and can be analysed further by standard recurrence techniques. In this case it is
not difficult to show that cpamF f x = CKlength(X)Q)

To see an example of how this information may be useful, consider a transformed
version of the pam function. Program transformation techniques can be used to
produce an accumulating parameter solution from the original function (see e.g.

[Bir84]):
pam2 £ x = pam’ f x nil
pam’ f x a = if (null x) then a
else pam’ f (tl1 x) (cons (f @ (hd %)) a)
Analysing these functions, we derive:
cpam?2 f x = 1 + cpam’ f x nil
cpam’ £ x a = 1 + if (null x) then 0

else cpam’ f (tl x) (cons (f @ (hd x)) a)
+ f c@ (hd x)

By redundancy of the third parameter, cpam’ £ x a = cpam’’ f x where

cpam’’ £ x = 1 + if (null x) then 0
else cpam’ £ (tl1 x)
+ f c0 (hd x)

Again using the factorisation idea, we can use similar factorisations to show that:

cpam2 f x =1+ cpam’’ f x
cpam’’ f x = (cpamF’’ f x) + (cpamS’’ f x)

cpamS’’ £ x = if (null x) then 0
else £ c@ (hd x) + cpamS’’ f (tl x)

cpamF’’ f x = 1 + if (null x) then 0
else cpamF’’ £ (t1 x)

The context-sensitive cost remains unchanged in this accumulating parameter ver-

sion, however the context-free cost can be shown to be exactly length x (versus

68 CHAPTER 3. HIGHER-ORDER ANALYSIS

O(length(x)?) for the original version), thus formally demonstrating the asymp-
totic improvement of the accumulating parameter version over the original in any

context.

3.6.3 Generalising Factorisation

Before presenting some more examples, we must consider how the factorisation ideas
illustrated in the above example generalise to the analysis of arbitrary higher-order
functions.

The degree of success of a factorisation can be measured in terms of obtaining a
context-free cost-function which contains no higher-order expressions—in the above
expression this is illustrated most clearly by the fact that the unknown functional ar-
gument is redundant in the definition of CpamF. Also, if we use the symbolic constant
f. to represent an upper bound to the cost-application £ c@ (hd x) then we can
easily show that cpamS £ x = f..n where n = length x, and so the factorisation is
complete, in the sense that cpamS could not be any smaller.

In general such complete factorisation will not be possible. In particular it will
not be possible when the equations depend on expressions of the form x@e. Note
that in the above example we were able to show that length (pam f (t1 x))
was independent of f. In an extreme case the outcome of a conditional expression
may depend on the value of an unknown function, and so without making some
approximating assumptions full factorisation cannot be achieved.

The factorisation in the above example begins with the eureka-step of defining one
half of the factorisation pair, and proceeds by synthesising the other half to ensure
correctness (in the sense that the sum is equal to the original function). A common
goal in the study of program synthesis by transformation is the removal of these so-
called ([BD77]) eureka steps—see for example [Chi90]. In this case, one possibility
for mechanising factorisation is to use type-structure to identify both higher-order
parameters and also context-sensitive subexpressions. Since our methods are not
restricted to typable functions (see the first example below) we sketch an informal
strategy for performing factorisation.

An obvious problem here is that even when the factorisation is achieved, the
eureka-step may not define an appropriate half of the factorisation pair (e.g. the
context-free functions may contain some context-sensitive costs). A strategy for
the factorisation-transformation is to take an iterative approach: begin as in the

above example by manipulating the functions until the need for factorisation is

3.6. FACTORING HIGHER-ORDER COST-FUNCTIONS 69

identified (i.e. we encounter expressions of the form x@e where z is not known). A
context-sensitive function, ¢S, can then be defined which just computes the (identi-
fied) context-sensitive components. After further manipulation, if context-sensitive
expressions are still identifiable in the context-free cost-function cF, these can be
isolated by a second factorisation, producing cF- and cS’. The context-sensitive
functions ¢S and ¢S’ can be remerged as a straightforward loop-merging/tupling
[Fea82] transformation.

It is straightforward to generalise factorisation to mutually recursive functions: in
this case we aim to synthesise two groups of functions each with the same dependency
structure. For example, if we have mutually recursive cost-functions ch and cg, then
factorisation derives mutually-recursive context-sensitive functions chS and cgs, and
similarly for the context-free functions.

In the remainder of this section we give some illustrative examples.

3.6.4 Further Examples
The truth function

The following function, truth, is a function that takes a predicate on booleans, and
a number representing the number of arguments that the predicate takes, and tests

to see if that predicate always returns true.

truth p n = if (n = 0) then p
else (truth (p true) (n-1)) and (truth (p false) (n-1))

where and is (strict) primitive conjunction. Note that this function is not typable
and can go “wrong” if the second argument does not correspond to the number of

arguments that the predicate takes. The cost-function derived for this equation is

ctruth pn =1+ if (n = 0) then 0
else p c@ true + p c@ false +
(ctruth (p @ true) (n-1)) +
(ctruth (p @ false) (n-1))

Factorisation is straightforward since the context-sensitive components of cost are

easily identified: beginning with ctruthS defined

ctruthS p n = if (n = 0) then 0
else p c@ true + p c@ false +
(ctruthS (p @ true) (n-1)) +
(ctruthS (p @ false) (n-1))

70 CHAPTER 3. HIGHER-ORDER ANALYSIS

we can easily synthesise

ctruthF pn =1+ if (n = 0) then O
else (ctruthF (p @ true) (n-1)) +
(ctruthF (p @ false) (n-1))

Now we can easily show that ctruthF p n = ctf n, where

ctfn=1+1if (n = 0) then O
else 2 x ctf (n-1)

which can be shown to have the solution

ctf n = 2"t —1

The sumtips function

The equations below define a function sumtips which, given a list of integers, re-
turns a copy whose elements are the sum of the list argument, so for example

sumtips [1,1,2] = [4,4,4]

sumtips xs = st xs 0 fl
st xs a f = if (null xs)
then (f a)
else st (t1 xs) ((hd xs) + a) (f2 f)
f1l a = nil
f2 f a = cons a (f a)

The derived cost functions are

1 + cst xs 0 £f1¢
1 + if (null xs)
then (f c@ a)
else cst (t1 xs) ((hd xs) + a) (f2¢ @ f)

csumtips xs

cst xs a f

cfl a
cf2 £ a

1
1+ f c@ a

Although the function cst has a known context—its call in sumtips—it can be
analysed independently. As a first step, we can factor the context-free cost “1” and

the context-sensitive cost “(f c@ a)” to obtain (omitting the derivation details)

cst xs af = length xs + cstS xs a f
cstS xs a f = if (null xs)
then (f c@ a)
else cstS (t1 xs) ((hd xs) + a) (f2°° @ f)

3.7. ANALYSIS OF CALL-BY-NAME VIA TRANSLATIONS 71

In this case there is more context-free cost in cstS, but it is not so obviously ex-
tracted. There is a further “length xs” of context-free cost in cstS, as given by:

PRrROPOSITION 3.6.3
cstS xs a f = length xs + £ c@ (a + sum xs)

where sum xs = if (null xs) then 0 else sum (tl xs)

PROOF Recursion Induction ([McC67]): we show that that the proposition satisfies

the equation defining cstS. Thus we need to show

length xs + £ c@ (a + sum xs) = if (null xs) then (f c@ a) (3.60)
else length (t1 xs)
+ (f2°¢ @ f) c@ ((hd xs)

+ a + sum (t1 xs8))

When xs = nil then 3.60 holds since 1ength nil = 0 and sum nil = 0. Otherwise
the right-hand side is

if (null xs) then (f c@ a)

else length (t1 xs) + (£f2°° @ f) c@ ((hd xs) + a + sum (tl xs))
= length (t1 xs) + (£f2°° @ f) c@ ((hd xs) + a + sum (tl xs))
= length (t1 xs) + cf2 £ ((hd xs) + a + sum (tl xs))
= length (t1 xs) + 1 + £ c@ ((hd xs) + a + sum (tl xs))

= length xs + £ c@ (a + sum xs)

Returning to the instance of cstS in csumtips

1 + cst xs 0 f£1°
+ length xs + cstS xs 0 f1

csumtips xs

+ length xs + length xs + £1°° c@ (0 + sum xs)
+ length xs + length xs + 1

[}
N R, B

* (1 + length xs)

3.7 Analysis of Call-by-Name via Translations

In this section we discuss a route to the analysis of a call-by-name language, which
we call translation-based analysis, based on the techniques we have developed thus
far. Other more direct means for analysing non-strict evaluation are considered in

subsequent chapters; the reader may wish to skip this section on first reading.

72 CHAPTER 3. HIGHER-ORDER ANALYSIS

It is possible to analyse a call-by-name program using a simulation of the program
by a call-by-value one: if we can define a translation from terms in a call-by-name
language to strongly equivalent terms in a call-by-value language, then we can anal-
yse the latter program to deduce properties of the former. This idea is seen in
[LeM88a] where Le Métayer uses this technique to perform complexity analysis and
a novel form of strictness analysis.

In the context of time-analysis, the purpose of the translation is as follows: if
we can reduce the problem of time-analysis of a call-by-name program to one of
analysing a call-by-value one, then we can apply the cost-closure techniques. How-
ever, the obvious problem here is that since we are interested in an intensional
property, any extensionally correct translation must also preserve the property of
interest, and the analysis must be able to distinguish between properties (costs) of
the original program, and costs introduced by the translation itself.

Two classes of methods for performing the simulation are identified, both of which
come from well-known implementation techniques for functional languages. Finally

we discuss the practicalities and limitations of this approach.

3.7.1 Example: A Simple Translation Method

In order to illustrate the method of “translation-based time-analysis” we (informally)
describe a simple simulation method. A translation from a language with call-by-
name semantics to a language using a call-by-value evaluation mechanism is outlined.
We illustrate how the translation together with the call-by-value analysis techniques
can be used for analysing call-by-name programs.

A well-known technique for delaying the evaluation of an expression in a call-
by-value language is the use of dummy parameters. As mentioned in earlier, there
is no evaluation inside the body of a partially-applied function. This means that
if we make an expression e into a partially-applied function “A().e” then any
evaluation of the expression e will be suspended until we apply a dummy argument
corresponding to formal parameter (). This technique is well known from the SECD
machine [Lan64], where it is used in order to treat the conditional expression as a

strict function: the expression
if e; then e; else eg

is treated as

(if €3 then A ().e3 else A().e3) O

3.7. ANALYSIS OF CALL-BY-NAME VIA TRANSLATIONS 73

so that the conditional can be implemented in the same manner as any other strict
(primitive) function.
A Translation Map

We use this “protecting by lambdas” technique to give a translation map which takes
expressions in a call-by-name language to expressions in a call-by-value language.

For simplicity, consider a first-order call-by-name language with syntax as in the
previous chapter. We informally assume that, whilst the primitive functions are
call-by-value, the operational-semantics is call-by-name.

In the translation, for each function-definition

flae,...,zn) =e
we define a simulating function
sfag--x, = Se]

where S[-], defined in figure 3.13, takes first-order® call-by-name expression to
higher-order call-by-value expressions.

For convenience we have also added (as an intermediate step only) a A-term of the
form A().e. These are defined for convenience only, and can be “A-lifted” ([Pey87])

from the definions as follows: expression A().e can be replaced by the function-call
fnew Ly Tk
where x4, ...,z are the free variables of expression e, and we define the new function

fnew$1"'xk():€

Example

As an example of the simulation, consider the following simple definition:

K(x,y) = x

31t is straightforward to give a higher-order version, but a first-order translation is given here
because it simplifies the following illustrative examples of the principal of translation-based time-
analysis.

74 CHAPTER 3. HIGHER-ORDER ANALYSIS

S[f(er, ... en)] = sfA0.Slex] - A0 .S[en]
Slpler, ... en)] p Sler] - Slex]

S[if €1 then ey elseez] = if Sfeq] then Sez] else Sfes]
Slz] = (z O)
Sle] = ¢

Figure 3.13: Simulation Map

Under the call-by-name semantics, for any closed expression exp we immediately

have (rule Fun)
K(7,exp) — 7

Simulating K in the call-by-value language we define

sk xy = S[x] = (x O)

and

S[K(7, exp)]

sk AO.7 2O .S[exp]

Removing the A-expressions from this term we have

sk A1 A2 where A1 ()
A2 ()

7
S[eap]

Then (derivation omitted) + sk A1 A2 — 7 as required.

To prove the correctness of this simulation we would need to formally give a
call-by-name semantics (see, for example, the next chapter). Proofs relating to the
simulation are not given here since our main purpose is to illustrate the general

principals of a translation-based analysis.

3.7.2 A Translation-Based Time-Analysis

The purpose of translating from a call-by-name language to a call-by-value one is
that we can apply the techniques developed so far to analyse the time-cost of the
translated program. A potential problem with an arbitrary translation is that the
complexity of the translated program may not have any obvious relation to the
complexity of the original one. For example, in a call-by-name language a strict
function can be safely simulated by a call-by-value version, but since the call-by-

value version avoids potential recomputation of the argument, giving a possibly lower

3.7. ANALYSIS OF CALL-BY-NAME VIA TRANSLATIONS 7H

complexity for the translated program than the original, this kind of translation does
not preserve the property of interest.

In fact, the translations (like §) that are suitable candidates for use in a time-
analysis establish a much more straightforward (intensional) relationship between
the source (call-by-name) and translated (call-by-value) programs. The basic prop-
erty of such suitable simulations is that the evaluation of the simulating expres-
sions entails performing additional evaluation-steps which are the “administrative”
steps of the simulation process, interleaved with steps corresponding to those in
the original call-by-name program. Later we will describe two classes of “suitable”
translations, which owe there suitability to the fact that they are closely related to
standard implementation techniques for non-strict languages.

In the programs obtained by S, the administrative steps correspond to the appli-
cation of the ()-parameters to resume the evaluation of the A-guarded expressions.
We can easily account for these in our use of the analysis methods of section 3.3
since these steps correspond to the application of the auziliary functions (introduced
by A-lifing), and hence can be discounted.

Let S[e] denote the expression S[e] after M-lifing (and hence after the intro-
duction of some new function-definitions). Now the cost of evaluating some closed
expression e in the program-scheme in figure 3.14 is given by the scheme in fig-

ure 3.15, where the functions

Al y1---ym1() = €

Aoy Ym, O = €

are new functions introduced by the A-lifing process.
Note that in the corresponding cost-function definitions the applications of these
functions are not counted as a component of the total cost, viz. their right-hand

”

sides do not contain the “1 + 7 subexpression.

3.7.3 Example

We illustrate the method with an example. Firstly we introduce some simplifying

notation:

DEFINITION 3.7.1 For all constants ¢, let € denote the function

cTr=c

76

CHAPTER 3. HIGHER-ORDER ANALYSIS

fl(Il,...,l’nl) = €1
fe(zr,. .) = ek
€

Figure 3.14: Program Scheme

A’1 Y1+

sfy! @y ..

sf @y ..

ALy
esfy xy ...

esfy 1 ..

cAq Y-

cA

2, = VoS[e]

Ty, : VoS[ex]
cym O = VoS[e]

Yy O . VoS[e']

2n, = 14+ToVoS[e]
Ty, : 1+ ToVoS[ex]

Ym, O = ToVogSA’[[e’l]]

Ym, O = ToVogSA’[[e;]]

ToVoS[e]

Figure 3.15

: Simulating Cost-Program Scheme

3.7. ANALYSIS OF CALL-BY-NAME VIA TRANSLATIONS 77

So, in particular, the function A().c in the cost-program translates to the cost-
closure (¢, 0, 1), which we will write as ¢ (see definition 3.3.3).
Now consider the (call-by-name) evaluation of the expression £ (n,m) for some

values (constants) m and n, where £ is defined by

f(x,y) = 1if x = 0 then 0
else f(x-1,f(x,y))

In figure 3.16 we give the cost-program (including redundant functions) as derived

according to figure 3.15. First we note that the second parameter in the definition

sf’ xy = if (x @ ()) = 0 then O
else sf’ (A1°° @ x) (A2 @ x @ y)
A x 0O = xe () -1
A2’ x y () = sf?Q@xQy
cst x y = 1+ (xc@ ())

+ if (x @ ()) = 0 then O
else csf (A1 @ x) (A2 @ x Q@ y)

(x ce (O)
csf x y

cAl
cA?2

O
y O

™

™

csf n m*

Figure 3.16: Simulating Cost-Program

of csf is redundant (since it only appears in the recursive call), so we have

csf’ x
1+ (xce ()
+ if (x @ ()) = 0 then 0
else csf’ (A1°° @ x)

csf x y

csf’ x

78 CHAPTER 3. HIGHER-ORDER ANALYSIS

PROPOSITION 3.7.2
csf'n*“=n+1

PROOF Mathematical induction on n*:

e Base (n =0):

(0 ce ()
+ if (0% @ ()) = 0 then O
else csf’ (A1 @ 0°)
= 1+0
+ 1if 0 = 0 then O
else csf’ (A1 @ 0°)

|
[
+

csf’ 0

e Inductive case (Hypothesis: csf’ k™ = k 4 1):

1+ (B+17 ce O)
+if (k+1°@ ()) = 0 then 0
else csf’ (A1 @ K+ 1)
1+ 0+ csf’ (M1 @ k+1)

csf? k17

Now for any y we have

5 CC

M ek+1l ey = (k+17 Q) -1
= (k+1) -1
= k
= ECCCQy

Mo k+17cey = ((k+1° ce)
= 0
= k7 co Y

and so we have the cost-closure equivalence®

(M1 @ k+1)=k

4The proposition can also be proved via the synthesis of a function csf’’ satisfying
csf’ x=csf’’ x (x @ ()) (x c@ ())

but this derivation is somewhat lengthy.

5The only way in which cost-closures are used is via @ or c@. If the fun and cost components
are equivalent, then in they are equivalent in all cost-program contexts.

3.7. ANALYSIS OF CALL-BY-NAME VIA TRANSLATIONS 79

Using this, together with the inductive hypothesis, gives us
1+ cst’ (A1 @ k+17)

1+ csf’ (B9)
1+ (k+1)

csf? E+1°

3.7.4 Classes of Translation

In this section we broadly classify two methods for translation, whose suitability (in
terms of their preservation of cost) is due to their use of standard implementation

techniques for non-strict languages.

Closures for Simulation

A closure (also known as a suspension or thunk) is a way of wrapping up an expression
together with its environment. This is a standard implementation technique for
non-strict functional languages, which allows us to “suspend” the evaluation of an
expression.

By creating data structures which model closures, and providing an eval function
which forces their evaluation, Le Métayer [LeM88a] shows how call-by-value func-
tions can simulate a call-by-name evaluation order. This method is used to perform
various analyses, including cost analysis. A problem here is that the analysis counts
the steps introduced by the translation itself, which may not be what is required.

The translation-method that we have given, although somewhat simpler than
Le Métayer’s, falls under the same category of closure-based translation. The dif-
ference, and the resulting simplification is due to the fact that we are using the
“internal” closure-representation of higher-order-functions in place of explicit clo-

sure structures.

Continuations for Simulation

An alternative method for defining a translation is the use of continuations. Con-
tinuations were originally introduced [SWT1], to give a denotational semantics to
languages containing “goto’s”. They have been found to give a good denotational-
based route to implementations (see e.g.[Sch86]).

Reynolds, [Rey72], has shown how a continuation-style approach can be used to

define an interpreter whose evaluation-order is independent of the evaluation order

80 CHAPTER 3. HIGHER-ORDER ANALYSIS

of the interpreted program.

In Plotkin’s “Call-by-Name, Call-by-Value and the A-calculus” [Plo75], the re-
lation between call-by-name and call-by-value is studied by giving simulations of
each language (i.e. calling mechanism) by the other, using a method derived from
Reynolds’ approach. The translation defined in [Plo75], which takes terms in the
call-by-name A-calculus to (simulating) terms in the call-by-value A-calculus is, from
the theoretical viewpoint, a good candidate for a translation-based analysis, exem-
plified by the elegant relationship established between the reduction of call-by-name
terms and the reduction of their call-by-value “simulations”—the reduction steps in
the evaluation of the call-by-value terms can be viewed as sequences of: “administra-
tive” reductions (i.e. resulting from the simulation) followed by a “genuine” reduc-
tion (i.e. corresponding to a reduction step of the simulated call-by-name term). The
translation is however somewhat impractical for use by hand since it generates com-

plex terms whose time-analysis involves the construction of numerous cost-closures.

3.7.5 Discussion

We have emphasised how time-analysis based on a translation map allows us to use
the techniques developed earlier in this chapter, to construct time-equations. The
implication of this is that we can reason about complexity without reasoning at the
cumbersome operational-semantic level. The operational details are externalised by
the translation, thus allowing us to prove or derive properties from the cost functions
in the usual “equational” way. This approach therefore seems quite promising,

however simple investigation has highlighted some limitations of this approach:

e Meta-complexity: the “cogs and wheels” introduced by the translation in-
creases the complexity of the program under analysis to such an extent that the
problem of analysis is vastly increased. This is the price paid for externalising
the operational details. Furthermore, in order to cope with lazy evaluation (i.e.

sharing) we would need a much more sophisticated simulation.

e Compositionality: an important limitation of the simulation methods out-
lined are that they are not compositional—the cost of evaluating a function
cannot be examined independently from the program in which it is used. The
cost function corresponding to a (translated) function simply computes the cost
of building a closure. The translated function must be placed in some context
in order to observe its cost-behaviour. A compositional approach to analysis of

non-strict evaluation is considered in chapter 5.

3.8. RELATED WORK 81

3.8 Related Work

In the first part of this chapter we have presented a means of analysing a higher-
order strict language, by showing how to construct a functional program which
computes the time complexity (in terms of the number of steps executed) of a given
program. The derivation is a mechanisable source-to-source translation, and thus
can form the basis of a system which can utilise any program transformation or proof
technique available to the language in order to reason about the time complexity
of higher-order programs, as well as providing a more formal route for functional
programmers to reason about (call-by-value) programs. In the remainder of this

chapter we discuss related research.

Shultis: On the Complexity of Higher-Order Programs

Analysing the time-complexity of higher-order functions has been considered by
Shultis [Shu85]. This study begins with the definition of a cost-model via a non-

standard denotational semantics. The semantic function has functionality
Exp — Env — Val x Cost

where Val = Basic+ [Val® — Val x Cost| and the Cost domain is just the positive
integers. The denotation pair Val x Cost represents a value, and the associated
cost of computing that value.

Because the cost-model is expressed at the level of a denotational metalanguage,
an alternative theory is sought in which expressions in the language are manipulated
directly. This theory is presented in the form of a logic in which properties about
values and costs can be inferred. In the logic, v. denotes the value of expression
e, and 19 denotes the zero-toll of expression e. The i'* toll of an expression is a
description of how to obtain the cost of the ' application. So in particular, ¥ is
the cost of evaluating e, and ¢! is a function which computes the cost of applying e.

The axiom for application is illustrative of the logic:

l_ t(oel 62) = tgl —I_ tgg —I_ (til ’UBQ)

Comparison Shultis’ cost-model is essentially a denotational counterpart of the
step-counting semantics. The cost-component of this semantics is an extension of
the standard denotational semantics, but this extension is somewhat arbitrary since
it relies on intuitive operational reading of the denotations, whereas the step-count

component of our semantics is an externalisation of a precise operational property.

82 CHAPTER 3. HIGHER-ORDER ANALYSIS

The purpose of the logic is to escape the cumbersome metalanguage, but the
logic itself leads to an ambiguous mixture of expressions and meta-expressions. By
contrast, our approach (following the style of [LeM85]) of using the language itself
as the metalanguage, leads to a succinct formulation of the properties of the cost-
model which is provably correct, and inherits the well-studied logic of functional-
programs. In [Shu85] the logic is “tested” against the model via an implementation
of the semantics—no formal connection is provided between the logic and the model.

There are strong similarities between the axiom for application above, and our
scheme for constructing the application cost-expression. A significant difference here
is that we do not have any direct counterpart to the higher tolls of an expression,
t',1 > 1 (which is why we are able to construct a static cost-program—see further
discussion below). The domain of tolls at the zero-level is just a simple cost; at level

i >0, t is a function from
Value; — - -+ — Value; — Cost

This overall domain of tolls is analogous to the domain of strictness ladders from
[HY86], where the strictness of a functional argument is described by its simple

(level-0) strictness, and its strictness properties at various degrees of application.

Le Métayer: Program Analysis by Program Transformation

In [LeM88a] Le Métayer considers various program analyses (primarily complexity
analysis) via an encoding of the problem in the language itself, and thus reducing
the analysis to a program transformation problem. The analysis of a higher-order
call-by-value functional language is achieved by associating a family of cost-functions
with each function in the original program, for which the i** cost-function computes
(given 7 arguments) the cost of applying the function to its :** argument. Thus the

cost of some application (e e;...¢€,) is the sum
COles] + (Cller] e2) + -+ -+ (Cnleq] ez. .. €x)

where C;[e] is the i'* cost-function of expression e.

Comparison The aims of the above work is to illustrate how a range of (func-
tional) program analysis problems can be encoded in the language under analysis
and solved by program transformation techniques. The method we have presented
in our higher-order analysis is developed in the style of this approach. We have

shown, for example in the factoring-technique, how this approach can be fruitful.

3.8. RELATED WORK 83

However, Le Métayer’s treatment of higher-order functions is much closer to Shul-
tis’, where the 7" cost-function corresponds to the i-toll of that function. In our
approach, the cost-function definitions corresponding to a collection of functions are
determined completely statically. In this sense we are much closer to the aims of
the above work, since the syntax-directed rules for obtaining the cost functions in
[LeM88a] require that cost function definitions are constructed dynamically in a way
that could not be supported in the language. As an extreme example, consider the

following “perverse” identity function

id x X

if (n=0) then id

pervid n

else (pervid (n-1) id)

If we have an expression of the form (pervid m true) then we need “m” cost-
function definitions for the function pervid, since there will be an instance of pervid
which gets applied to m arguments. Since in general we do not know the value of
m, to execute the cost function we must construct the appropriate definitions as
we need them. This would require a language with some form of reflection, and
would consequently be rather more difficult to reason about. Full Hindley-Milner
type checking [DM82] would guarantee that within any specific program a function
is called at finitely many polymorphic instances (the above function is not Hindley-
Milner typeable, although it is admissible in some polymorphically-typed functional
languages such as HOPE+ [Per88]) however, type-restrictions form only a partial
solution to the problem of dynamic cost-function construction.

By contrast, the higher-order analysis presented in this chapter proceeds by con-
structing (syntactically, statically) cost-functions associated with each function def-
inition in the program. The cost of evaluating any expression is then computed
by a term constructed syntactically using the (modified) function-definitions and
these cost-functions. So, given the equations above, the reader is invited to confirm
that the cost of evaluating any expression which uses these definitions requires only
one cost-function for each function, and these are not dependent on the use of the
functions, merely on their definitions.

In addition, we are able to handle lists of functions (i.e. hd is potentially higher-
order), and untypable functions (such as the truth-tester in section 3.6.4), which

are not easily handled by the above approach.

84 CHAPTER 3. HIGHER-ORDER ANALYSIS

Correctness

None of the works cited place any emphasis on proving the correctness of the meth-
ods by relating the techniques to a cost-model. We have provided an appropriate
cost-model, via an operational semantics, and have proved that the cost-function
derivation is correct. As we noted in the previous chapter, the work of Talcott,
[Tal85a, Tal85b] is concerned with providing tools for reasoning about intensional
properties of programs (like cost). The operational aspects of this framework enable
formal reasoning about cost (and other) properties of programs, and the usefulness
of expressing these properties as programs (called derived programs) is also noted.
However, general methods for constructing such programs in the presence of higher-

order functions are not achieved.

Non-strict evaluation

In this chapter we have also sketched a technique for constructing time-equations via
a translation map, focusing on an example translation from a call-by-name language
to a call-by-value one, using the “protecting by lambdas” technique. In theory the
translational approach is more generally applicable than just for the analysis of non-
strict languages (a claim made in [Ros89]), however in practice such translations
are likely to be very complex (and difficult to justify formally) and only useful in
the presence of a system which mechanises much of the process of cost-function
manipulation.

In the next chapter we develop a much more direct calculus for analysing call-
by-name languages than that yielded by the translation method. The key elements
of this approach are a more direct calculus based on a simple operational semantics,

together with a nonstandard theory of operational approximation.

Chapter 4

An Operational Calculus for

Time Analysis

4.1 Introduction

Deriving equations which describe time-cost for a language with non-strict seman-
tics is not straightforward. In the previous chapter we showed how call-by-name
evaluation could be analysed in terms of the techniques developed for call-by-value.
However, a significant drawback of this approach is the meta-complexity introduced
by the translation itself, which makes the subsequent analysis somewhat tedious.
In this chapter we will define a simple language with a call-by-name calling mecha-
nism, through which we explore the potential of using the operational definition of
time-complexity directly as a calculus for program analysis, rather than going via
cost-functions. We construct a “minimalist” semantics for a first-order call-by-name
language with lists which leads to a correspondingly simple definition of time, which
can be refined to give a calculus with which we can analyse time-cost.

To enable richer forms of equational reasoning within the calculus we require a
suitably specialised equivalence-relation between expressions. We develop a non-
standard notion of operational approximation, called cost-simulation, by analogy
with Park’s (bi)simulation in CCS. The required property of cost-simulation that

makes it central to the calculus is that it is a pre-congruence, and this is proved.

85

86 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

4.2 Syntax

We consider a first-order language with lists, for which we add a case-expression.
The justification for introducing the case-expression is that we will be giving the

language a call-by-name semantics, and so the typical list-conditional of the form
if null(x) then y else H(hd(x),t1(x))

can require x to be evaluated three times. Adding a case expression solves this
common problem, and gives a closer approximation to call-by-need. The only other
non-strict function we need is the list constructor. For this we add an infix syntax,
«,”

. The remaining primitive functions are taken to be strict.

Programs are closed-expressions evaluated in the context of function definitions

filzr, .. an) =€

Expressions are described by the grammar in figure 4.1.

fler, ... en) (function call)
if e; then ey else ez (conditional)

case e; of (list-case expression)
nil => ey
T .xs => e3

| e1:e (cons)

| (exp) (parenthesis)
| =z (identifier)

| ¢ (constant)

Figure 4.1: Expression Syntax

4.3 Semantics

It is possible to reason about time-complexity of a closed expression by reasoning
directly about the “steps” in the evaluation of an expression. This approach requires
us to have the machinery of an operational semantics at our fingertips in order to
reason in a formal manner. However, the degree of operational reasoning necessary
can be minimised by an appropriate choice of semantics. In the operational seman-
tics we have presented so far, we have used an environment to bind an identifier to

its value. This approach is close to the way we would implement an interpreter for

4.3. SEMANTICS 87

the language. However a more compact description of the semantics can be given
using substitution, and disposing of the environment altogether: an example of this
can be seen in [Plo75], where an “eval”-function which uses substitution rather than
explicit closures is defined as an alternative to the evaluation function over SECD-
machine states, thus allowing for a more concise description of the properties of
the language. We will follow a “substitution” approach in giving a call-by-name
operational semantics for the above language.

We will define the semantics via two types of evaluation rule: one for evaluation

to normal-form, and one for evaluation to head-normal-form !.

4.3.1 Semantic Rules

For the purpose of the semantics we need to syntactically distinguish between normal
and head-normal forms. Normal-forms are the fully evaluated expressions, ranged
over by v, vy, vy etc.

vi=c v vy

Head-Normal forms are simply the constants and any cons-expressions, ranged over
by h, hy, hy etc.

hi=cler:e

In figure 4.2 we define rules which allow us to make judgements of the form:
e 5 v and e = h. These can be read as “expression e evaluates to normal-form v”
and “expression e evaluates to head-normal-form A” respectively. There is no rule
for evaluating a variable—evaluation is only defined over closed-expressions. These
rules are presented in figure 4.2, using meta-variable a to range over labels # and n.

Here we give a brief explanation:

e Function Applications

For function application we perform direct substitution of parameters. We use
the notation e{e’/x} to mean expression e with all occurrences of free variable x
replaced by the expression ¢’. Name-clashes need to be resolved on substitution
into case-expressions. A formal definition of substitution is omitted, but is a

standard concept from e.g. [Bar84].

It is usual to describe the evaluation of functional programs to so-called weak head-normal
form, see e.g. [Pey87], but since we are working with a first-order language weak head-normal
forms and head-normal forms are identical.

88 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS
Fun ei{el/l’l"'eni/xni} = u
filer, ... en) = u
N N
Prim L0 en (V= Apply(ps, e, cn))
pil€r, ... €0,) =
€1 = true ey = u e, = false e3> u
Cond 1 2 1 3
if e; thene, else es — u if e; then ey elsees = u
15 v, ey S
COHS 1 1, €2 2 - 7 -
61262ﬁ>vl:'02 €162 76 -6
Const =
c—c
H . @ H a
e; — nil ey — u er —ep e, esfep/x,e/ast = u
Case case ey of case e of
nil => e | 2> u nil => e | S u
r.xrs => e3 Tr.xs => e3

Figure 4.2: Dynamic Semantics

4.4. DERIVING TIME-EQUATIONS 89

We assume the primitive functions are strict functions on constants, and are

defined by some partial function Apply.

e Conditional

The conditional is essentially the same as the call-by-value version, and is de-

fined by two rules, selected according to the value of the condition.

e Case-Expression

To evaluate a case-expression, we must evaluate the list-expression e; to de-
termine which branch to take. However, regardless of the amount of result we
require, we do not wish to evaluate the expression any further than the first

cons-node.

Note that in the rules for the conditional, the condition is evaluated to normal-
form. In fact, we could evaluate to head-normal form in this case (see Lemma 4.6.8),
and in doing so it would be sometimes possible to give better information in the case
of an undefined expression by including error-values (e.g. consider an expression of
the form if e: e’ then e; else e3). For our purposes the rules presented will be

sufficient.

4.4 Deriving Time-Equations

We wish to reason about the time-cost of evaluating an expression. We again express
this property in terms of the number of non-primitive function calls occurring in the
evaluation of the expression. For the operational semantics given, this property
corresponds to the number of instances of the rule Fun in the proof of e = v for
some closed expression eand value v, whenever such a proof exists.

Let S, Sy, S;... range over judgements of the form e = h and e > v .

DEFINITION 4.4.1 Let T(A) denote the number of instances of rule Fun in a given
proof A.

a

As before we can define T" inductively in the structure of the proof, according to the

last rule applied:

T(Ah...,Ak) 1‘|‘T(A1)—|-—|-T(Ak) if r = Fun
= = r =
T(A) + -4+ T(Ag) otherwise

T(S) = 0 if S is an instance of an axiom

90 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

4.4.1 A Refined Definition

In the case of the semantics we have given here, we can abstract away from the struc-
ture of the proof, and define this property in terms of the structure of expressions,
since the last rule in the proof of some judgement S is determined by the expression-
syntax (hence structural operational-semantics). In order to define the time-cost in
this manner, we give equations for <6>N, the cost of computing the normal-form,
and <6>H, the cost of computing the head-normal-form of expression e. The equa-

tions for <>N and <>H are given in figure 4.3, where a ranges over labels N and

H.

(filer, e)" = 14 {eder/z1, .. en/n 1)

(pler, . ee))® = (e)" 4+ (ex)”

o . N
(if e; then ey else e3)" = <61>N + <€2>a ?f “ ;) true
(e3)™ if e; — false
case e; of “ <€1>H
< nil => e, > = (€9)” if e, = nil
T8 = e3 (es{enfx,ei/zs})™ if €1 > ey : e
(ere)” = (en)" + (e
(er:e)’ = ()" =0

Figure 4.3: Derived Time-Equations

PROPOSITION 4.4.2 For all expressions e, if A is a proof of ¢ = u , for some u,
then

The proof of this proposition is a straightforward induction in the structure of A.

4.5 Direct Time Analysis

In the time analysis presented in the previous chapters, we focused on the construc-
tion of programs to compute the value of <e>N. This leads naturally to a com-

positional approach in which a cost-function is constructed corresponding to each

4.5. DIRECT TIME ANALYSIS 91

function definition. As we shall see, this compositionality does not come so easily for
non-strict languages. First, however, we illustrate that the definitions in figure 4.3
are sufficient to reason directly about the cost of evaluating closed-expressions in

this simple language?.

4.5.1 Example

Consider the functions over lists given in 4.4.

append(xs,ys) = case xs of

nil => ys
h:t => h:append(t,ys)

reverse(xs) case xs of
nil => nil
h:t => append(reverse(t), h:nil)

head(xs)

case xs of
nil => undefined
h:t => h

Figure 4.4: Some list-manipulating functions
Now we wish to consider the cost of evaluating the expression
head(reverse(v))

which computes the last element of some non-empty list-value v. Applying the

definitions in figure 4.3
<head(reverse(v))>N =14+ <reverse(v)>H + (eh>N

H . .
where reverse(v) = ¢p, : ¢; for some ep, e, It is not hard to show that e is a

value, and hence <eh>N = 0. Now

(reverse(v)>H =1+ <U>H + (append(reverse(e;) ,eh:nil)>H

?Acknowledgement: Richard Bird originally pointed out to me that the time-complexity of
closed-expressions in a simple call-by-name language could be effectively described and analysed
by some relatively simple equations—our main aim here is to show that from a suitably simplified
semantic description we can derive a sufficiently concise calculus to perform time analysis

92 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

H . .
where v = ¢, : ¢; for some ey, ¢e;. Since v is a value of the form vy : v/, we have

{reverse(v)>H
= 1+ (append(reverse(v’),v; :nil)>H
= 141+ {reverse(v’)>H
<nil>H if reverse(») & nil
{ (ep : append(eg,v:nil)>H if reverse(v) = e, : e

= 24 <reverse(v’)>H

We now have the recurrence equations:
<reverse(nil)>H = 1

))

(reverse(v: vs) = 2+ (reverse(vs)

whose solution is <reverse(v)>H = 1+ 2n, where n is the length of the list v. Thus

we have a total cost of
(head(reverse(v))>N =2(1 +n)

where n is the length of the list v, i.e. linear time complexity (cf. quadratic for the

call-by-value reading)

4.5.2 Example

Consider the following (somewhat nonstandard) definition of fibonacci:

fib(n) = £(n,0)
f(n, r) = 1if n=0
then 1

else r + f(n-1, £(n-2,0))

Consider the time to compute an instance of £ib:

EibENY = 1+ £k, 0))Y
N
£k, oY = 14 if k=0 then 1 >
’ else 0 + f(k-1, £(k-2,0))
<1>N if k=05 true

(0 + £(k-1, £(k-2,00))" if k=0 false

0 if k=05 true

= 1+
(£(k-1, £(k-2,000)" if k=02 false

Il
—_
'
—_—— e N, P

4.6. A THEORY OF COST-SIMULATION 93

Instantiating & we get
(£0, oY =1 (4.1)

(£¢1, onV "N

= 1+ (£(0, £(1-2,0))
= 2 (4.2)
(fk+2, N = 1+ (E%k+1, £Ck,0NY
= 141+ (EGh,oNY + (£, £k-1,00" (4.3)
Now (£(k+1, oY =14 (£(k, £(k—1,0)))", so
(Ek+2, N =14+ (E Gk, 0NV + £k +1, o))V (4.4)

Equations 4.1, 4.2 and 4.4 give a recurrence-relation that can be solved (exactly)

using standard techniques (see e.g., [GKP89]); the asymptote is
(£(k,)N = @(k(1+\/3)/2)

4.6 A Theory of Cost-Simulation

The above example (£1b) highlights some potential problems in reasoning about cost
using the equations for <>H and <->N; there are several simplifications which have
been used which although in this example are correct, are not generally applicable®.
If we know that two expressions are equivalent, say e; and ey, it might be tempting
to (incorrectly) assume that, <€1>N and <€2>N will be equivalent. However, it is
easy to see that ordinary equational reasoning is not valid—we expect, with any
reasonable definition of extensional equivalence that an expression and its normal-
form (assuming one exists) will be equivalent, but we certainly would not expect
their computational costs to be the same! However, in the above example we have
used simple equalities such as (line 4.3) (k+ 1)-1 = k which are valid equations for
use in the simplification of cost-expressions.

This section is devoted to developing a stronger notion of equivalence, cost
equivalence which respects cost, and allows a richer form of equational reason-
ing on expressions within the calculus. The theory of cost-equivalence is inter-
esting in its own right, although the details of its development can be skipped
on first reading—however the implication of cost-equivalence with respect to the
time-equations (corollary 4.6.15), and the example cost-equivalence laws (proposi-

tion 4.6.16) should be noted.

3We are not referring here to the solution of recurrence relations, which is a relatively well-
studied area.

94 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

4.6.1 Motivation

In order to justify the simple instances of equational reasoning in the above example
we need to do some further work. Let C[] be a context, i.e. a term with a single
hole. Then the “shortcuts” taken in the above example would be justified if we had
the following:

PROPOSITION 4.6.1 If p(cy,...,cx) — v then
(Clp(er, ., e)))™ = (C])Y

As an intuition of why this proposition holds (the proof comes later as an instance

of a more general theorem), suppose @ is the proof of

!/

Clpler, ..., cr)] AN

for some value v'. It should be (intuitively) clear that C[v] = v’ , and that it’s

proof, ®', is identical to ®, except for zero or more instances in ® of the sub-proof

N N
€L = Cl e, Cp — Cp)
Prim
L ar
plcry ...) = v

are replaced by the axiom v = v . And since the proofs ® and ®' are only different
in sub-proofs not containing rule Fun then from the definitions of (-} and ()" we

must have
<O[p(clv K ck)DN = <C[U]>N

We aim to generalise this substitution property further to arbitrary expressions
that have non-zero cost; what we would like is the (weakest) equivalence relation =,

which satisfies

e = ¢ = (Cle])” = (C[e])"

i.e. we need to find a form of contextual congruence relation. To develop this general
congruence relation, we use a notion of simulation similar to the various simulations
developed in Milner’s calculus of communicating systems [Mil89]. In the theory of
concurrency a central idea is that processes which cannot be distinguished by obser-
vation should be identified. This “observational” viewpoint is adopted in Abram-
sky’s treatment of the “lazy” A-calculus [Abr90b], where an operational equivalence
called applicative bistmulation is introduced. In the lazy A-calculus, the observable
properties are just the convergence of untyped lambda-terms. For our purposes we
need to treat cost as an observable component of the evaluation process, and so we

develop a suitable notion of cost-(bi)simulation.

4.6. A THEORY OF COST-SIMULATION 95

4.6.2 Cost-Simulation

As we have seen, the partial functions = and = together with <>N and <>H are not
sufficient to completely characterise the cost-behaviour of expressions in all contexts.
We need to characterise possibly infinite “observations” on expressions which arise
in our language because of the non-strict list-constructor (c.f. untyped weak head-
normal forms in [Abr90b]). The equivalence we develop corresponds intuitively
to a notion of observational equivalence under all experiments. In this context an
experiment corresponds to an evaluation using —, and the observable properties
are the constant or cons-cell produced (but not the expressions that lie “under” the
cons), and the cost of its production.

Roughly speaking, the equivalence we develop satisfies:

e and €' are equivalent iff <e>H = <e’>H and their head-normal-forms are
either tdentical, or they are cons-expressions whose corresponding compo-

nents are equivalent.

Unfortunately, although this is a property that we would like our equivalence to
obey, it does not constitute a definition (to see why, note that we do not only wish
to relate expressions having normal-forms), so following [Mil83] we use a technique
due to Park [Par80] for identifying processes—the notion of a bisimulation and its
related proof technique. We will develop the equivalence relation we require in
terms of preorders called cost-simulations—we will then say that two expressions
are cost-equivalent if they simulate each other.

We begin with our basic notion of simulation, analagous to Park’s (bi)simulation.

To simplify our presentation we add some notation:

DEFINITION 4.6.2 If R is a binary relation on closed-expressions, then R° is the

binary relation on head-normal-forms such that

(h R 1) iff either h=h' = c for some constant c
or h=e:ey, ' =¢|: ¢, and
e1 R e}, and e R €,

a

DEFINITION 4.6.3 (Cost-Simulation) A binary relation on closed-expressions, R

is a cost-simulation if, whenever ¢ R ¢’
e s h= (¢ 5 h and <€>H = <e’>H and h R* h') (4.5)

a

96 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

DEFINITION 4.6.4 Let F(R) be the set of pairs (e, €') satisfying (4.5)

O
FacT 4.6.5
e F is monotonic, ie, RCS = F(R) C F(S)
e S is a cost-simulation iff S C F(S)
DEFINITION 4.6.6 Let < denote the mazimum cost-simulation
Uls: s C 7(9)}
O

PROPOSITION 4.6.7 < is the mazimal fized-point of F.

PROOF Since < is a cost-simulation, < C F(=<). Monotonicity of F implies that
F(R) C F(F(=R)), so F(=X) is also a cost-simulation. But since < is the largest
cost-simulation, F(=) C <. Hence F(=X) = <. Also < must be the largest fixed
point since any other fixed point is a cost-simulation. a

With these results we have the following useful proof technique: to show that
e =< €, it is necessary and sufficient to show that any cost-simulation contains

(e,€’). This technique will be used later in the proof that < is a precongruence.

4.6.3 Relating & and &

The above definition of cost-simulation is described in terms of evaluation to head-
normal-form only. For this to be sufficient to describe properties of evaluation to

normal-form we need some properties relating reductions — and =,
LEMMA 4.6.8 For all closed expressions e, and constants c,
e ciff eicand<e>N=<e>H

PROOF Straightforward induction in the structure of the proofs of ¢ = ¢ and

e 2 ¢, details omitted. a

4.6. A THEORY OF COST-SIMULATION 97

LEMMA 4.6.9 For all closed expressions e, ¢ — v iff ¢ = h and h = v and

<€>H + <h>N = <€>N for some head-normal-form h.

PROOF (=) Induction on the structure of the proof of e = v . We give an

illustrative case:

o eiderfxr, ... en a0} EApY

filer, ... en,) A

In this case we are required to prove that, for some h,

Flenen) B b (1.6)
h 5w (4.7)
(filers e+ ()Y = (filers-sen)Y (4.8)
Since e;{e1/x1,....en /Tt <> v by a smaller proof, the induction hypothesis
{er/x1,.. . e /on} y proof, yp
gives us that there is an h such that
eder/x1,. .. en/Tn} = h (4.9)
h 5w (4.10)
(eifer/m1,. .., enz‘/xm‘}>H + <h>N = (eifei/a1,..., em‘/xni}>N (4.11)
We can conclude 4.6 from 4.9 using rule Fun, and 4.7 from 4.10. Finally, for 4.8
g
<fi(€17 SRR enz‘)>N = 1+ <€i{€1/xl7 T em‘/xni}>N (def. <>N)
1+ (ei{er/z1, ..o en, fzn, T + (BN (from 4.11)
= (filer, -y e)+ (B) (def. ()™)

The other cases follow in a similar manner. Proof in the <= direction is again a

routine inductive proof on the structure of the inference e = h . O

LEMMA 4.6.10 [fe < ¢ then
if e Sou then ¢ 5w and <€>N = <e’>N
PROOF Induction on the structure of value w.
e u=c

If ¢ 5 c then e 5 ¢ from lemma 4.6.8. Then definition 4.6.3gives ¢ = ¢

and <€>H = <e’>H, and then from lemma 4.6.8

as required.

98 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

O U=V :Vy
Suppose e = vy : vy . The induction hypothesis gives: for all e,, e, such that

€q = €p

which implies that

N
€1 — U1
ey~ vy (4.12)

()™ = (&) + (e)™ + (e2)™)

. H
Since e = €’ we know that e’ — €] : e}, for some €, €, such that e; < ¢} and

eg < e,. Now we have, by an instance of the induction hypothesis that, : = 1,2

et Sou & (e = ()Y (4.13)

. N N
from which we have, by rule Cons that €} : e, = vy : vy, and so € = vy : vy

from lemma 4.6.9 (<).

Now it only remains to show that <€>N = (e’>N:

N = ()T + (er)" + (ex)V (from 4.12)
() + ()N 4 (eh)Y (from 4.13)

()™ + (ef)™ (def. =, ()Y)

= <e’>N (prop. 4.6.9, <)

4.6.4 Precongruence

Now we are ready to prove the key property of cost-simulation: cost-simulation is a

precongruence, i.e. that it is substitutive.

4.6. A THEORY OF COST-SIMULATION 99

Some notation:

For convenience we abbreviate the indexed family of expressions {¢; : j € J} (for
some J) by €. Similarly we will abbreviate the substitution {e;/x; : j € J} by

{é/2}, and when, for all j € J, (e; R €) for some relation £, we write (¢ R ¢').

THEOREM 4.6.11 (Precongruence) If ¢ < & for some closed expressions é,¢é',

then for all expressions e containing at most variables &

e{e)z} < e{e'/)

PROOF The relation R, defined below, is such that (e{é/i},e{é'/z}) € R whenever
€ =< € and e contains at most variables . Lemma 4.6.13 (below) establishes that

is a cost-simulation, i.e. that ® C <, and the result follows by Park induction. O

DEFINITION 4.6.12 R is defined to be the relation

R ={(e{e/i},e{e'/2}) : e contains at most variables T,é < &'}

LEMMA 4.6.13 R is a cost-simulation.

PROOF Assume that ¢ < é', for some closed expressions ¢, ¢'. Let substitutions
o = {é/z} and ¢’ = {€'/z}, and assume that e is some expression containing at

most variables . The lemma requires us to prove that

coc S h = (eo’ S & <€O‘>H = (ea’)H & h R ')

We prove this by induction on the structure of the inference of eoc = h . We

consider cases according to the structure of expression e.

ce=2

Since z € = we have zo < xzo' and the result follows from the definition of <.

case ey of

e= nil => ey

Assume, w.l.o.g. that {z, zs}N& = (. This case breaks into two sub-cases according

to

100 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

(i) e1o 5 nil
(ii) ero Soen e

We will only prove the second more difficult case:

The last inference must have the form

€10 N €} . €t 630'{€h/:07 et/$3} = h Case.cons

case ejo of
. H
nil => eyo | = h

Tr:.xs => €30
for some h, e, e;. We are required to prove that

case e10' of
nil => eyo’ | S H (4.14)
T X8 => €30

where (h R ')

H H
case ejo of case e10' of
< nil => eyo > = < nil => eyo’ > (4.15)
T TS = e30 xixs => ez0

Since ejo0 = e @ e; (by a sub-proof), we have, by an instance of the induction

hypothesis that, for some €}, €]

era’ Boe) el where (ep e R €z e)) (4.16)
(o) = (eo) (4.17)

By the definition of ®° we have e, R ¢}, and by definition of ® that for some ey

containing at most variables y

en = ea{éa/y} € = es{é)y}

where €, < €.
Similarly we have some e; containing at most variables Z, and some ég, €} such
that eg < é’ﬁ and
er = es{ég/2} e = es{éy/2}
Since we can rename variables, assume w.l.o.g. that variables z, g, z, = and zs

are all distinct. Using this, and the fact that expressions €, €,, €g are closed, we

4.6. A THEORY OF COST-SIMULATION 101

have
(eso){en/z,er/asy = (eso){(ea{éa/y})/x, (e5{€s/2}) s}
= ((eso){ea/z,es/as}){a/y,é5/2}
(esleafa, es/ s /S, Eald, /)

Similarly we can show

(eso){en/x, ei/ws} = (es{ea/w, es/ws}){€'/ 2, €, [y, €5/ 2}

Now we have that, since

eso{en/x,e;/xs} = (esf{es/x, es/xs}){E/%,E4/7,E5/2} = h

as an immediate sub-proof, the induction hypothesis gives,

(esteafsesfosDAE 15,8015, 855} 25 I
where (h R R') (4.18)

((es{ea/x,e5/xs}){€/%,€4]T, éﬁ/§}>H
= ((esfeafa, es/ash){e/7, ¢ /3, /7)) (4.19)

From 4.16 and 4.18 we can conclude 4.14 by an application of rule Case.cons, and
from the definition of <>H together with 4.17 and 4.19 we conclude 4.15 as required.
Case (e = f(e1,...€,)) requires similar (but simpler) manipulation of substitu-
tions in order to apply the inductive hypothesis.
Cases (e = if e; then e; else e3) and (e = p(ey,...e,)) require a simple
application of lemma 4.6.8, but otherwise follow in a routine manner. The remaining

cases are straightforward. a

Now we can define our notion of cost-equivalence to be the equivalence relation:

DEFINITION 4.6.14 (cost-equivalence) (=.) = (XN <71), ie.

(6’1 = 62) — (6’1 = 62) & (6’2 = 61)

O

So two expressions are cost-equivalent if they cost-simulate each other. In fact, for
the purposes of reasoning about cost, it will often be sufficient to use the simulation
relation.

A context (an expression containing a “hole”) can be viewed as an expression

containing a single free variable.

102 CHAPTER 4. AN OPERATIONAL CALCULUS FOR TIME ANALYSIS

COROLLARY 4.6.15 For all contexts C[|, if e =. €', then
(Cle])” = (C[eN)”

PROOF « = H, immediate from theorem 4.6.11 and the definition of <; a = N,

immediate from theorem 4.6.11 and lemma 4.6.10 O
Some example cost-equivalence laws can now be given:

PROPOSITION 4.6.16

(2) plvr,...,v,) =. vif Apply(p,vl,...,v,) =0
(12) (e1+ex)+es =. e+ (ex+ e3)
(127) if (if eg then e; else e3) then e else ey
=. 1if ey then (if e; then e3 else e4)

else (if e, then e3 else e4)

Part (¢) is straightforward to prove. Part (i¢) is an example of a cost-equivalence
inherited from the properties of the primitive functions, and like (¢¢¢) can be proved
directly by exhibiting the appropriate cost-simulations.

Proposition 4.6.1 given at the start of this section follows easily from part ()
and 4.6.15—it is clear that some of the most useful “axioms” are the laws for the

primitive functions (such as (¢¢)) which also turn out to be cost-equivalences.

4.7 Discussion

The calculus developed directly from the operational semantics in the preceding
sections gives a basis for the time analysis of closed expressions. To strengthen
this basis we have introduced the notion of cost-simulation which is shown to be
a precongruence. This approach has the advantage of relative simplicity, when
compared with the translation-method sketched in the previous chapter. In the

remainder of this section we discuss the advantages and limitations of this approach.

Equational Reasoning The rules attempt to minimise the amount of operational
details required to reason about time-complexity, but we no longer enjoy the equa-
tional properties of the language. Establishing an extensional equivalence between
two expressions does not allow us to replace one expression by the other in the
context of the time equations, since the equations are determined by the syntax of
expressions. The notion of cost-simulation was introduced to give a substitutive

equivalence (with respect to (>H and (>N) Experience is likely to determine a

4.7. DISCUSSION 103

“good” set of cost-equivalence laws—to develop algebraic theories for this equiv-
alence that are as rich as equational theories for the underlying language would

require much extra work.

Operational Details The crucial conditional and case expressions require us to
reason about expressions of the form e = v and e > h ; that is to say, the
operational semantics is embedded in the time-equations. If we can establish an
extensional equivalence e = v then we must have e = v . However, it is less
straightforward to reason about sentences of the form e = h since establishing the
equivalence e = e, : e; does not imply e = e; : e, so in general we must still resort
to reasoning directly from the semantic rules to describe properties of the equations
defining time-cost.

Extending these ideas to richer languages including higher-order functions is
relatively straightforward, although an appropriate cost-simulation will be more
complicated—Abramsky’s applicative bisimulation [Abr90b] gives a suitable starting-
point. Modelling lazyness (i.e. graph reduction) is possible, but would complicate
the operational model and consequently increase the extent to which operational

details would be both necessary and undesirable in the derived equations for cost.

Compositionality This approach only allows us to reason about the cost of closed
expressions, at best allowing us to express the property in terms of the size-metric
of some value. Complexity properties of individual functions cannot be assessed in
isolation from their context by “operational reasoning” and so we do not have the
useful compositional property which allows us to reason about large programs by
the study of smaller sub-programs. Unlike call-by-value languages, compositionality
is not easily achieved via the direct operational route, since the cost of a function
depends on the context in which it is called.

In the next chapter we consider the compositional analysis of a call-by-need (i.e.
lazy) language, where the approach to compositionality goes hand in hand with an

indirect description of lazy evaluation.

Chapter 5

Lazy Time Analysis

5.1 Compositionality Through Descriptions of

Context

This chapter addresses the problem of giving a compositional time analysis for a
lazy language. In chapter 2 we saw how to reason about an expression of the form

f(exp) by constructing a sum of
e the cost due to expression exp

e an expression denoting the cost due to the application of the function £ to the

value of exp.

This division arises naturally in the time-analysis of (first-order) call-by-value pro-
grams because the reductions due to expression exp occur separately from those due
to the application of the function. In the case of a non-strict language this division
is not immediate because the function-calls in evaluating exp are interleaved with
those in the enclosing context f, and cannot be accounted-for independently of f in
a straightforward manner. Suppose, for example, that exp computes the first fifty
prime-numbers, then the cost “due to” exp when f is hd will be significantly different
to when f is sum. More generally, we can see that it is the amount of expression exp
that is needed by the function f that determines the cost due to exp.

The idea of compositional time-analysis is to parameterise the cost of computing
an expression exp by a description of the amount of the result that is needed by
the context in which exp appears. This idea is due to Bror Bjerner, whose Ph.D.
thesis [Bje89] presents a compositional theory for time analysis of the programs of

Martin-Lof type-theory. Programs in the language of Martin-Lof type-theory are

104

5.1. COMPOSITIONALITY THROUGH DESCRIPTIONS OF CONTEXT 105

primitive-recursive functions with a call-by-name operational semantics. However,
a compositional theory of time analysis is best suited to programs with a lazy or
call-by-need semantics; since an expression may be bound to a variable which occurs
multiply (in the right-hand side of some defining equation), such a description of
context must be the net of each of these separate contexts. In this sense a time
analysis based on this “net” description will model lazy (i.e. shared) evaluation,
since only a single cost is associated with the expression.

In [WHS87], Wadler and Hughes introduced a new kind of strictness analysis!
based on domain projections. One interesting contribution of this approach (which
is also shared by some other approaches, e.g. [Wra86, Hug87]) is that it can determine
in some instances when a parameter is not needed?.

It is this characterisation of “not-need” based on the projection approach that
enabled Wadler [Wad88] to give a simpler account of Bjerner’s approach (but applied
to first-order functional programs rather than the programs in type-theory), where
projections take the place of Bjerner’s evaluation degrees. In addition to a simplified
description of “not-need”, the strictness analysis motivation of [WH87] gives a nat-
ural notion of approzimation of context-information which is lacking from Bjerner’s
calculus, and gives rise to techniques for automatically determining a subset of the
instances of not-neededness in a program.

In the first part of this chapter we present a refinement of the approach of [Wad88]
based on the observation that strictness information tells us that (at least part of)
a function’s argument is needed. Using a certain class of projections we introduce

two types of time-equation:

e sufficient-time equations (corresponding to the equations in [Wad88]) which
use information about “not-neededness” to give an upper-bound to the time

for lazy evaluation.

e necessary-time equations, a dual lower-bound, with better safety properties,

which use information about neededness (strictness).

The chapter is organised as follows. Firstly we introduce projections as a de-
scription of context that will be used in the analysis of lazy languages. We use this
to develop sufficient-time analysis, an upper-bound analysis for a lazy first-order

language, which uses contexts that describe information that is sufficient to com-

'In its simplest form, a function f is strict if f(L) = L
2If, for all , f(2) = f(L) then we can say that function f does not need its argument

106 CHAPTER 5. Lazy TIME ANALYSIS

pute a value. We then present necessary-time analysis, a corresponding lower-bound
analysis.
The next step extends these ideas to a higher-order language using the techniques

of chapter 3.

5.2 Modelling Contexts with Projections

In this section we provide a introduction to the use of projections as a description
of context. The formulation and notation will be closest to that provided in [WHS8T7]
(where the the application is to strictness analysis). A more technically detailed
account (plus some extensions) is considered in [DW89]. Some alternative notation
for this work can be found in [Bur90].

Since we are basing our time analysis on the notion of projections from [WHS8T],
we are implicitly restricting our discourse to strongly-typeable expressions—although
this extends to parametric polymorphism [Hug88].

The basic problem is, given a function, how much information do we require
from the argument in order to determine a certain amount of information about the
result. A projection, in the domain theoretic sense, can provide a concise description
of both the amount of information which is sufficitent and, by a slight trick, the

amount which is necessary. So, what is a projection?

DEFINITION 5.2.1 A projection, « is a continuous function from a domain D onto

itself, such that
o L IDp

aoox = «

where IDp is the identity function on D

a

In other words, given an object u, a projection removes information from that object
(acu C u), but once this information has been removed further application has no
effect (a(au) = au).

A projection will give us a partial description of a context, viz. the information
removed from an object by the application of the projection is a description of
information not needed by the context. In the extreme case, a context may not
require any information from an expression. In this case the appropriate projection

is BOT which throws away all information:

For all u, BOTu = L

5.2. MODELLING CONTEXTS WITH PROJECTIONS 107

Suppose we have some context C[]. Then suppose a projection «a is the deno-
tation of some expression A. Then we could say that « is a description of context
C1] if for all expressions e, Cle] = C[A(e)]

Generalising this idea we focus on functions rather than the more syntactic no-
tions of contexts (expressions with “holes”). Suppose then that we have a (first
order) function,

f:Dyx---xD,—D

(denoting, say, some user-defined function). If we have a description (a projection
a: D — D) of the amount of the result of an application of f that is not needed,
then the natural question to ask is: how much of f’s arguments are needed? We
can describe this by a projection (8 : D; — D;) on the argument, and the relation

between projections a and 3 is that they must satisfy the safety condition.

DEFINITION 5.2.2 The Safety Condition If, given some function f, and projec-
tions o and (3 of the appropriate type,

alflur, ..., un)) = a(f(ur, ..., (Bu), ... uy))

for all objects uq,...,u,, then we say that in an a-context, f is B-safe in its 7t

argument.

This is abbreviated in the notation of [WH87] by

fira=p3.

{

Now supposing f*:a = 3 for some «, B. Then for all 4 such that 3 C 3,
fi:a= 3. So we see that the safety condition says nothing about preciseness
of context descriptions, but a smaller projection on a function argument (satisfying
the safety condition) is a more precise description of the amount of the argument
needed. More informally, we will describe a projection « as being safe for some ex-
pression e, meaning that we can replace e by ae in some implicit program context,

without changing the meaning of the program.

5.2.1 Projections for Strictness

We will require that projections describe two types of information: What informa-

tion is sufficient, and what information is necessary. In order to describe the latter,

108 CHAPTER 5. Lazy TIME ANALYSIS

(in order to express when a function is strict), Wadler and Hughes introduce a new
domain element, 5, called “abort”. The interpretation of au = 5 is that context
« requires a value more defined than u. If au # 5 then we will also say that u
satisfies a.

To make this trick work, we must have 5 C L and all functions are naturally

extended to be strict in 5, i.e.,

f(ul,...,‘—*,...,un):\—*

These technical devices are explained more formally in terms of [lifting of the do-
mains: more formal notation is used in [DW89, Bur90], but we will use the informal
use of an “abort” element below bottom, and we will implicitly assume that all
domains D are lifted (written D_*)

These devices allow for the definition of an important class of projections which

we shall call lift-strict®:

DEFINITION 5.2.3 A lift-strict projection is any projection v such that a(L) =45

O
These are the projections that require a value to be more defined than L. The

largest of such projections is STR:

S fu=_Loru=%

STR(u) = {

u otherwise

and this allows us to describe ordinary strictness since ([WHS8T7])
fL =1 <= STRo foSTR =STRo [

As an equivalent alternative definition of lift-strict projections: a projection « is

lift-strict if and only if o C STR.

5.2.2 The Projection ABS

Of the non-lift-strict projections, the smallest is the projection ABS, the lifted version

of BOT:
oy —
ABS(u) = vome=
1 otherwise

This context is important since if it is safe to evaluate an expression in the context

ABS, then the value of the expression will not be needed.

3This terminology is from [Bur90]—they are simply called strict projections in [WHS87]

5.2. MODELLING CONTEXTS WITH PROJECTIONS 109

5.2.3 The Projection Lattice

A projection « : D_* — D_w will be called a projection over D. Projections over any

domain form a lattice, with ordering C, containing the following points:

ID

[}
ABS o e STR

FAIL

where FAIL is the unsatisfiable context FAIL u = 5 for all u. i.e. it requires “the
impossible” of a value (e.g. that it is simultaneously a non-empty and an empty
list) in order that the program is well-defined. There are potentially infinitely many
projections on a given non-finite domain, each of which is either lift-strict (FAIL C
a C STR) or non-lift-strict (ABS C o C ID). The four projections above will be used
“polymorphically” to represent the corresponding projection over the appropriate

domain.

5.2.4 List Projections

Since we will give some examples of functions over lists, we introduce some useful
devices for building objects denoting projections over the non-flat domain of lists of
elements from some domain:

NIL is the context which requires an empty-list

{ nil if u=nil
NIL u =

S otherwise
It is also useful to define a “context-constructor” CONS

cons(ax)(fzxs) if u=conszxzxs
CONSa ffu = (az)(Bs)]

S otherwise
So CONS a3 is the context which requires a non-empty list whose head is needed
in context « and whose tail is needed in context 3. For example, the context

(CONS STR ABS) requires a non-empty list whose first element is needed, and whose

remaining elements are not.

110 CHAPTER 5. Lazy TIME ANALYSIS

5.2.5 Determining Safe Projections

In order to give a compositional time analysis we will require projections satisfying
the safety condition for the user-defined functions (as well as the primitive functions)
of the program. Analysing context is naturally expressed as a backwards analysis
[AH8T]: given a projection « for a function f, what can we say about the projections
of the arguments? We need to propagate the information about the result of a
function backwards to it’s arguments. i.e., given a function f of arity n, and a

context o we need to find 3; such that

alflur, ... un)) E flur, ..o, (Biti), o ooy uy)

for all objects uy ... u,. Ideally we need to find the smallest 3, since this describes
the context most precisely. However, even though smallest § exist for the stable

functions [Hun90b], they are not computable, and so we have two options:

e Use an automatic method for determining some projections satisfying the safety

condition.

e Work within a more general but non-mechanisable calculus for reasoning about

projections satisfying the safety condition.

Our emphasis here is on the use of information given by projections for func-
tions that satisfy the safety condition, rather than the methods for determining
such projections. Fully mechanisable techniques for determining safe projections for
functions are given in [WHS87]: the method here (as in many program analyses—see
[AH87] for examples) is to choose a finite lattice for projections on a given do-
main. Limitations of this approach and more general techniques are discussed in
section 5.6.2.

For the present we assume we have some appropriate projection information in the
form of projection transformers: mappings from a projection describing the output

of a function to a projection describing an argument.

Projection Transformers

Given some «, a function which returns a 3; which satisfies

alflur, ... un)) = a(f(ur, ..., (Biwi), ... uy))
is called a projection transformer for f ([WHS8T7]). We will adopt the following no-

tation: given a function definition of the form

f(l’lv"'?l]n):e

5.3. SUFFICIENT-TIME ANALYSIS 111

the projection transformer denoted by f#* satisfies

alf(ur, .. un)) C (flur, ..y (Biws), ..., uy)), where f#ia = 3

N.B. Strictly speaking we should distinguish between the syntactic objects—the
program defining f, and the semantic objects—projections, and the denotations
given by some semantic function. Following the style of [WH87] we will mix these
entities for notational convenience.
As examples, consider the projection transformers for the primitive functions hd

and t1:

hd*la = CONS a ABS

t1#*la = CONS ABS «

The intuitive reading for hd#! is as follows: if we require a’s worth of the result
of applying hd, then we need its argument to be a cons-cell, whose head “satisfies”
a but whose tail is not needed. The projection transformers for cons satisty the
equations

cons*!(cONs a 8) = «a

cons*}(CONs a 3) = f

5.3 Sufficient-Time Analysis

In this section we show how context information can be used to aid the time analysis
of a lazy first-order language; sufficient-time analysis (with some minor differences)
corresponds to the time analysis presented in [Wad88]. The information obtained by
the backwards analysis is used to derive equations which compute an upper bound
to the precise cost of a given program. This upper-bound is obtained by using
information which tells us what values are sufficient to compute an expression. We

call the resulting analysis a sufficient-time analysis.

5.3.1 Context-Parameterised Cost-Functions

As in the first-order eager time analysis, we will define a cost-function, cf;, for each
function f; defined in the original program. As before the cost functions will take
as parameters the original arguments to the functions, but in addition they will
be parameterised by a contezt, representing the context in which the functions are

evaluated.

112 CHAPTER 5. Lazy TIME ANALYSIS

How can cost-functions make use of context?

We know that any expression in the context ABS will be ignored, so the cost in
this context is zero. In any other context the cost of a function application will
be (approximated above by) 1 (since we are counting the reduction of function
applications) + the cost of evaluating the body of the function, in that context.

We define the cost functions associated with each function

filzr .. xn) = &

to be
cfi(x1, ..y Tn, @) = a =5 1+ Tie]a

Where we introduce the notation a < e to abbreviate cost e “guarded” by context

s

0 if @ = ABS
a =g e =)
e otherwise

The syntactic map 7] | defined in figure 5.1 is very similar to that defined in
chapter 2 (figure 2.4), but is defined with respect to a particular context. 7,[e] «
defines the cost of evaluating expression e in context a. It makes use of the context

transformers

fFLL AR

defined for each function f;, which satisfy the required safety criterion (and could
be defined according to the backwards analysis of [WHS87]). In particular it will be
appropriate to set f#/(ABS) = ABS since if the result of a function is not needed,

then neither are its arguments.

PROPOSITION 5.3.1 for all functions f, all satisfiable contexts (3 (i.e., § # FAIL)

and objects uy ... uy,,
ABS(f(ug, ..., u,)) = ABS(f(uy,...,B(w),...,u,)) <= ABSLC [
PROOF

(=) Suppose ABS(f(ui,...,u,)) = ABS(f(u1,...,8(ui),...,u,)) = L. Then we
must have f(uy,...,3(u;),...,u,) # 5. Taking u; = L, we must have 8 non-
lift-strict, i.e. ABS C 3.

5.3. SUFFICIENT-TIME ANALYSIS 113

Ts[eJae = 0
Ts[z]ee = 0
T,[if e; then e; else ezlla = a <
T[es]1D

+ if ¢; then 7 [es]a else Ti[es]a
TIpCer...e)]e = Tled(p*a) + - + Tlea] (p* a)
TfiCer...e)]a = cfiler...en,a)

+ Llal(f#e) + - + Tle(fi*")

Figure 5.1: Definition of 7] |

(<) When ABS(f(uy,...,u,)) = 5 then f(ui,...,u,) = 5 and so, since 3 is a

projection (and f is monotonic)

flur, oo, Blug), oo yupn) = ABS(f(ur, ..., B(w;),. .., un)) =5

When ABS(f(uy,...,u,)) = L then f(u1,...,u,) # 5 and so u; # 5, j =
L...n,s0 B(u;) 3 ABS(u;) = L. So f(ug,...,B8(w),...,u,) # 5 which implies

ABS(f(u1,. .. u,)) =L

Function Application

The rule for function application embodies the idea of the backwards propagation of
a context by the projection transformers. This rule tells us that the cost of evaluating
a function application is the associated cost-function applied to the arguments (and
the context) plus the sum of evaluating the arguments in the contexts prescribed by

the context-transformers.

Conditional

The conditional expression, like any other, has zero cost in the context ABS (hence
the use of the < operator). Otherwise we sum the cost of evaluating the condition
(which may or may not be evaluated, hence the safe-context for boolean values ID)
plus either the cost of the alternate or the consequent, depending on the value of

the condition.

114 CHAPTER 5. Lazy TIME ANALYSIS

A Small Example

Consider the following program
hd (cons(not(true),exp))

where

not(x) = if x then false else true

and exp represents some arbitrary expression. The cost-function for not is

cnot(x,a) a —, 1+ (a—, 0+ if x then 0 else 0)

o —, 1

We assume a boolean-valued program is evaluated in the context STR, and so the

cost program is defined by:
7,[hd(cons(not(true),exp))] STR
Which is, by definition

cnot (true , cons#!(hd#!'(STR))) + 0 +
T [exp] cons#2(hd#! (sTR))

The context transformers for the primitive functions satisfy

hd#*'(a) = CONS a ABS
cons*!(CONS a 3) =

cons*?(CONS a 8) =

and so the cost is

cnot (true , STR) + T [exp] ABS =1

for any expression exp.

5.3.2 Correctness

What are the precise properties of the cost programs? Here we consider the approx-

imation and correctness properties of the “lazy” cost-program.

5.3. SUFFICIENT-TIME ANALYSIS 115

Approximation

We wish to show that expression T;[e]a gives an upper-bound estimate to the cost
of lazy evaluation of e in context a. At first sight it would seem that the very
minimum we require for this task is an explicit lazy operational-semantics. This
would require, for example, a semantics based on the manipulation of graphs (e.g.
[BVEG™*8T]) or a Plotkin-style semantics involving a (side-effected) store. Whatever
approach we choose, we would certainly have to deal with a semantics rather more
complicated (and more difficult to reason about) than those we have encountered so
far.

We will give an informal correctness proot which avoids the use of a direct oper-

ational model of lazy evaluation. This is possible by exploiting:

e results relating the numbers of reduction steps using call-by-value and call-by-

need
e correctness of the call-by-value scheme of chapter 2
e relations between the call-by-value scheme and the sufficient-time scheme
e simple operational properties implied by safe projection information

A connection between the number of reductions in call-by-value and in a lazy

semantics seems fairly well-known in functional programming:

The number of reduction-steps for evaluation to normal-form using lazy
(call-by-need) evaluation is less than or equal to the number required using

call-by-value.

However, a general proof of this property is rather less well known; Wadsworth
([Wad71] chapter 4), who introduced the call-by-need parameter mechanism in the
A-calculus suggested that this property held, but was unable to prove it. This
assertion remained unproved in [HM76] where the “lazy cons” was introduced. This
property was proved, at least for first-order recursive program schemes (which is
sufficient here), in [O’D77] (Theorem 15, p65).

The correctness of the cost-function scheme 7 -] given in chapter 2 implies, by
the above property, that the call-by-value cost-functions give an upper-bound to the
cost of lazy evaluation.

The sufficient-time for evaluating an expression in context « is less than the time

under call-by-value.

116 CHAPTER 5. Lazy TIME ANALYSIS

THEOREM 5.3.2 For all expressions e, and contexts «, Ti[e]a < T[e], whenever
both sides of the inequality are well-defined.

PROOF (Sketch)

Apart from the additional parameterisation of cost-functions by a projection,
and the propagation of this projection by some projection-transformers, the only
syntactic difference in the schemes 7] | and 7 are the uses of the < guards, which
serve to “filter” certain cost-expressions to give a smaller cost than in the call-by-

value schemes. O

A more formal proof can be given as either a fixed-point (Scott) induction on the
denotations of the cost-functions, or an induction on the structure of the proof in an
operational semantics—however, the exact choice of semantics (strict or non-strict)
for the cost-functions is not central to the theorem.

We know that 7 [e] is an upper-bound, but to show that 7;[e]a is also an upper-
bound we need to show that the “filtering” of cost-expressions by < is sound. Since
the only cost-expressions that are filtered are those corresponding to expressions

evaluated in context ABS, we require the following:

THEOREM 5.3.3 If ABS is a safe context-description for some expression e in some

terminating program, then the cost due to e is zero.

PROOF (Sketch)

If o is a safe context for e in some program, then we can replace e by «(e)
without changing the meaning of the program. With & = ABS we can replace e by
ABS(e) = L. This implies that the expression e must never get evaluated, since if

an attempt was made to evaluate it, the program would not terminate. a

Together with the assumption that the projection-transtormers always give a safe
context, we then conclude that sufficient-time equations, when well-defined, give an
upper-bound to lazy evaluation time.

Furthermore, we can show that the definition 7;[] always gives the appropriate
result with respect to ABS; namely, the sufficient-time for evaluating any expression

in the context ABS is zero:
PROPOSITION 5.3.4 For every expression e, T,[e] ABS = 0
PROOF Structural induction in e:

e constants, identifiers : Immediate from definition of Z;[

o conditional : Immediate from definition of —

5.3. SUFFICIENT-TIME ANALYSIS 117

o primitive functions :

T.[pCer,...en)]aBs = T,[e1](p*'aBS) + -+ + T,[e,](p*"aBS)
= T[ei]aBs + --- + T[e,]aBs
— by proposition 5.3.1
— by inductive hypothesis

e non-primitive functions :

T.[fCery. .. en)]aBs = T e (f#1aBS) + - + T,[e] (f#"ABS)
+cf(eyy...,e,,ABS)
= Te:JaBs+ -+ + T [e,]aBSs + 0
— by proposition 5.3.1 and <
— by inductive hypothesis

O

Since the safety condition for projections does not specify that we require the
smallest possible projection, the context ABS may be approximated by any larger
projection.

This approximation is reflected in the cost-program as an over-estimation of cost.
(In the extreme case the context transformers are such that the context ABS is never
derived in the cost-program, and so the value of the cost program is the same as
that given by the strict derivation of figure 2.4, page 28.)

To see why we have an upper-bound on lazy-evaluation, rather than just call-by-
name we give the following intuition (in addition to theorem 5.3.2): in computing
the cost of a function application f(e) in context a the cost due to e will only
be counted once. The context of e, f#!(a) will be the net context of the possible

contexts in which e is shared.

Safety

So far we have glossed-over a problem with this analysis method; whenever the

cost-program terminates yielding a value, that value is indeed an upper-bound to

118 CHAPTER 5. Lazy TIME ANALYSIS

the time cost of evaluating the program lazily. However, there are cases when the

cost-program does not yield a value when it should do so. These fall into two classes:

(i) Nontermination: The cost-program may not terminate even when the program
does. This occurs, for example, when the cost of an uncomputed expression
is counted due to the approximation in the analysis. Consider the following

simple example to illustrate this:

loop(b)

loop(b)

if false then x else true

alwaystrue(x)

alwaystrue(loop(false))

The cost program derived is

cloop(x,a) a —s 1 + cloop(x,a)

calwaystrue(x,a) a —, 1 + if false then 0 else 0O

calwaystrue(loop(false),STR) +
cloop(false, alwaystrue#(STR))

Although it is easy in this example to show that alwaystrue®(STR) = ABS,

which gives a terminating cost-program, a mechanised analysis based on [WHS87]
would yield the “safe” result alwaystrue?(STR) = ID using the four point con-
text domain for truth-values. This tells us that alwaystrue may or may not

require its value in a strict context. The cost estimate in this case would then

be
calwaystrue(loop(false),STR) + cloop(false,ID))

= 1 + cloop(false,ID))

1 + 1 + cloop(false,ID)

5.4. NECESSARY-TIME ANALYSIS 119

Non-terminating cost expressions of this kind can be thought of as “computing”

the worst possible upper-bound to the cost.

1) Run-time errors: The approximation in the cost-program can lead to an at-
pp prog
tempt to compute not only the cost, but also the value of ignored expressions
even though we are considering lazy cost-expressions). Consider the followin
g g lazy p g

function, and its cost-function (with minor simplification)

if eq(x,0)
then alwaystrue(false)

sometimestrue(x)

else false

csometimestrue(x,a) a —g 1 + if eq(x,0)
then calwaystrue(false,a)
else 0O

Now consider the cost of the expression
alwaystrue(sometimestrue(div(1,0)))

in the context STR, where “div(1,0)” is intended to be some expression which,

if evaluated, causes the program to abort. In this case the cost-expression is

calwaystrue(sometimestrue(div(1,0)),STR)
+ csometimestrue(div(1,0), alwaystrue# (STR))
= 1 + csometimestrue(div(1,0), alwaystrue# (STR))

If, once again, we use the “approximate” context-transformer above, we get
1 + csometimestrue(div(1,0),ID)

which requires the value of the abortive expression div(1,0).

5.4 Necessary-Time Analysis

We have outlined the use of projections to derive equations which can give an upper-
bound to the time-cost of an expression in a particular context. The cost-functions
which compute this sufficient-complexity are only partially correct in the sense that
if they compute a value, then that value is indeed an upper-bound to the time-cost
of a program. There is potentially much more information about contexts using the

projections over domains extended to include § (i.e. projection lattices containing

120 CHAPTER 5. Lazy TIME ANALYSIS

lift-strict projections, the projections which enable us to describe strictness proper-
ties). In fact, in the sufficient-time analysis we can, for example identify the contexts
ID and STR since they provide exactly the same information about sufficient cost.
(This fact manifests itself in [Wad88] as the use of some unsafe projection trans-
formers which, although they derive the context STR when they should give 1D, yield
a correct time analysis.)

The lift-strict contexts allow us to describe the amount of information which is
necessary to compute a value. In this section we show how the use of this information
can give us equations which describe a lower-bound on the precise time-cost (the
necessary-time), and which overcome the termination deficiencies of sufficient-time
analysis. The key to sufficient-time analysis is the use of the context ABS to deduce
that an expression will not be evaluated. We will introduce a necessary-time whose

key is the use of lift-strict projections.

5.4.1 Necessary-Cost Functions

In order to construct functions which compute the necessary-cost of evaluating a
function in a particular context, we make the following operational connection be-
tween expressions which can be safely evaluated in a lift-strict context, and their

operational behaviour.

THEOREM 5.4.1 If, in some program, it is safe to evaluate an expression of the form
fler, ..., en) in a lift-strict conteat, then operationally if the program is well-defined

we know that at least one reduction step of f must be performed.

PROOF Safety implies we can replace f(eq,...,e,) with a(f(e1,...,e,)) for some
FAIL C o C STR, without changing the meaning of the program. Thus if the
program is well-defined we must have f(es,...,e,) J L. Operationally this implies
that f(es,...,e,) must be evaluated to get (at least) some head-normal form. To
achieve this, the least we must do is evaluate this application to examine the body

of f, which means we perform at least one evaluation step. a

Conversely, if an expression is evaluated in a non-lift-strict context then that ex-
pression may or may not be reduced (only the context ABS allows us to conclude
that it definitely will not).

Motivated by this observation, we now define the necessary-cost; the cost of
evaluating an expression e in a context « is given by 7,[e]a where 7,[] is once
again a mapping defined over the syntax of expressions, and assuming some safe

context transformers for the user-defined functions.

5.4. NECESSARY-TIME ANALYSIS 121

For each function definition of the form fi(z1...2,,) = €, we will define an asso-
ciated necessary-cost function

cfi(@1, .., tp,) = a =, 1 + T, [e]a

The notation a =, e is used to abbreviate necessary-cost e (depending on o) modulo

e if o C STR
a =, e=)
0 otherwise

context a:

The definition of 7,[] is given in figure 5.2. The rules are very similar to the

To[cJa = 0
T.[Jz]Je = 0
T.[if €1 then e; else es]a = a—,
T.[er]sTr

+ if ¢; then 7, [es]a else T, [es]a
TulpCer...e)]a = T[a](p*'a)+ - + Tule](p#"0)
T.[fiCer...e)]a = cfiler...eq,)

+ Tleal(fi* @) + - + Tea] (fi*a)

Figure 5.2: Definition of 7,[]

definitions for 7,[]| where we use the guard <, in place of <. The only significant

difference is in the translation for the conditional expression.
PROPOSITION 5.4.2 For all contexts «, if a T STR then

a(if u; then uy else uz) = a(if STR(u;1) then uy else us)
PROOF Split into two cases according to u;:

(i) uy C L : Then we must have (if u; then uy else uz) C L. Since « is
lift-strict we have
a(if w; then uy else uz) = 45
= «aif 5§ then u; else us)

= «if STR(u;) then u,; else us)

(ii) uy 3 L : Then we have STR(u1) = u; and the result follows immediately.

122 CHAPTER 5. Lazy TIME ANALYSIS

This tells us that in any strict context it is safe to evaluate the condition in the
context STR(i.e., if is strict in its first argument), and gives us the appropriate

context for determining the cost due to the condition in the conditional expression.

5.4.2 Example

As an example we use insertion-sort function. The equations are given in figure 5.3.

if null(xs)
then cons(x,nil)
else if x < hd(xs)
then cons(x,xs)
else cons(hd(xs),insert(x,tl(xs)))

insert(x,xs)

sort (xs) = if null(xs)

then nil

else insert(hd(xs),sort(tl(xs)))
min(xs) = hd(sort(xs))

Figure 5.3: Insertion Sort

Necessary time

In this example we wish to consider the cost of evaluating min in a strict context.
The necessary-time equations constructed according to 7,[| are given in figure 5.4.
In this example we wish to consider the cost of evaluating min in a strict context.
We are not particularly concerned here with the techniques for deriving the safe
projection transformers. We note however that the projection transformers needed
in this example are (implied by) members of the finite domains for lists (and integers)
described in [WH87] for the purpose of strictness analysis, and as such can be

determined mechanically by fixpoint iteration. The equations we require are:

hd#(STR) = CONS STR ABS
cons#?(CONS STR ABS) = ABS

insert*?(CONS STR ABS) = CONS STR ABS

5.4. NECESSARY-TIME ANALYSIS 123

cinsert(x,xs,a) o —,
1 + if null(xs)
then 0O
else if x < hd(xs)
then 0

else cinsert(x,tl(xs),cons*?(a)))

csort(xs,a) o —,
1 + if null(xs)
then 0O
else cinsert(hd(xs),sort(tl(xs)),a) +

csort (t1(xs),insert#?(a))

a —,1 + csort(xs,hd*!(a))

cmin(xs,a)

Figure 5.4: Necessary-Cost Functions

Now we examine the cost of min

cmin(xs,STR)
= STR —,1 + csort(xs,hd*' (STR)
= 1 + csort(xs,CONSSTR ABS)

csort (xs,CONS STR ABS)
= 1 + if null(ys)
then 0
else cinsert(hd(xs),sort(tl(xs)),CONSSTR ABS) +
csort (t1(xs),insert#?(CONS STR ABS))
= 1 + if null(xs)
then 0
else cinsert(hd(xs),sort(tl(xs)),CONSSTR ABS) +
csort (t1l(xs),CONS STR ABS)

124 CHAPTER 5. Lazy TIME ANALYSIS

cinsert(y,ys,CONS STR ABS)
= 1 + if null(ys)
then 0
else if y < hd(ys) then O
else cinsert(y,tl(ys),cons#Q(CONSSTR“ABS)))
= 1 + if null(xs)
then 0
else if y < hd(ys) then O
else cinsert(y,t1l(ys),ABS)

and so
csort (xs,CONS STR ABS)
= 1 + if null(xs)
then 0O
else 1 + csort(tl(xs),CONSSTR ABS)

This simple recurrence has the exact solution 1 + 2*length(xs) and so

cmin(xs,STR) = 2 + 2xlength(xs)

Sufficient time

In this example the sufficient-time equations look very similar to the necessary-
time equations above. The difference is in the use of the strict context guard —,.
However, since the contexts (CONS STR ABS) and STR are very precise, we find that
the sufficient time is also 2 + 2*length(xs). Therefore we know that this is the

exact time complexity.

5.4.3 Approximation and Safety

We need to show that the expression 7, [e]a gives a lower-bound estimate to the
cost of the lazy evaluation of e in context a. Once again the correctness argument
relies on the appropriate operational interpretation of (safe) projection information.
In the case of the sufficient-time analysis we begin with a safe upper-bound (the call-
by-value version), and improve on this using the projection information. A similar
informal argument can be applied for the necessary-time equations. In this case
we begin with a safe lower-bound, namely zero cost, and we improve on this using
theorem 5.4.1.

5.4. NECESSARY-TIME ANALYSIS 125

In a non-strict context the lower-bound must be taken to be zero since non-strict
contexts may or may not require a value greater than 1, and so an expression in such
a context may or may not need to be evaluated. Proposition 5.4.4 below establishes

this property. First we establish the following useful result:
PROPOSITION 5.4.3 Given safe projection transformers f#1, ..., f#»

ABSC a1 = ABSLC (f#a)C 1D

PROOF The projection transformers f#* satisfy

alflur,..yun)) C flur, ..o, Bilwi), . ooy un)

for all functions f and objects u ... u,, where 3; = (f#'a).

Now suppose 5 C uq,...,u,, then since f is naturally extended to domains con-
taining 5, we must have 5 T f(u1,...,u,), and so
ABSCaLCID = S5 Ca(f(ur,...,u))

Now suppose also that some u; = L, then

ABSC oD = SCalf(ur,...,un)) E flug,...,(Bil), ... un)
= S[CG1L
= ABSLC (f#a)C D

PROPOSITION 5.4.4 For every expression ¢, ABSC a T 1D = T, [efla =0

PROOF Structural induction in e:
e constants, identifiers : Immediate from definition of 7,[]
e conditional : Immediate from definition of 7,,[] and <,

o primitive functions :

Tlper,...endlo = Tlal@0) + - + Tule](p#"a)
= 04---+0

(by prop. 5.4.3 and induction hypothesis)

126 CHAPTER 5. Lazy TIME ANALYSIS

e non-primitive functions :

Tlf e, ved]a = Tlal(f#a) + - + Tle] (f#"a)
+ecf(er, ... en,)
= Tlal(f*a)+ -+ Tle](f#a) + 0
(by —=»)
= 0440
(by prop. 5.4.3 and induction hypothesis)

Safety

The correctness argument given for the necessary and sufficient-time analyses applies
when the cost-expressions are well-defined. As we have seen, the sufficient-time
expressions are not always safe in the sense that they are not always well-defined,
even when the original expressions are. The main result of this section is that the
necessary-cost programs enjoy better termination properties than the sufficient-cost

programs. We state this property in the following way:
THEOREM 5.4.5 Given mutually recursive functions f1,... [, defined by equations:
filz, o an) =€
t=1...m, then for all objects uy,...u,,, and contexts o
alfilur, ..., uy,)) 3 L= cfilur,... up,a) 3L
where cf; is defined by the equation
cfi(zr, .. xn,) =a =, 1 +T,[e]o

PROOF We will assume, without loss of generality, that we have just a single

recursive function f, defined by the equation

flae,...) =€y
The meaning of the pair of functions (f, cf) is the least fixed point of the pair

(Fg(xlv"'axn) = ef{g/f},
cFeg (x1,...,xn,0) = a—, 1+ Tfesla{g/f,cg/cf})

5.4. NECESSARY-TIME ANALYSIS 127

To be more formal we could give a denotational semantics for the language by
defining a function

FE:exp — env — funenv — D

which gives meaning to expression exp in a given environment env, and function
environment funenv. The meaning of the functions f and ¢f (given by the function

environment funenv) is then the least fixed point of

Ap.(Ap-Eles] p ¢, Mp-Ela = 1+ To[ef]a] p ¢)

To be even more formal we could make a distinction between the representations of
projections used in the cost-program, and the meta-interpretation that views them
as actual projections.

However, this level of detail will not make the structure of our proof any clearer, so
we use a rather more informal notation where the environments are represented using
the expression-substitution notation, and the syntactic constructs are overloaded in
the obvious way.

The proof proceeds by fixed point induction over the two recursive definitions
simultaneously. Since we are working with lifted domains (containing 5), all func-
tions (including the primitives) are strict in 5, so the first approximation to the pair

(f,cf) must be the pair of functions

Fozq,...,2,) =

1 otherwise

{‘1 ifany z; =5

> o
cFzq,...,2,,0) = {\1 thany zj ="

1 otherwise

sth

i.e. we are taking the least fixed point above the always-Stunction. The 2" approx-
imation is given by the pair
(Fi(‘rlw-'axn) = ef{Fi_l/f}v
Fi(ar,. na) = oo 1+ Tlea{F=Yf, cF ef})
We prove the property P(f,cf) by fixed point induction, where
P(g,c9) = alg(u,...,u,)) 3L = cg(ug,...,up,a) 3L
for all objects uq,...u,, and contexts a. Since we assume that «, ¢ and cg are

monotonic, P is inclusive— it holds in the limit.

128 CHAPTER 5. Lazy TIME ANALYSIS

Base case: P(F° cF°) holds trivially.
Inductive case: Prove P(F'*! cF**) given P(F*, cF"):

FH_l(ula- . '7un) = ef{Fi/fv ul/xla- .. 7un/xn}
cFi"'l(ul,...,un,oz) = a°—>n1+Tn[[ef]]a{Fi/f,cFi/cf,ul/ml,...,un/xn}

unfolding function definitions. In the following we shall use o to represent both
substitutions {F*/f,uy/x1,...,uy/x,} and {F*/f,cF'/cf,ui/x1,. .. u,/z,} (since

the second is just an extension of the first). We can thus restate P(F**! cFi+1) as
For all o, uq,...,u, a(ef)o) 3 L= (a—, 1+ T,[efla)e 0 L
By the definition of —, it is sufficient to show
For all o, FAIL C o C STR, uq,...,u, o(ef)o) 3L = (T,[efJa)e 3L (5.1)
The inductive case proceeds by induction in the structure of ey:
e ¢; = constants, identifiers : RHS of 5.1 true by defn of 7,[]
o ¢; = if ¢; then ey else es : FAIL L o L STR gives us

a((if e; theney elseez)o) I L = (e1)o I L (5.2)

(7,[if e; then ey else es]a)o
= a =, (T,[e1]STR)o + (if €1 then T, [es]a else 7T, [es]a)o
= (7,[e1]sTR)o + (if €1 then 7, [ex]or else T, [es]a)o (5.3)

Now
a((if e; then ey elseez)o) 3L = STR((e1)o) I L

= (7,[ex]sTR)0 O L

by the structural [.LH. Similarly

a((if e; then ey elseez)o) 0 L =
(if e; then 7, [ez]a else 7T, [es]a)o O L

by cases according to (e1)o and the structural I.H.
o c;=pler,...,e,) ¢
(TulpCess .. ed]a)o = (Tula](p* a) + - - + Tofe.] (p#"a))o

Split into cases according to (p*'a), i =1...n

5.4. NECESSARY-TIME ANALYSIS 129

(i) ABs C (p*'a) C d: Then T, [e;](p*a) =0 3 L by prop. 5.4.4

(ii) FAIL C (p*'a) C STR:

a(pler,...,ex))o 0 L

= plex,....(pFa)e,...,e)0 0 L (safety of p**)
= ((pHa)e)o 05 (p strict in ‘—¢)
= ((p*a)e)o O L (lift-strict projection (p*'a))
= (T[e](p*a))o O L (structural I.H.)

So together,

a(pler,...,e))o) 3L = (Tled(p*a))e 3L
= (T.[pCer,...,e)]a)o O L

as required.
o c;= fley,....e.) ¢

(T.[f Cery ... en)]a)o
= (cfCer...en,a) + T [ea](f#ra) + -+ T, [e] (f#"a))o
= (cfCer...en,a))o+ (T [ea](f#la) + - + T [e] (f#"a))o

As in the case of the primitive functions we have

a(fler,...,e,)o) 0L

= (T.[e](f#a))e O L (5.4)
= (Tled(f# o)+ + Tule](f#"a))o T3 L
Now, (cf(ey...en,a))o = cFi(ey0,...,e,0,a)), substituting using o. And so

by the main (fixed-point) inductive hypothesis, P(F", cF"*), we have, whenever

a is lift-strict:
alfler,...,en)o) 3 L= (efler...ep,))o T L
Together with 5.4 gives us
a(fler,...,ex)o) d L= (T, [fCexy . en)]a)o O L
as required

The proof extends in a straightforward way to an arbitrary set of mutually recursive
functions by performing fixed-point induction over all the functions simultaneously.

O

130 CHAPTER 5. Lazy TIME ANALYSIS

5.5 Higher-Order Lazy Time Analysis

In this section we develop an extension to the techniques for lazy time analysis, to
incorporate higher-order functions. This is achieved by adaptation of the higher-
order analysis given in chapter 3, together with a conservative extension to the

context information available for first-order functions.

5.5.1 Context Information

The extension of lazy-time analysis to higher-order functions necessitates the use of
projection information. Here we immediately run into some problems: The tech-
niques which we have assumed so far, concerning the form and derivation of pro-
jection transformers, are not directly extendible to higher-order functions. If we
consider, for example, an instance of the apply function, apply £ x, in some con-
text a. The problem here is that there is no useful context information that can
be propagated to z (by any context function apply#?) which is independent of the
function f.

For the purposes of this chapter it will not be necessary to introduce these devices.
We will demonstrate a method for time analysis that works with a very simple, but
not very concise, extension of the context information to higher-order functions. The
extension to projection information required gives very poor context-information in
the presence of higher-order functions, but we counteract this deficiency by using a

variant of the cost-closure technique developed in chapter 3.

5.5.2 Language

The language we use here is defined by the same grammar as that of the higher-order

language of chapter 3:

exp = expe|e
e = if e; theney elsees| (exp) | fi]
pilale

Where we have function definitions of the form

fier...eq, = exp;

along with curried primitive functions p; (of arity m;).

5.5. HIGHER-ORDER LAzYy TIME ANALYSIS 131

5.5.3 The Projection Transformers

The method we shall describe for constructing the time equations will require the
use of the same style of projection transformers that are used for the first-order
analysis: for each function definition f; we will require projection transformers f;#*

such that

alfiur .. un) C fiug .. (Bug)tkr ... Uy,

for all objects u, where 3 = (f;**a).
Since we are working with a higher-order language, we may have expressions of

the form
fier...en€ny1...€m

Here the contexts propagated to expressions ey ... e,, are determined by the projec-
tion transformers of f;. For a conservative estimate we know it is safe to propagate
the context ID to the expressions €,,41 ... ¢€,. In fact, we will show how the analysis
we present will be able to use more concise information in this instance.

Objects of function type will also require projections to describe the context in
which they are needed. A projection of a function gives a function which has less
defined results on some of its arguments. For the purpose of time analysis we will
use the four-point context domain: In an expression of the form exp e in a context a,
we can safely set the context for exp to be a mapping of « into the four-point domain
for functions such that ABS and FAIL are preserved, strict contexts are mapped onto
STR, and non-strict onto ID. For convenience we define a functional <& to perform
this task:

DEFINITION 5.5.1

FAIL if a = FAIL
ABS if a = ABS
Ca = f

STR if FAIL C a C STR

ID if ABSC a L ID

5.5.4 Accumulating Cost-Functions

We will only present a sufficient time analysis. The dual necessary-time analysis
is easily definable, and has the appropriate termination properties, but for tech-
nical reasons discussed later does not always give a true lower-bound on full lazy

evaluation time.

132 CHAPTER 5. Lazy TIME ANALYSIS

As in the strict higher-order language we will define, for each function in the
language, a cost function which is constructed via two syntactic maps. The first,
V.[-], plays the same rdle as that of V in the higher-order strict language — it
constructs cost-closures and makes their application explicit via an apply function
@,. The second, 7,[-], is used to define the cost-expressions, which in this case are
functions from context to cost. In the following we will use the term cost-expression

to refer to objects of type context — cost.

User-defined functions

For each function defined f; ...z, = ¢; we define a sufficient-cost function to be

cfi(zr,e1) .. (Tp,en)a=a—=s1 + ToV [e]a
+ Cl(fi#la)
+ ...

+ e (fi*™a)

In addition to the context-transformers, the cost-functions refer to modified versions

of the functions themselves:

fley .. xn, = Vel

The definitions of ¥V, and 7, are given in figures 5.5 and 5.6. These definitions will

be explained in the following sections:

Application and its Cost

The cost-functions defined above now have additional parameterisation in the form
of cost-expressions paired with each argument. We will explain this choice by con-
sidering the cost associated with function application exp e.

In the higher-order strict language, application is first translated to exp’ @ ¢

(where exp’ is defined according to V) and the cost of evaluation is
T exp’] + T[e'] + exp’ c@ €

Suppose we begin by re-using V, and we attempt to define (with respect to some
context [3) a lazy version of 7, 7.
In the rule for 7, [exp’ @ €'] 3 we must propagate the context 3 to the appropriate

cost-expressions. As we noted in section 5.5.3, we can map into a four-point

5.5. HIGHER-ORDER LAzYy TIME ANALYSIS 133

domain Of to get a safe context for exp’. We do not know the appropriate context

for €', but we can always safely use the context ID and set
T.lexp’ @ €]B = T [exp]OB + TL[e'JiD + (exp’ c@ ') B
Two major problems make such a rule unsatisfactory.

(i) No useful context information is propagated to e’. The information we have
available is the projection transformers, but this is not used since we do not in

general know which projection transformer is appropriate.

(ii) If we have a partial application, for example if exp is cons (and so exp’ is

(cons,ccons,2)) then e may not be evaluated at all.

We solve both of these problems by passing both the argument, and the cost-
expression to the cost-function. It is then the cost-function’s task to apply the
appropriate context (which is determined by the projection transformers of the func-
tion) to these cost-expressions—see the cost-function scheme above. We introduce

new versions of @ and c@ to accommodate these requirements.

Cost-closures and the apply function

For these reasons we need to define a new version of V and a different version of
the function @. The version of V, V, is defined in figure 5.5. Because, in the rule
for application, the cost-closure V, [exp] is applied to an expression cost-expression

pair (e,ce), we need a new version of the @ function which satisfies:

fe ifn=1

,cf,n) 0, (e,ce) =
(fief,n) e) {(fe,cf<e,ce>,n—1) otherwise

Note that cost-closures retain the same function—costfunction—arity structure.

Defining the cost-expressions

Figure 5.6 also defines cost-expressions via a mapping 7, [-]. A significant difference
here is that we do not make the definition with respect to a particular context. This
is because we wish to pass cost-expressions (functions context — cost) to the cost-
functions without binding them to a particular context.

To define 7,we introduce some useful functional “combining forms” for cost-

expressions:

134 CHAPTER 5. Lazy TIME ANALYSIS

e Addition of cost expressions: in order to add cost expressions we need to define
an appropriate functional @ such that

(cer @ cea) a = (cer a) + (cesy)

were cep and cey are cost-expressions, and « is a context.

In fact in the definition of 7, we use a more specialised addition operator, o+,
which (for the left operand) maps the context into the four-point projection
domain of the left operand. We can safely map any projection over D, « into

the four-point sub-lattice of D. o+ can be defined by the equation
(cer of ceq) a = (ce1(Ca)) + (cez @)

By allowing the terms ID, STR, ABS and FAIL to be “polymorphic”, then o+ is

assoclative.

o Constant functions: We need some constant cost-expressions which give the
same cost in any non-ABS context: For each non-negative integer k we have the
cost-expression k such that

ka=aw—,k

In the rules for 7;we only use the function 0, which satisfies 0 o = 0 for any

context a.
Consider the rule for application:
T.lexp’ @, (€',ce)] = To[exp’] o+ (exp’ c@, (€', ce’))
If we apply this expression to a context 3, we get
T.lexp’ @, (€ ,ce")]B = To[exp’] OB + (exp’ c@, (€' ,ce’)) B

To ensure c@, gives us a cost expression, only a small change is needed from the

definition of c@

cf (e,ce) ifn=1

0 otherwise

(f,Cf,n) c@, <€,C€> = {

Primitive functions

The cost-function associated with a primitive function p; of arity m; is

epi (x1,¢1) o (T s Cmy) 0 = cl(pi#la) 4+ ...+ cmi(pi#mioz)

5.5. HIGHER-ORDER LAzYy TIME ANALYSIS

135

V.[exp €]

V.[if €1 then e; else e3]
Vil(exp)]

Vi fi]

V.lpi]

Vi[]

V. [«]

= Vi[exp] 0; (Vi[e],TooV.[e])

= if V,[e1] then V,[ez] else V,[es]
= (Vilexp]

= (fl ,cfiyni)

= (pi,cpi, m;)

= ¢

= T

Figure 5.5: The function modification map V,

T.[exp @, (¢, ce)]
T.[if €| then ¢, else €]
T, [Cexpn]

T.[(pi 5 epi s mi)]
T[S s efi s mi)]
7.]

7.[=]

T.[exp'] o+ Cexp’ c@, (¢',ce’))
T.[e}] o+ if €| then T;[e)]else T, [es]
(Zo[exp])

Ol O] O Ol

Figure 5.6: The cost-function construction map 7,

136 CHAPTER 5. Lazy TIME ANALYSIS

5.5.5 Examples

The cost-functions constructed are most easily explained by example. Consider a
function called composeall which, given a list of functions gives the composition of

those functions

composeall fs x = if (null fs) then x
else hd fs (composeall (tl fs) x)

After removing the trivial instances of c@, and @,, and the “zero-costs”, the derived

cost-function is

ccomposeall <fs,fsc> <x,xc> a =
a—,1 + (if (null fs) then O
else hd fs c@, < composeall’ (tl fs) x ,
ccomposeall <(tl fs),0> <x,0>
>)
+ fsc (composeall#1 a)

+ xcC (composeall#2 a)
Where

composeall’ fs x = if (null fs) then 0
else hd fs @, <
composeall’ (tl fs) x ,
ccomposeall <(tl fs),0> <x,0>
>

Consider composeall in a strict context. It is straightforward to verify that
composeall#1 STR = NIL LI CONS STR ID

This says that in a strict context, the list £s is required to be either nil, or a cons
whose head will be needed in a strict context—alternatively we can say composeall
is head-strict.

Also we can (as for any projection transformer) set

ABS if o = ABS

composeall?'@"é2 a = .
ID otherwise

These projection transformers will be sufficient for use in the following example.

composeall#! and composeall®? are abbreviated to #1 and #2 respectively.

5.5. HIGHER-ORDER LAzYy TIME ANALYSIS 137

Now we wish to evaluate the cost of the expression

composeall [(K 9), fact, fact 1 m

in the context STR, where we use the usual shorthand for list expressions, fact is the
ubiquitous factorial function (whose definition we omit), and m is some arbitrary
integer value.

K is a K-combinator of type: integer — integer — integer

Since K ignores its second argument and returns its first, it is easy to see that it is

safe to use the following projection transformers:

K#1 o
K#2 o = ABS

]
e

The derived cost-function is

a1 + xc (K#!)

+ yc (K#? @)

cK <x,xc> <y,yc> «

a—,1 + xc «

The cost of evaluating the above expression is thus (using fact® to denote the

cost-closure (fact’,cfact,1))

138 CHAPTER 5. Lazy TIME ANALYSIS

7,0V, [composeall [(K 9),fact,fact] m |STR

= (ccomposeall <[(K 9,cK <9,0>,1),fact,fact*] ,0 >
<m,0>) STR

= 1+ (K 9,cK <9,0>,1)ce,
<composeall’ [fact®,fact®] m,
ccomposeall <[fact®,fact®],0> <m,0>
> STR
+ 0(#1STR) + 0(#2STR)

= 1 + cK <9,0> <composeall’ [fact®,fact®] m,
ccomposeall <[fact®,fact®],0> <m,0>
> STR

= 1+ 1+ 0 STR

d

5.5.6 Correctness

It is possible to give a correctness argument based on the relation between lazy
evaluation and call-by-value evaluation orders, together with the correctness results
of chapter 3, much as we did for the first-order sufficient-time analysis. However,
to do this properly we would need to give a slightly different version of the call-by-
value analysis using the accumulating cost-function approach, where cost-functions
are parameterised on argument-cost pairs. This version would then need to be shown
correct with respect to a slightly lazier version of the semantics in which a partial
application incurs no evaluation. Such modifications are quite straightforward, but

are somewhat lengthy and are not pursued here.

5.5.7 Limitations and Improvements

The use of first-order context analysis in the analysis of a higher-order language

means that, even though cost-expressions are passed as arguments (so they can

5.5. HIGHER-ORDER LAzYy TIME ANALYSIS 139

be applied to the appropriate context), there are many cases where the contexts
derived for higher-order functions are not sufficiently concise. Consider the following

function definitions:

]
M

apply f x
ignor x

For satisfiable contexts a we have the following projection transformers:

apply*la = <Oa
apply#Qoz = 1ID
ignor*la = ABS

Without knowing about the context of the function apply, the context for z is
approximated by the least informative context 1D.

The sufficient-time equations constructed with these projection transformers are

a—, 1+ fc(Ca) + xc ID

+ (f cO <x,0>) «

capply <f,fc> <x,xc> «

cignor <x,xc> « = a—,1 + xc (ignor#la)
= «a—,1 + xc ABS

= Q 1
Now consider the expression
apply ignor expensive

evaluated in the context STR (where “expensive” is some arbitrary, potentially

costly expression):

7.0V, [apply ignor expensive]STR

capply <(ignor’,cignor,1),0> <e,ce> STR

1+ (0 STR) + (ce ID) + ((ignor’,cignor,1) c@ <e,0>)STR

1 + (ce ID) + cignor <e,0> STR

2 + (ce ID)

where <e,ce> = <V, [expensive],7, 0V, [expensive]>

A possibility here is that we could parameterise the cost-function further by
including the projection-transformer for £. This is essentially the “second-order”
strictness analysis of [Wra86], and does not extend to a fully higher-order analysis

in an obvious way.

140 CHAPTER 5. Lazy TIME ANALYSIS

Propagating Cost-Expressions

As we can see, the lack of accurate projection transformers means that the cost-
expression ce is applied to the imprecise context ID. However, we can rectify this
problem by utilising the technique of passing cost-expressions so that they reach
their context. The expression bound to x in the function apply is evaluated in the
context of the function bound to f, so we can pass the cost-expression on to the

cost-function associated with f as follows:

capply <f,fc> <x,xc> a = a—;1 + fc(Oa)
+ (f c0 <x,xc>) «

Now if we use this version of apply in the above example we get:

7,0V, [apply ignor expensive]STR

capply <(ignor’,cignor,1),0> <e,ce> STR

1 + (0 STR) + ((ignor’,cignor,1) c@ <e,ce>)STR

1 + cignor <e,ce> STR
= 2
which is exactly equal to the necessary-cost as expected.

To generalise this technique we must check that any parameter whose cost-
expression we wish to propagate is not shared (i.e. it is not required in more than one
context). For a sufficient-time analysis we could propagate to all contexts, while in
a necessary-time analysis we could chose to propagate the cost-expression to a single
context. In addition we need to determine when the propagation is necessary, since
unnecessary propagation (i.e. when the context information is sufficiently concise)

decreases the compositionality of cost-functions.

5.6 Conclusions

We have presented a method of analysing the time complexity of a lazy higher-order
functional language. The first-order analysis is based upon [Wad88]: projections
are used to characterise the context in which an expression is evaluated, and cost-
equations are parameterised by this context-description. We have introduced two
types of time-equation: sufficient-time equations (corresponding to the equations in
[Wad88]), and necessary-time equations, which together provide bounds on the exact
time-complexity. In the rest of this chapter we consider a closely related approach
for the analysis of a first-order language, and discuss some of the remaining problems

in the area.

5.6. CONCLUSIONS 141

5.6.1 Related Work

As we discussed in the introduction, Bjerner’s time analysis for programs in the lan-
guage of Martin-Lof type-theory [Bje89] is relevant to the analysis of first-order lazy
functional languages, and provided inspiration for Wadler’s work. His operational
model of contexts, evaluation degrees are operational in nature, and give a more
direct handle on the correctness issues of the time analysis. It is not clear that the
method (from the viewpoint of the correctness issues) extends easily to a general
recursive language, and so it is notable that more recently, Bjerner and Holmstrom
[BH89] have adapted the overall ideas in [Bje89] to give a calculus for the time anal-
ysis of a first-order functional language which is, like the projection approach, based
on a more denotational notion of context. This description is called a demand, and
it is a representation of an approximation to a value. Given a demand 6, which rep-
resents an approximation to the result of an expression required, a demand analysis
is presented which gives the demands corresponding to the least approximation to
the (value) environment necessary to obtain at least ¢’s-worth of the expression.
The demand analysis is then used in the definition of a compositional time analysis
much in the same way that projections are used in [Wad88] and the sufficient-time
analysis given here. There is a demand ¢ which is a representation of L. If ¢ is a
correct demand for some sub-expression, then it is safe to replace the value of the
expression with the approximation L, and so the cost due to this expression is zero.
In this way we see that ¢ plays the role of the projection ABS.

Relating demands to projections, we can see that projections are more general:
a demand directly represents a safe approximation to a value, whereas a projection
when applied to a value, returns a safe approximation. For every demand 6 (in
the language of demands defined in [BH89]) which represents some value d, there
is a corresponding projection (ignoring typing issues) A which sends every value
greater than or equal to d to d, and sends any other value to 5. Given this corre-
spondence, the language of demands induces a language of projections. If we have
some projection transformers that operate on projections in this language then it
is straightforward to show that sufficient and necessary-time equations are equiv-
alent, hence verifying that the method in [BH89] specifies exact time-cost. With
this observation, relating projections and demands, we also have a very close corre-
spondence between the main correctness result developed (independently) in [BH89]
(apart from the correctness of the demand analysis), and the necessary-time safety
result of theorem 5.4.5.

The lack of generality of demands has both advantages and disadvantages. In

142 CHAPTER 5. Lazy TIME ANALYSIS

their favour, the simple language of demands leads to a description of demand
analysis which not only describes the best (smallest) safe demands, but is also an
algorithm for computing them. On the other hand demands are in some ways
too precise: to analyse a program one must find a demand which corresponds to
(an approximation) to the value program. Together with a lack of a notion of
approximation, this sometimes makes demands difficult to reason about.

An advantage of projections is that they allow us to express “amounts of eval-
uation” in a much more general way, such as the projection STR which describes
some value greater than bottom. With these more general descriptions come other

problems, which are considered below.

5.6.2 Determining Appropriate Projections

The method we have outlined relies on projection information which for convenience
we have assumed comes in the shape of projection transformers. An issue which we
have not considered in any detail is how to determine this safe projection informa-
tion. One appeal of the projection based approach is that we know we are able to
obtain some safe projections by the application of the automatic techniques from
[WHS8T]. This is appealing, but the degree of approximation in this approach can
lead to poor time analyses. It is not difficult, however, to give a more exact version
of the projection transformer equations from [WH8T7] (where the standard semantics
is appealed to in the case of the conditional expression). This approach is the ba-
sis of the “extended projection transformers” suggested in [Wad88]. This approach
gives a method for reasoning about more precise projection equations, but unlike the
demand approach cited above, does not constitute an algorithm for computing the
safe projections i.e. it is a mathematical semantics. Throughout this thesis we have
emphasised the algorithmic flavour of our calculi for time analysis, via the expression
of program properties using the language itself, and it would be nice if the projec-
tion information could be expressed in a similar algorithmic way. It is clear that to
achieve this we need to work (more explicitly) with representations of projections.
As we noted above, the language of demands from [BH89] can be viewed as a projec-
tion language, but not a very expressive one. Some generalisations of this language

are straightforward, such as the addition of a term corresponding to STR*. Ideally

“Interestingly, this addition gives essentially the language of patterns from [JM89a] which are
used in a compile-time garbage-collection, and in a form of backwards strictness analysis [JM89b].
In fact, the necessity patterns from [JM89a] together with the strictness patterns from [JM89b]
could also form the basis for necessary and sufficient time analyses respectively.

5.6. CONCLUSIONS 143

we would like a language that contains some sort of recursion operator to allow us to
describe useful projections over recursive data-structures. The language of rational
strictness patterns from [HW89] contains relevant ideas, where the rational patterns
are acyclic graph structures. Some similar issues are considered in [Lau89] where
projections are used to describe binding-times in a partial evaluator. To permit a
computable binding-time analysis the language used is not particularly general, but
some of the issues raised in the implementation of the analysis (such as uniqueness
of representation) suggest that generalisations to the language of projections are

incompatible with the “algorithmic” aim.

5.6.3 Higher-Order Analysis

The approach to higher-order functions has brought together many strands of our
research programme. Improvements to the methods we have proposed are possible,
and some of these have been considered in section 5.5.7. The overall approach has
been to apply the denotational notions of projections for the first-order parts of the
program, and use the more operational notion of (cost) closures to deal with the
higher-order parts. This approach is in the spirit of some other program-analysis
methods, for example [Mog88, Jen90], which, within a denotational framework, deal
with the higher-order functions in an operational manner via abstract representa-
tions of closures.

It is expected that better descriptions of context in the presence of higher-order
functions will give significant improvements to the quality of the time-equations. We
can look to the active area of strictness analysis (from which the projection ideas
come) for possibilities. Wray’s thesis [Wra86] shows how to handle a “second or-
der” language (for strictness analysis) by additional parameterization of the context
transformers to include the context transformers for functional arguments. An ap-
proach to fully higher-order backwards analysis is outlined in [Hug87]. This is based
on a complex mixture of abstract interpretation (forwards analysis) and first-order
backwards analysis, but the details have yet to be worked out. The most promis-
ing approach is Hunt’s generalisation of projections to partial equivalence relations
(PERs) with which a higher-order abstract-interpretation is defined [Hun90a] via
the logical-relations framework of [Abr90a].

Chapter 6
Conclusions

In this chapter we conclude by summarising the contributions of this thesis. Direc-
tions for future work, both direct extensions to this work, and application areas are

considered.

6.1 Summary

In this thesis we have addressed issues that arise in the time-analysis of functional
programs. The areas of attention have been those (essential) features of functional
languages for which traditional methods for analysing complexity are inadequate:

specifically, higher-order functions and lazy evaluation.

6.1.1 Higher-order functions

The analysis of higher-order functions falls outside the scope of traditional methods
because an expression in a higher-order language has potentially many facets to
it’s complexity: the complexity of it’s evaluation, the complexity of subsequent
applications, applications of applications, and so forth.

In chapter 3 we developed a calculus for reasoning about cost in a higher-order
functional language with a call-by-value calling mechanism. Translation schemes
were developed for the mechanical construction of cost-functions from the functions
in a program. The construction of cost-functions is uniform, in the sense that it
is not dependent on the ways in which function definitions are used in a program.
The expression of cost-functions in the language under analysis has several initial

advantages:

e Techniques and tools for reasoning about and manipulating functional programs

144

6.1. SUMMARY 145

are applicable (as illustrated in some of the work on the mechanisation of the

analysis of first-order languages [LeM88b, Ros89]).

e Informal reasoning and propositions about cost can be tested against the ex-
ecution of cost-functions, and (partially optimised) cost-functions can provide

implementation independent profiling.

[lustrating the first point, a process called factorisation was introduced. Factorisa-
tion is a simple tactic for reasoning about the cost of higher-order functions with
limited knowledge of the functional parameters with which they are called.

The key to the development of cost-functions was the introduction of cost-closures.
Cost-closures are syntactic structures which enable intensional information to be car-
ried around with function-valued objects. The maintenance of cost-closures is via

arity considerations, and is (therefore) applicable to untypable functions.

6.1.2 Lazy evaluation

Three complementary calculi for reasoning about non-strict evaluation have been

developed, which are summarised and contrasted below.

Analysis via translation At the end of chapter 3 we showed how the methods
developed for the analysis of a higher-order call-by-value language could be applied
to the analysis of a call-by-name language. The key to this method is the use of a
cost-preserving translation from the call-by-name language to call-by-value. Higher-
order functions can be used to provide relatively straightforward translations based
on well-known implementation techniques. An advantage of this approach is that
the techniques of chapter 3 can be applied. A disadvantage is that the translated

programs can be unwieldy, making them unsuitable for reasoning by hand.

An operational calculus for time analysis In chapter 4 a simple operational
semantics for a call-by-name language with lazy lists was used as a basis for a
calculus for time analysis. The main difference from the preceding approaches is
that time-equations are developed directly from the operational model, instead of
an indirect derivation of cost-functions. The advantage of this approach is that
the time-equations are sufficiently concise to reason about cost by hand; the initial
disadvantage is that ordinary equational reasoning on expressions is not valid within
this calculus. A theory of cost-simulation is developed to give a suitable notion of

equivalence between expressions so that the time equations can be extended with

146 CHAPTER 6. CONCLUSIONS

additional equational laws, cost-equivalences, which obey the “Leibniz principal”
of substitution within the time equations. The main attraction of this approach is
its simplicity. The time equations together with some cost-equivalences form the

easiest route to reasoning about small programs.

Lazy time analysis The disadvantages of the above approach for analysing the

time-cost of lazy programs are:

(i) The direct operational route means that the calculus models call-by-name more

easily than call-by-need.

(ii) The methods are not compositional. In the case of the translation method,
the analysis of the cost of evaluating a sub-program will tell us the cost of
building the closure corresponding to that object. Interesting cost properties
can only be determined by placing the expression in some context. Similarly,
the operational calculus of chapter 4 is for reasoning about programs and does

not permit formal reasoning about sub-expressions out of context.

Chapter 5 was devoted to a compositional method for analysing a call-by-need lan-
guage, developing from earlier works of Bjerner [Bje89] and Wadler [Wad88]. The
central idea in a compositional time-analysis is to parameterise the time-cost of an
expression by some abstract description of the context in which the expression is
evaluated.

In the first part of this chapter, we showed how information about context in the
form of projections satistying certain properties could be used to define two types

of cost-function:

o suffictent-time equations which use information about “not-neededness” to give

an upper-bound to the time for lazy evaluation.

e necessary-time equations giving a dual lower-bound, with better safety proper-

ties, which use information about neededness (strictness).

The extension of these techniques to higher-order functions combines the first-
order method with a modification of the cost-closure technique, and to a large extent
avoids the difficulties of reasoning about “context” in the presence of higher-order

functions.

6.2. FURTHER WORK 147
6.2 Further Work

This section summarises some of the possibilities for further work that follow on
directly from the developments in this thesis.

Firstly we note the limits of our investigations: we have considered purely se-
quential models of computation, and we have only considered the time aspects of
cost. A formal treatment of parallel evaluation, and space complexity, and the cor-
responding problems in the context of lazy evaluation, provide many opportunities
for further work®.

The emphasis on expressing program properties as functional programs, seen
particularly in chapter 3, has been motivated in part by the fact that it enables
formal techniques (relatively) well-understood by functional programmers to be used
for reasoning about performance. There has been steady interest in the mechanisa-
tion of many of these techniques, with a view to providing a machine assisted route
to the formal construction of efficient software (for an overview see [PS83]). These
programmes suggest possible investigations into the extent to which the specialised
program transformation problem of simplifying cost-functions could be tackled by
these general systems (rather than by developing a specialist system such as ACE
[LeM88b]). For this to be feasible, the transformation system must be extensible to
support the various specialised methods which represent procedural knowledge of
the problem domain. In a schema-based transformation approach such as [CIP87],
this would mean developing appropriate transformation schemata; in more algorith-
mic (generative set) systems such as [DHK*89], appropriate tactics (meta-programs)
would be required.

In the calculus developed in chapter 4 we proposed a set of time equations to-
gether with cost-equivalences based on a theory of cost-simulation. Further investi-
gation is needed to find a suitable set of cost-equivalence laws. A similar programme
could be carried out for a higher-order language. Possibilities of adopting this di-
rect approach could be investigated for call-by-need, by manipulating explicit graph
structures.

The cost-simulation ideas also raise the possibility of developing other pre-orders
involving extensional properties. As an example there is a simple notion of program

refinement, >. Given two programs p and g, p is refined by ¢, written p B> ¢ if they

!Some considerations of the analysis of space complexity are given in [LeM88a], and Le Métayer’s
ACE system has been applied to the analysis of FP programs under a parallel reduction model [LeM].
A semantics which models the performance of parallel functional programs has been considered in

[Roe90].

148 CHAPTER 6. CONCLUSIONS

are (extensionally) equivalent, and that whenever p = p' then ¢ = ¢’ for some ¢'
such that p’ > ¢’ and <p>H > <q>H

The compositional methods in chapter 5 rely on two separate calculi: one for
reasoning about context, in the form of projections, and another to reason about
cost. Further work is needed to develop the former calculus. One appeal of the
projection-based approach is that we know we are able to obtain some safe projec-
tions by the application of the automatic techniques from [WH87]. This is appealing,
but the degree of approximation in this approach can lead to poor time analyses.
This is particularly true in the case of higher-order functions, where we have adopted
a less compositional solution using modified cost-closures to partially by-pass these
problems:; solutions based on a higher-order treatment of context are needed to
give improvements to these methods which are less ad hoc than those suggested in

section H.5.7.

6.3 Applications

In this section we consider some of the possible areas for further work in the applica-

tions of cost-analysis to program transformation and execution on parallel machines.

6.3.1 Program Transformation

Since program transformation promises a formal route to the construction of “effi-
cient” software from clear initial specifications, formal techniques for reasoning about
efficiency could provide useful support for this process. An immediate application
of cost-analysis techniques is in the comparison of different programs satistying the
same specification, such as pre and post-transformed programs.

Since efficiency issues are so central to the aims of transformational methodolo-
gies, the promotion of the role of cost-analysis is an interesting area for future work.
Wegbreit [Weg76a] has considered the use of cost-analysis for making program trans-
formation more systematic. Wegbreit’s goal-directed approach can be summarised

as

(i) obtain a lower-bound estimate for the problem’s computational cost

(ii) analyse the program to determine the actual cost, relating specific components

of cost to specific program “segments”

6.3. APPLICATIONS 149

(iii) determine the segments whose cost is unaccounted for in the minimum cost

estimate
(iv) transform the targeted segments

Determining lower bounds on the problem’s cost (from some program satisfying that
problem) is somewhat difficult, and attempts to locate specific areas in a program
where inefficiencies occur ignore the gross structure of the algorithm.

A more useful approach may be one which focuses more on the transformation
methods available and uses cost information to guide their application. Develop-

ments here may occur at two levels:

Tactic Specific Specific transformation techniques, or tactics, can use informa-
tion about cost to determine the practicality of their application. For example,
finite differencing [PK82] aims to replace expensive expressions in a program loop
by an incrementally maintained expression. The practicality of this activity de-
pends on the cost of calculation at each iteration relative to the cost of incremental

maintenance.

Generalised Approaches An aim of many transformational approaches is to
find a general framework for expressing transformation tactics. If we view a trans-
formation tactic T" as a mapping between programs, taking some program P to an
equivalent one P’, then the efficiency-effects of the transformation can be obtained

by examining the corresponding cost-programs, C'P and C'P’. Pictorially:

T

P — P
J J
cp £, cp

where the |} steps represent the derivation of the cost-programs. If, corresponding
to the tactic T, the efficiency-tactic Cp can be constructed, then it may be possible

to provide some of the following:

e cheaper and more effective determination of transformation-effects without hav-

ing to first perform the transformation

e an improved means of selecting transformations (important since the number of
possible transformations may grow exponentially as transformations are com-

posed)

150 CHAPTER 6. CONCLUSIONS

e simpler construction of the final cost-expression C' P’

To build this into an extensible transformation-system, it would be desirable to build
cost reasoning into the tactics and meta-tactics. In a rule-based system (for exam-
ple [CIP8T7]), a cost-rule schema could be associated with each rule-schema, which
describes how cost changes under the rule; meta-rules which govern the derivation
of new rules could then have associated meta-cost-rules which govern the derivation
of the dual cost-rules.

These ideas capture the natural move from reasoning about the efficiency of

programs, to reasoning about the meta-efficiency of meta-programs.

6.3.2 Efficient Parallel Evaluation

Although we have not developed calculi for reasoning directly about the parallel
evaluation of functional languages, measurements of sequential cost are particularly
relevant in the execution of functional programs on coarse-grain parallel architec-
tures. The efficient implementation of programs on multiprocessors faces the prob-
lem of compile-time partitioning of programs into sequential tasks. A crucial factor
in the partitioning process is the selection of an appropriate grain size—the (av-
erage) time-cost of the sequential tasks. With respect to a particular machine, a
good choice of grain-size can maximise the utilisation of resources whilst minimising
communication overheads.

Much of the literature on the subject of partitioning (and the subsequent job of
scheduling) (e.g. [Efe82, KL88]) assumes that the cost of processing each module is
known, or suggests (e.g. [SH86]) that such information be obtained by experimental
methods (prototyping with test data). However, the results of more analytic analyses
of functional programs can be used to determine a more informed choice of partition.
Hudak and Goldberg [HG85] show how a very simplistic cost-analysis can be used
to partition a functional program into serial combinators, which are intended to be
the smallest useful grains of parallelism.

The problem of scheduling—assigning tasks to processors—can also make use
of analytic time-information. Maheshwari [Mah89] suggests how complexity infor-
mation can be used to schedule (functional program) tasks based on their relative
costs. The calculi presented in this thesis can enable the programmer, and with

some mechanisation perhaps even the compiler, to provide such information.

Bibliography

[Abr90a]

[Abr9ob]

[AHST]

[AHUT74]

[AHUS?]

[Ast89]

[BacT8]

[Bar84]

[BD77]

S. Abramsky. Abstract interpretation, logical relations and Kan exten-

sions. Logic and Computation, 1990. to appear.

S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research
Topics in Functional Programming. Addison Wesley, 1990.

S. Abramsky and C.L. Hankin, editors. Abstract Interpretation of Declar-
ative Languages. Ellis Horwood, 1987.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis
of Computer Algorithms. The Addison-Wesley Series in Computer Sci-

ence and Information Processing. Addison-Wesley Publishing Company,

London, 1974.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algo-
rithms. The Addison-Wesley Series in Computer Science and Information

Processing. Addison-Wesley Publishing Company, London, 1982.

E. Astesiano. Operational semantics. In IFIP working group 2.2, Rio de
Janero, 1989.

J. Backus. Can programming be liberated from the von Neumann style?

A functional style and its algebra of programs. Communications of the

ACM, 21(8):613-641, August 1978.

H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic
and the Foundations of Mathematics. Flsevier Science Publishers B.V.,
P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands, 2nd edition, 1984.

R. Burstall and J. Darlington. A transformation system for developing
recursive programs. JACM, 24:44-67, January 1977.

151

152

[BHST]

[BHSS]

[BHSY]

[Bir84]

[Birs6]

[Bje89]

[Bur90]

BIBLIOGRAPHY

R. Burstall and F. Honsell. A natural deduction treatment of operational
semantics. In Proceedings of the 8" Conference on the Foundations of
Software Technology, number 287 in LNCS, pages 250-269. Springer Ver-
lag, 1987.

A. Bloss and P. Hudak. Path semantics. In The Third Workshop on the
Mathematical Foundations of Programming Language Semantics. Springer

Verlag, 1988.

B. Bjerner and S. Holmstrom. A compositional approach to time analysis
of first order lazy functional programs. In Functional Programming Lan-
guages and Computer Architecture, conference proceedings. ACM press,

1989.

R. S. Bird. The promotion and accumulation strategies in transforma-

tional programming. ACM ToPLaS, 6:487-504, October 1984.

R. J. Bird. An introduction to the theory of lists. Technical report,
Programming Research Group, University of Oxford, 1986.

B. Bjerner. Time Complexity of Programs in Type Theory. PhD thesis,
Chalmers University of Technology, 1989.

G.L. Burn. A relationship between abstract interpretation and projection
analysis (extended abstract). In 17th ACM Symposium on Principles of
Programming Languages, January 1990.

[BVEG*87] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kenn-

[BW8S]

[Chi90]

[CIP87]

[CKT77]

away, M.J. Plasmeijer, and M.R. Sleep. Term graph rewriting. In PARLFE
87 volume I, number 259 in LNCS, pages 191-231. Springer Verlag, 1987.

R. Bird and P. Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

W. N. Chin. Automatic Methods for Program Transformation. PhD thesis,
Imperial College, University of London, 1990.

Systems Group CIP. The Munich Project CIP, Volume II: The program
transformation system. Number 292 in LNCS. Springer-Verlag, 1987.

J. Cohen and J. Katcoff. Symbolic solution of finite-difference equations.
Transactions on Mathematical Software, 3:261-271, September 1977.

BIBLIOGRAPHY 153

[Coh82]

J. Cohen. Computer-assisted microanalysis of programs. C. ACM, 25:44—
67, October 1982.

[DHK*89] J. Darlington, P. Harrison, H. Khoshnevisan, L. McLoughlin, N. Perry,

[DMs2]

[DW8Y]

[Efe82]

[Fea82]

[FHSS]

[Fla85]

[FS81]

[GKPS89)

[HC88]

H. Pull, M. Reeve, K. Sephton, L. While, and S. Wright. A functional
programming environment supporting execution, partial execution and
transformation. In PARLE ’§89, Parallel Architectures and Languages
Furope, number 365 in LNCS. Springer Verlag, June 1989. Volume 1:

Parallel Architectures.

L. Damas and R. Milner. Principal type schemes for functional pro-
grams. In Proc. ACM Symposium on Principles of Programming Lan-
guages, pages 207-212, 1982.

K. Davis and P. Wadler. Backwards strictness analysis: Proved and im-
proved. In Proceedings of Glasgow Workshop on Functional Programming,

Workshop series. Springer-Verlag, August 1989.

K. Efe. Heuristic models of task assignment scheduling in distributed

systems. [EEE Computer, 15(6):50-56, June 1982.

M. S. Feather. A system for assisting program transformation. [FEFE
Transactions on Software Engineering, 8:490-498, September 1982.

A.J. Field and P. G. Harrison. Functional Programming. Addison-Wesley,
1988.

P. Flajolet. Mathematical methods in the analysis of algorithms and data
structures. Rapport 400, INRIA, Le Chesnay, France, May 1985.

P. Flajolet and J-M Steyaert. A complexity calculus for classes of recur-
sive search programs. In Proceedings of th 22nd Annual Symposium on
Foundations of Computer Science, pages 386-393. IEEE press, 1981.

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, 19809.

T. Hickey and J. Cohen. Automating program analysis. J. ACM, 35:185—
220, January 1988.

154

[HGS5]

[HM76]

[HMTSS]

[Hud87]

[Hud89]

[Hug87]

[Hug88]

[Hug89]

[Hun90a]

[Hun90b]

[HWS9]

[HYS6]

BIBLIOGRAPHY

P. Hudak and B. Goldberg. Serial combinators: “optimal grains” of par-
allelism. In Symposium of Functional Programming Languages and Com-

puter Architecture, 1985.

P. Henderson and J.M. Morris. A lazy evaluator. In Proceedings of the
Third POPL Symposium, pages 95-103, Atlanta Georgia, January 1976.

R. Harper, R. Milner, and M. Tofte. The definition of standard ML (ver-
sion 2). Technical Report ECS-LFCS-88-62, LFCS, Department of Com-
puter Science, University of Edinburgh, The King’s Buildings, Edinburgh
EH9 3J7Z, UK, August 1988.

P. Hudak. A semantic model of reference counting and its abstraction,

1987. In [AHST].

P. Hudak. Conception, evolution and application of functional program-

ming languages. Computing Surveys, 21(3):359-411, September 1989.

R. J. M. Hughes. Backwards analysis of functional programs. Research
Report CSC/87/R3, University of Glasgow, March 1987.

R. J. M. Hughes. Abstract interpretation of first—order polymorphic func-
tions. In Glasgow Workshop on Functional Programming, University of
Glasgow, Department of Computing Science, August 1988. Research Re-
port 89/R4.

J. Hughes. Why functional programming matters. The Computer Journal,
2(32):98-107, April 1989.

S. Hunt. PERs generalise projections for strictness analysis. In Draft
Proceedings of the Third Glasgow Functional Programming Workshop, Ul-
lapool, 1990.

S. Hunt. Projection analysis and stable functions. Draft paper, Imperial

College, 1990.

C. V. Hall and D. S. Wise. Generating function versions using rational

strictness patterns. Science of Computer Programming, 12:39-74, 19809.

P. Hudak and J. Young. Higher-order strictness analysis in untyped
lambda calculus. In Proceedings of the 13th Annual Symposium on Prin-
ciples of Programming Languages. ACM SIGPLAN, 1986.

BIBLIOGRAPHY 155

[Jen90]

[JM89a]

[TM89b]

[Kah87]

[KL8S]

[K1080]

[Knu68]

[Knu69]

[KnuT3]

[Lan64]

[Lau89]

[LeM]

[LeMS85]

T. P. Jensen. Context analysis of functional programs. Master’s thesis,

DIKU, Copenhagen, Denmark, 1990.

S. B. Jones and D. Le Métayer. Compile-time garbage collection by shar-
ing analysis. In Functional Programming Languages and Computer Ar-

chitecture, conference proceedings, pages b4-74. ACM press, 1989.

S. B. Jones and D. Le Métayer. A new method for strictness analysis. In
Proceedings of Glasgow Workshop on Functional Programming, Workshop
series. Springer-Verlag, August 1989.

G. Kahn. Natural semantics. In Proceedings of Symposium on Theoretical
Aspects of Computer Science, pages 22-39. Springer Verlag, 1987. LNCS
247.

B. Kuatrachue and T. Lewis. Grain size determination for parallel pro-

cessing. [EEE Software, 5(1):23-32, January 1988.

J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical
Centre Tracts. Mathematischen Centrum, 413 Kruislaan, Amsterdam,

1980.

D. E. Knuth. Volume 1: Fundamental Algorithms. The Art of Computer
Programming. Addison-Wesley, 1968.

D. E. Knuth. Volume 2: Seminumerical Algorithms. The Art of Computer
Programming. Addison-Wesley, 1969.

D. E. Knuth. Volume 3: Sorting and Searching. The Art of Computer
Programming. Addison-Wesley, 1973.

P. J. Landin. The mechanical evaluation of expressions. Computer Jour-

nal, 6(4):308-320, January 1964.

J. Launchbury. Projection Factorisations in Partial Evaluation. PhD
thesis, Department of Computing, University of Glasgow, 1989.

D. LeMétayer. Personal communication.

D. LeMétayer. Mechanical analysis of program complexity. In ACM
SIGPLAN 85 Sympostum, July 1985.

156

[LeM88al

[LeM88b]

[Mah89]

[McC67]

[Mee86]

[Mil83]

[Mil89]

[Mog88]

[Neig4]

[0'D77]

[Par80]

[Per838]

[Pey87]

BIBLIOGRAPHY

D. LeMétayer. Analysis of functional programs by program transforma-
tion. In Second France—Japan Artificial Intelligence and Computer Science

Symposium. North—Holland, 1988.

D. LeMétayer. An automatic complexity evaluator. ACM ToPLaS,
10(2):248-266, April 1988.

P. Maheshwari. Efficient parallel execution of functional programs using
complexity information. Draft article, University of Manchester, October

1989.

J. McCarthy. Computer Programming and Formal Systems, chapter A
Basis for a Mathematical Theory of Computation. North—Holland, 1967.

L. Meertens. Algorithmics. In M Hazewinkel J. W. de Bakker and L. K.
Lenstra, editors, Mathematics and Computer Science, volume I of CWI

monographs, pages 289-334. North Holland, 1986.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

T. E. Mogensen. Binding time analysis for higher order polymorphically
typed languages. Technical report, DIKU, August 1988.

H. R. Neilson. Hoare Logic’s for Run-time Analysis of Programs. PhD
thesis, Department of Computer Science, Edinburgh, 1984.

M. J. O’Donnell. Computing in systems described by equations, volume 58
of LNCS. Springer Verlag, 1977.

D. Park. Concurrency and automata on infinite sequences. In 5th GI
conference on Theoretical Computer Science. LNCS 104, Springer Verlag,
1980.

N. Perry. Hope+. Functional programming group internal report
IC/FPR/LANG/2.5.1/7, Department of Computer Science, Imperial Col-
lege, February 1988.

S. L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice-Hall International Series in Computer Science. Prentice-

Hall International (UK) Ltd, London, 1987.

BIBLIOGRAPHY 157

[PKS2]

[Plo75]

[Plo81]

[PS83]

[RamT79]

[ReyT2]

[Roe90]

[Ros86]

[Ros89]

[San89]

[San90]

[Sch86]

R. Paige and S. Koenig. Finite differencing of computible expressions.

ACM ToPLaS, 4(3):402-454, July 1982.

G. D. Plotkin. Call-by-name, Call-by-value and the A-calculus. Theoretical
Computer Science, 1(1):125-159, 1975.

G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aahus University,
Denmark, September 1981.

P. Partsch and R. Steinbruggen. Program transformation systems. Com-

puting Surveys, 15:199-236, 1983.

L. H. Ramshaw. Formalizing the analysis of algorithms. Technical Report
CSL-79-5, XEROX Palo Alto Research Center, June 1979.

J. C. Reynolds. Definitional interpreters for higher order programming
languages. In Proceedings of the 25th ACM National Conference, pages
717-740, Boston, August 1972.

P. Roe. A semantics for reasoning about parallel programs’ performance.
In Draft Proceedings of the third Glasgow functional programming group
workshop, 1990.

M. Rosendahl. Automatic construction of time bound programs. Master’s

thesis, University of Copenhagen, 1986.

M. Rosendahl. Automatic complexity analysis. In Functional Program-
ming Languages and computer architecture, conference proceedings. ACM
press, 1989.

D. Sands. Complexity analysis for a lazy higher-order language. In Pro-
ceedings of Glasgow Workshop on Functional Programming, Workshop
Series. Springer Verlag, August 1989.

D. Sands. Complexity analysis for a lazy higher-order language. In Pro-
ceedings of the Third European Symposium on Programming, number 432

in LNCS. Springer-Verlag, May 1990.

D. A. Schmidt. Denotational Semantics. Allyn and Bacon, Inc., Mas-
sachusetts, 1986.

158

[Ses89]

[SHS6]

[Shu85]

[SWT1]

[Tal85a]

[Tal85b]

[Tur81]

[Wad71]

[Wad88

[WegT5]

[WegT6a]

[WegT6b]

[WHS7]

BIBLIOGRAPHY

P. Sestoft. Replacing function parameters by global variables. In
Functional Programming Languages and Computer Architecture, London,

September 89. ACM Press and Addison-Wesley, 19809.

V. Sarkar and J. Hennessey. Compile-time partitioning and scheduling of
parallel programs. In Proceedings of the ACM SIGPLAN Symposium on
Compiler Construction, pages 17-26, 1986.

J. Shultis. On the complexity of higher-order programs. Technical Report
CU-CS-288, University of Colorado, Febuary 1985.

C. Strachey and C. P. Wadsworth. Continuations — a mathematical se-
matics for handling full jumps. Technical Monograph PRG-11, Oxford,
1971.

C. L. Talcott. Derived properties and derived programs. Technical report,
Stanford, 1985.

C. L. Talcott. The Essence of Rum, A Theory of the intensional and
extenstonal aspects of Lisp-type computation. PhD thesis, Stanford Uni-
versity, August 1985.

D.A. Turner. The semantic elegance of applicative languages. In Proceed-
ings of the 1981 Conference on Functional Programming Languages and

Computer Architecture, pages 82-95. ACM, 1981.

C. P. Wadsworth. Semantics and Pragmatics of The Lambda Calculus.
Dphil thesis, University of Oxford, 1971.

P. Wadler. Strictness analysis aids time analysis. In 15th ACM Symposium

on Principals of Programming Languages, January 1988.

B. Wegbreit. Mechanical program analysis. C.ACM, 18:528-539, Septem-
ber 1975.

B. Wegbreit. Goal-directed program transformation. IEEE Transactions
on Sofware FEngineering, 2:69-80, June 1976.

B. Wegbreit. Verifying program performance. J. ACM, 23:691-699, 1976.

P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In
1987 Conference on Functional Programming and Computer Architecture,

Portland, Oregon, September 1987.

BIBLIOGRAPHY 159

[Wra86] S. C. Wray. Programming techniques for functional languages. Technical
Report 92, University of Cambridge Computer Laboratory, June 1986.

[2789] P. Zimmermann and W. Zimmermann. The automatic complexity anal-
ysis of divide-and-conquer algorithms. Technical Report Rapports de
Recherche 1149, INRIA-Rocquencourt, Décembre 1989.

