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Abstract ties, (the absence of) termination, and what parts are con-
sidered to be publicly observable.
A common theoretical assumption in the study of infor-  In particular, a fair amount of work regarding informa-

mation flow security in Java-like languages is that point- tion flow security has been conducted for Java and Java-

ers are opaque — i.e., that the only properties that can be like languages, ranging from more theoretical work such as

observed of pointers are the objects to which they point, Banerjee and Naumann'’s study [2], to the more practical

and (at most) their equality. These assumptions often fail work on complete systems such as JIF [8], which is a full-

in practice. For example, various important operations in scale implementation of an information flow type system

Java’s standard API, such as hashcodes or serialization, for a security-typed extension of Java. For a mainstream

might break pointer opacity. As a result, information-flow language Java is arguably a reasonable choice for such a

static analyses which assume pointer opacity risk being un-study since the Java core language is, in principle, fairly

sound in practice, since the pointer representation provides small and clean.

an unchecked implicit leak. We investigate information flow

in the presence of non-opaque pointers for an imperative The problem Targeting real languages is beneficial: your

language with repords, pplnter instructions and exceptlons, work may have practical impact and existing implementa-

and develop an information flow aware type system whichyjong (often on many platforms) relieve you from substan-

guarantees noninterference. tial implementation work. While enjoying those benefits,
analysing an existing language also means that one has to
be faithful to the implementations. In the case of Java,

1 Introduction this extends beyond the core language to the API, some of
which is native and cannot be implemented in Java. How-

Background The area ofnformation flow securitgeals ever clean and concise the core language and its theoretical

with different means to define and enforce information flow abstractions may be, the runtime environment and native

policies. Such policies describe the secrecy levels of data,methods can break many abstractions that are typically as-

and how data may flow through the system. Semantically, sumed in both theoretical and practical studies of secure in-

it is usual to define the meaning of “flow” as an end-to-end formation flow. When abstractions are broken, attacks are

condition usually referred to asoninterference Given a possible. By way of illustration we present such an attack

policy which partitions inputs and outputs into secret (not on JIF showing a well-typed declassification-free program

observable by the attacker) and public (observable by thethat leaks its secret.

attacker), noninterference demands simply that the public As an example of a problematic native method, consider

outputsare independent of the secheputs the following program, which is using the default imple-

A popular way of enforcing noninterference in programs mentation of the methawString found in theObject class.

is to equip the language with security type systeni.e.,

a type system which tracks information flow through a pro-

gram by security annotations in the types. Typically, a secu-

rity type system has the property that well typed programs

are noninterfering. For further information on the topic

we refer the reader to Sabelfeld and Myers’ comprehensive }

overview of the areda [10]. }

To date there are many formulations of noninterference,
! ) . _'class A{}
depending, for instance, on the properties of the underlying
language, whether the attacker can observe timing properApart from printing the name of the class of the object,

public class B {
public static void main(String[] ss) {
boolean secret = Boolean.getBoolean(ss [0]);
if (secret)newA();
System.out. printinrfew Object ());



thetoString method prepends an integer to the name. The are introduced.
value of that integer, and thus the result of executing this  In this paper we focus on one common theoretical as-
method can be affected by the initial allocation of an object sumption that may fail in practice: that pointers apaque
of a previously unused class. When run, this program will — i.e., that the only properties of pointers that can be ob-
deterministicall give different outputs depending on the served are the objects to which they point, and (at most) the
value of secret. In this case (since the secret is a boolean) thequality of the pointers.
value of the secret can be completely determined from the  Java is typically assumed to have opaque pointers; al-
output. This is referred to as amplicit flow; implicit flows though it has pointer equality, the only pointer constant
arise when changes in the environment are indirectly con-available is thenil pointer and operations like coercing a
trolled by a secret value, thus encoding information about pointer value to an integer are not present in the core lan-
the secret. guage. However, we have no guarantee that the API does
This program can be translated into@liﬁ a straight- not contain methods that reveal pointer values and breaks
forward way such that the variabécretis secret and the  the opaqueness. To connect to the above examples, a cheap
output is performed on a public channel. Even though the way of implementing hashcodes is to simply use the pointer
JIF version does not use any of JIF's declassification mech-value — a plausible implementation for a JRE running on a
anisms, the program is accepted by the JIF compiler while platform where resources are scfce
retaining semantic behaviour, which means that the nonin-  If a language does not have opaque pointers and is
terference is broken. (The JIF program is not presented here:quipped with deterministic allocation, the side effects of
for space reasons). allocation must be modeled to prevent leaks of this kind.
A more important example, from the point of view of Even though non-deterministic allocation would prevent
Java, is the use of built-in hashcodes. These can be used iimplicit leaks via allocation this isot an optionif we want
a manner similar to the above: to make use of existing implementations that are determin-
public class A { Istic.
public static void main(String[] ss) {
HashMap m =new HashMap(); Our Contribution ~ We present a security type system for
boolean secret = Boolean.getBoolean(ss [0]); a small imperative language with exceptions chosen to cap-
ture the essence of the problem in languages similar to Java.

Object o =new Object(); The type system is based on the realisation that oper-
if (secret) { m.put(o,0); } ations on pointers arepaque with respect to some of the
System.out. println (few Object ()). hashCode()); properties of the pointesind works by adding additional se-
} curity and domain annotations to the pointer type; in partic-
} ular we differentiate the security type of pointer values from

the security type associated with the record pointed to.

The hashcode of the newly allocated object will be deter- Other novel features of the type system include the com-

ministically different depending on whether the body of the .~ o ' .

secret conditional is run or not. The reason for the differ- b|nat_|on offiow sensn!wty meaning that variables are not
ence is that the hashcodes are drawn from one global Se[eq.wtred to have SI f|xeq s;ahcutnty I(ivel, aepﬂcepnons int
guence, and that the hashcode needed to put the object intgOln €rs pose problems In that most operations on point-

the hashmap is allocated when needed, i.e., in the body oiﬁrs abrle p;arual T the),[/ fa|! II applleq tto the E'I pointer. Tot
the secret conditional in this example. e able to use secret pointers (pointers whose representa-

The difference will typically be deterministic, even tion is influenced by a secret) in a system where exceptions

though the sequence is normally generated by a pseudo rardre considered observable, the system includes the ability to

dom generator, since for hashing, it is only the distribution rulel?ut mr]:or(rjnatm.n fltiws th.rougrlnl-pollnte_r e>r<]cept|ons by
that is important, not the randomisation, which means thattraC Ing the domain of a pointer focation in the types.
the same sequence is used in every run.

Related Work Parts of the present paper build on some

Non-Opaque Pointers The above examples illustrate that ©f the technical development from Banerjee and Naumann’s
there is a risk that the runtime environmentends the se-  Study of noninterference for a Java-like languége [2]. The
manticsof the core language, in such a way that assump- language studied there contains the assumption that pointers

tions on the core language are broken or new covert flowsar€ opaque, and introduces a formulation of noninterference
for heap structures via a bijection on pointers for the parts

1Using the specific implementations that we tested: JRE 1.5.0_01b08,
SunOS 5.9 and JRE 1.4.2_09232, Mac OS X 3In fact, net rumor has it that in the early JREs — before the generational
2jifc version 1.1.1,jifc version 2.0.0 garbage collector — this was in fact the implementation




of the heap reachable from low security data. This assump-den part of the environment, namehe state of the mem-
tion and the use of a bijection has been adopted in recenbry allocator. This provides an additional source of infor-
work on noninterference for Java or Java bytecodel![4, 6, 7].mation flow, and thus we record the security level of the
Despite the fact that in the semantics for a language with pointer contextThis tracks the implicit information flow to
non-opaque pointers we cannot identify heaps up to bijec-the memory allocator: when a pointer is allocated in a high
tive renaming, we show that it is still possible to adapt the context, all subsequent allocated pointers can potentially,
bijection-style formulation of noninterference. via the non-opaque coercion to integers, leak secrets. The
pointer context thus affects the security levels of the future

Outline  Sectior[ provides an overview of key ideas in POINers:

the type system. Sectigi 3 defines the syntax and seman- That the values of newly allocated pointers become se-
tics of the language. Sectiph 4 defines the types for values cret after the first allocation in a secret context is not as
: problematic as it may sound, singeost operations on

expressions and statements ending with some highlighting™ - ) ;
examples. Sectidrj 5 introduces the semantic security condiPOINters are opaque to the value of the_pomter. For instance,
tion and discusses the correctness proof. Sefction 6 discusses’ E?'d_e r the f(f)_"?(\;\"n?] prog_ratr)r; z;ssuhmlng(;zhtontams a
further work; in particular we consider a type directed trans- pud |cr:]||;e_ger Ieblf, t € vanable L za? 3 are secret
formation for safe object identifiers. Finally, Sectjdgn 7 con- andthab is a public pointer to a record of typé,

cludes. if (h1) {h3 := newA{};} h2 := newA{}; b.f := h2.f

) which is to be considered secure, even though the value of
2 Types for Non-Opaque Pointers the pointer stored in2 encodes information abotil.
To make use of this we differentiate between the security

Our goal is an information flow aware type system that level of thevalueof the pointer and the security level of the
correctly handles the problems of non-opaque pointers. Inrecord to which it points
this section we introduce the key ideas which enable us to However, as we will see, the type systemeisception
achieve this, before presenting the actual formal details.  sensitive abnormal termination and the cause of the termi-

For simplicity we consider a standard two-point lattice of nation is considered observable. Most operations on point-
security levels, representing public and secret information. ers are partial in the sense that they cause a nil-pointer ex-
Each environment location, i.e., variables and records, isception if applied to the nil pointer. This means that we
assigned a security level, indicating whether the location cannot freely use partial instructions in secret contexts or
contains secret or public information. The type system thenwith secret data. Consider the following program under the
tracks information flows and prevertangerous flowd.e., same assumptions as above,
flows of secrets into public locations. o . ) _

There are two different types of information flows: ex- h2 = nil; it (h1) {h2 = newA{}}h2.f =1
plicit flows — directly copying from a secret to a public which is clearly insecure in an exception sensitive setting;
location — and implicit flow — differences in public side the last instruction fails only i1 = false. Even though
effects depending on secret values. Implicit flows may arisethis program is to be considered wrong, crafting the type
when the control flow is controlled by secrets. As is stan- system to rule out programs of this kind faces the risk of
dard, following Denning’s original approach to analysing ruling out the above secure example as well. We handle this
programs for secure information flow/[5], in order to pre- by keeping track of the domain of the pointers in the types
vent implicit flows the notion o$ecurity contexis defined. by having a type for definitely non-nil pointers. Thus, the
The security context of a program point is the least upper type system will allow the topmost example since it will be
bound of the security levels of the conditional expressions able to see thdt2 cannot contain a nil pointer, and thus will
of the enclosing conditionals and while loops. The secu- never fail.
rity context is sometimes referred to as the security level of
the program counter, since branching is essentially a condi-
tional update of the program counter. In this work we adopt
the standard approach to preventing implicit flows by ban-
ning side effects on public data in secret contexts.

Highlighting the Pointer Type Annotations The follow-

ing examples are aimed at highlighting some key properties
of our type system by contrasting it with two hypothetical
“standard” systems: systems that do not separate the secu-
rity level of the pointer from the security level of the record
Values of Pointers On the language side we will assume pointed to. The first system, which we will refer to as the

a simple means of converting a pointgio an integer using  unsafe standard systerdoesnot model the implicit leak

the coercion expressiofe : int). It is this representative  through secret allocation —i.e., it assumes (incorrectly) that
non-opaque operation that models that there is some hidpointers are opaque. The second system, referred to as the



expressions e = n|nilje; e ea]e; =es|(e:int)|(A)el|e.f|x
leftvalues v == z|z.f
declarations D = recA =« |7z
handler h == catch(err) S
statements S = whileeS|ifeS; Sy |lv:=e]|S1;S2]|skip|tryShy...h,
| x:=new A{f1 =x1,..., fn =2}
program P == Di,...,D,, S
Table 1. Syntax
safe standard systens a similar system thatloesmodel Syntax The syntax of the language is defined in Tdfle 1.

the implicit leak, but still only has a single security level for Since the syntax is depending on the type language for the
pointers. For obvious reasons, the safe standard system ideclaration of records and variables we begin by introduc-
much more restrictive than the unsafe standard system. Ouing the required parts of the type language. A more thor-
system is less restrictive that the safe standard system, freeugh explanation of the types is found in Secfipn 4 below.
guently achieving the freedom of the unsafe system. Con-

. . i sec.levels o == L|H
sider the following program, wherel andh?2 are secret: pointervalue v == T |1
if (h1) {h2 := newA}a := newA;a.f =1 primtypes 7 u= into|AY o109

recordtypes © == {f1:71,.. ., fn:Tn}
An unsafe standard system would allevio be public and

consider the above program secure. A safe standard system | NEre are two security levels representing se¢fga(d
would demand that is secret and would reject the above Public (L) respectively. The primitive types are integers and
program, since the field is public. Our system would see pointers. Integers are simply annqtateq ywth a securlty level.
that it is only the pointer value stored inthat is secret Let A range over the set of record identifidtec/D. Pointer

and thata cannot contain the nil pointer. Thus, our system YPe€S (¥ o1 o) carry a security level for the pointer it-
would consider the above example as secure. §elf (7?)’ arecord secunty level annotatiomy, the record
The difference between an unsafe standard system an(EdemIfler of the record pointed tod), and a value annota-

our system is highlighted by the following program, where tion v expressing if, the pointgr is the r)il pointer Y or noF )
h1 andh2 are secret andlis a public pointer to a record of (T). Arecord type is a collection of uniquely named primi-
type A tive types, with the names drawn from the set of record field

identifiers. Letf range over the record field identifiers.
if (h1) {h2:=newA}a = newA;b.f = (a : int) The expressions are built up by the standard constructs:

This program would be considered secure by the unsalceinteger constants, ranged over hyand the distinguished

standard system even though the pointer value, efhich constantnil, representing the nil pointer, variable names,
is written to the public field. f, reflects the secrét. Our v € Var, binary operators;, ec; and field projections;. /.

. : The nil pointer is the only pointer that can be introduced as a
system, however, would reject this program. : ;
. . constant. Furthermore, the expressions are extended with a
Before we can describe the type system we need to intro-

. . non-standard coercion expressida, int), which converts
duce the specifics of the language and its memory model. a pointer to an integer.

The syntax of the statement language is entirely stan-
3 The Language dard apart from the record allocation,:= new A{f; =
x1,..., fn = z,} which is the only source of pointers be-

We define a small imperative language with iteration, side the nil constant above. Record allocation will never
choice, assignment and sequencing, designed to capture theeturn the nil pointer. The variable, which is assigned
problems of non-opaque pointers in a language like Java.the newly allocated pointer, is available locally in the field
For simplicity we refrain from modeling features specific to assignments in the body of theewto allow for the con-
the object orientation and use records and record subtypinggtruction of cyclic records,which — more importantly —
to model objects. Furthermore, we add a special coercionProvides the possibility of creating recursive records with-
expression that models the possibility for the API to break out ever introducing nil fields at an intermediate step.
the opaqueness assumption. In this section we introduce the Record identifiers and variables must be declared at the
syntax and semantics of the language. beginning of the program, and their types may be mutually
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Table 2. Semantics of Expressions

recursive. The declaration assigns a type to the declaredrhe Allocation Model To model the effect of non-opaque
entity; record identifiers are assigned record types and vari-pointers we need to model pointer values, and the way in
ables are assigned primitive types. Finally, a program iswhich they are chosen when a record is allocated. Sup-
a sequence of declarations followed by a statement, whichpose we were to fix on the simplest possible model, e.g.
constitutes the body of the program. that pointers are natural numbers and that allocation simply
picks the next number in sequence. For such an implemen-
tation an attacker could potentially learn something only
from the order in which records are allocated. But if the
Semantics The semantics is a big-step operational seman- actual implementation chose the next pointer according to
tics with evaluation contexis[11] used to propagate excep-the sizeof the previously allocated record then the attacker
tions. Letp range over the set of pointer¥r. could potentially learn more. Rather than attempting to find
a “worst case” model, the approach we take here is not to

values n= nil . : )

records 17} L T{l,é'lpf‘ — o= o0} fix a particular allocator but to work with an abstract model
= yJ1 — Ulye-osyn — Un . : P

pointer contexts 5 = (p,n) and show that the approach is sounddayinstantiation.

environments E = ~v;p;n Definition 3.1 (Allocation Model). The abstract pointer

model is a quadrupléPtr, live, next, coerce), where
The primitive values, ranged over by € Val, are

the pointers and the integers. Similar to the record types, * Piristhe setof pointer values,

the records, ranged over by € Rec, are collections of
named values together with a record identifier. We write
(f =v) € rwhenf = v is defined inr. The pointer con-
texts, ranged over by, are used by the memory model (de-
fined below), and represent the pointer and the size of the
most recently allocated record. The environments, ranged
over by € Enw, are triples consisting of a variable envi-
ronment, a heap, and a pointer context. The variable envi-
ronments, ranged over by, and heaps, ranged over py

are partial functions from variables to values and pointers to
records respectively. For an environméntve write F(p)

to meanp(p) and E(z) to meany(z).

For the treatment of exceptions we extend the values and
the environments to include distinguished elements that rep-
resent erroneous computatioet representing a class cast
exception, anchp representing a nil-pointer exception. Let
err range over the sefrr = {cc,np}. Let v range over
the extended valuekal = Val U Err andE range over the
extended environmentnv = Env U (Err x Env).

e [ive is a function which given a heap and a record en-
vironment computes a set no smaller than the syntacti-
cally live pointers, i.e., those reachable from the envi-
ronment, and

e next is a function which when given the current
pointer contextn (i.e., the most recently allocated
pointer and the sizé-| of the corresponding recorg)
and the current set of live pointers), returns the next
pointer to be allocated. The function satisfies:

next(n, L) & L.

e afunctioncoerce € Ptr — Z which models the action
of the non-opaque operation. Note thatrce(-) need
not be injective (useful, for example, to model hash-
codes).

The model is sufficiently general to cover deterministic

garbage collection, since it can allocate a previously allo-
cated but currently dead pointer.
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Table 3. Semantics of Statements

(E,S1;S9) | err, E

Semantics of Expressions Table[2 defines big-step rela-
tions for expressiong(|l) : Env x Expr X Val. The se-
mantics for variable lookupStVAR), integer constantssf
INT), total binary operatorss{BINOP), pointer equality $-
EQP), record field projections3-PRJ-), (S-PRJ-2 are en-

Semantics of Statements Table[3 defines a big-step op-
erational semantics of the forrfl}) : Env x Stmt x Env.
Iteration is provided by thevhile statement defined bys{
WHILE-1) and 6-WHILE-2). Depending on the iteration
predicate the execution either terminates or continues with

tirely standard. Casting follows the behaviour of the Java the body of the while in sequence with the while itself.

bytecodecheckcasbperation in that it will always perform

Choice is provided by thi¢ statement defined bg{IF-1)

a runtime check to make sure that the pointer is cast to aand §-1F-2). Depending on the branch predicate either the
subtype of the actual type of the record pointed to. The left or the right branch is chosen for execution. Assignment
(S-CAST-) rule makes use of a function to extract the run- to variables and fields is defined b§-ASSV) and 6-ASSF-
time type of a pointer from the environment, defined as 1) together with §-ASSF-J respectively. Exceptions can be

T(p,E) = Aiff E(p) = {A,...}, e,
record of runtime typed.
For expressions, rules{PRJ-2 and 6-CAST-3 are the

if p points to a

caught and handled by they-catch statement defined by
(S-TRY-1),(S-TRY-2) and &-TRY-3). If an exception occurs
during the execution of the bodys] of the try-catchand

only sources of exceptions, originating from dereference of there is a handler for that kind of exception control is trans-

a nil pointer and casting to an unsupported record type.

Exception Propagation Exception propagation in ex-

ferred to the corresponding exception handler.
Evaluation of sequences is defined IsySEQ-1 and &-
SEQ-2 and, finally, evaluation of thekip statement is de-

pressions is achieved using the following evaluation con- fined by §-SKIP). Of the rules, $-ASSF-3 is the only rule

text, which, together with the rules(EERR, defines how

to introduce new exceptions; assignments to fields fail when

an exception can be propagated from within an expressionthe pointer that should point to the record is the nil pointer.

to the top level. Lek range over the binary operatarsind
the pointer equality=.

Q == [lQxelexQ[(A)Q[(Q:int)|Q.f

Record Allocation The only non-standard statement is
record allocation. Pointer fields which have annotation
denote aefinitely non-nil field Since we do not allow the

For our purposes, the evaluation context provides a way totypes of fields to change during computation it is impor-
combine all the exceptions propagation rules into one rule. tant that such fields are not assigned a nil pointer as default
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Table 4. Subtypes

value. It is for this purpose that theewstatement contains  Since the security levels are used for several different pur-
an initialisation specification. Theewstatement creates a poses, for the readability we use additional meta variables
new record using thexwkrec function, which creates arecord ct, nt, p ando to range over the security levels represent-
by giving each field a default value based on the type of theing the security context, the pointer context type, the pointer
field (0 for integer fields asil for pointer fields). Thereafter, value security type and the pointer object security type re-
it allocates a new pointer using timextandlive functions spectively.
from the allocation model, and updates the fields according As was discussed in Sectibh 2 we will track the domain
to the specification. This way, all fields that may not contain of the pointers using annotations in the pointer types; the
nil pointers are updated in a way that is atomic with respect domain annotations are ranged ovenhyvhereT indicates
to the view of the type system. That all fields are updated the definite absence afl and_L indicates the possibility of
is guaranteed by the typing of the initialisation specifica- nil.
tion, see T-NEW) below. Note that he bound variableis The record typesy, are partial maps from field identi-
available locally to allow for self-cycles. fiers to primitive typesr, the variable environment typds,

are maps from variables to primitive types, the heap types,
Exception Propagation Exception propagation of excep- 9, are maps from pointers to pointer types and the record
tions originating from expressions is provided by the fol- type environmentsA, from record identifiers to record

lowing context together withg-SERR-). types. Finally, the environment types,= I'; nt, are pairs
of a variable environment type and the type of the pointer
R == []|whileRS|ifRS] Sy context.

Propagation of errors in statements is only needed for se- _ ) ) )
quencing and defined b{SERR-2. Exception Types An exception type is a partial func-
tion from err to pairs of a security level and an environment

type, written asr @ 3. If a statement is typable i, and
&(err) = o @ X, then the computation may yield the ex-
] ) ) ] _ ceptionerr, encoding information of security level, and

In this section we present the details of the information resulting in (i.e., being raised at) an environment with type

flow aware type system. The basic structure of top level s» ¢ .- ¢ don(€) then the exceptiomrr is not a possible
judgments in the type system is of the form result of the statement.

4 Types

Sk S= Y€
Subtypes and Least Upper Bounds For security annota-
which is read as follows: the statemests type correctin  tijons we define subtyping to be the smallest transitive and
the environment typ& and the security context, yielding  reflexive relation satisfying <: H. Similarly, for pointer
an environment typ&’ and anexception typg. domain annotation§” <: L. Value subtyping is defined
The fact that we have an incoming and an outgoing type structurally by covariance, with record subtyping limited to
environment reflects the fact that we havflaav sensitive  idth subtyping[9], so that, <: 7 iff m, C 7. The rules

type system, allowing variables to change their security gre presented below: Like most systems for the informa-

level during a computation. tion flow analysis of objects, but in contrastfto [1], the types
Now we introduce the details of these type components of records are flovinsensitive. This, together with our use
before discussing the actual typing rules. of width subtyping[[9], avoids problems with pointer alias-

ing since it guarantees that all pointers pointing to the same
Value and Environment Types The syntax of the value record must agree on the types of the common fields. The
and environment types was introduced in Sedfijon 3. The se-ules for the subtypes are defined in TgHle 4.
curity levels, ranged over by, are secret, and publicL. The least upper bound of two typ&% andT5 is defined
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as the smallest valug satisfyingl} <: T ATy <: T. Least

integers introduce public valuesl-INT). The same holds

upper bounds for exception types is defined as the unionfor the (syntactic) nil pointer,TENIL). The coercion expres-
of the two exception types while merging pairs associated sion, (FCOERCH, models the failure of pointer opaqueness

with the same exception using @ X Lo, @ X5 =0 U
o9 @Y L X,.

Expression Type Rules The expression type rules are of
the form> k., e : 7,&, which is read as follows: the ex-
pressiore is type correct in the environment typgin the
security contextt, yielding either a value of type or an
exception defined by.

We use a global record type environméne RecID —
RecType to record the record types associated with the
record identifiers.

There are two type rules for field projectionT-#RJ-

1) and (-PRJ-J. The former rule corresponds to the case
where the possibility of a nil-pointer exception can be ruled
out by the domain annotation. The field projection expres-
sion is able to fetch values from a record even if the value
of the pointer is secret, without having to consider the re-

sult as a secret. This possibility comes from the separation

between the security level of the pointer value and the secu
rity level of the record pointed to. The object security type

acts as an override for the security types of the record type.
Fetching data from a secret record returns secret results en

forced by the following function:
(intoq1)?? =int (01 U 02)
(A¥po)” =AY (pUo) (oUo))

Subtyping allows us to disregard fields in a record
pointed to by a pointer, by changing the type of the pointer
to a smaller type. Casting,TH{CAST), is intended to re-

by lifting pointer values to integers. The result of the func-
tion depends only on the values of the pointer, and safely
ignores the security annotations associated with the referred
record. The binary operators-BINOP), are total and are
assumed not to cause abnormal termination, and simply re-
turn a result which is as secret as the most secret of its sub-
expressions. Note that the result of comparing two pointer
expressions for equalityT{EQ-P), is independent of the se-
curity level of the pointer value. This is not surprising, since
equality in the presence of only nil pointer constants is an
opaque operation.

Statement Type Rules As mentioned previously, the
statement types are of the foh . S = Y’ &, which
is read as follows: the stateme#is type correct in the en-
vironment type: and security contexit, yielding either an
environment of type’ or an exception defined ki The
statement type rules are found in Tgble 6.

Allocation, (T-NEW), allocates a new record and a
pointer and updates the pointer context. Allocation has the
property that a well-typesiew will produce well-formed
records — even fonon-nil recursive record typeslust like
any other update, updating the pointer context (i.e., allo-
cating) in a secret context causes the pointer context to be-
come secret. We assume that allocation does not fail, which
means that we assume that the memory is infinite.

All of the while statement, -WHILE), the if-statement,
(T-IF), and the exceptions may introduce indirect leaks. Any
differences in low modifications in the body of #nor a

verse this operation by upgrading a pointer type to a wider while encodes information about the guarding expression.

pointer type. The correctness of such an operation is not

Exceptions introduce conditional branches to the associ-

statically decidable, which is why a runtime type check has ated exception handler — any modifications done after an
to be performed. If this type check fails, a class cast ex- instruction that may cause exceptions may encode informa-
ception is thrown as documented by exception type. Thetion about the parameters causing the exception. Consider



Y bgeinto, & ctUoUll(&) =0 Yhge:T, €

Yhey S=XE6 Y <Y <Y W) =0 cmp(X(x),71)

(T-WHILE) - S (T-ASSV)
Y ke whileelS = 3,8 L& Shogx:=e= Y|z 7] ¢
Ykeaetinto, . caUoUWl(E) =0 YhaS1=%8  Wi(&)=0
b l_a’ Si Ei; % ; 172 ! ctUo //7
(TIF) . = f 1€ { } (T-SEQ) Y E £ SQ =>> 62

YherifeS Sy = XU, fUE UE Yo S159 = X7, & L&

(T-ASSF-1) Fee:m,& Y@)=ATpo (f:7)eA(A) W) =0 1ot <7/

Yhpri=e= Y ¢

Fee:m,& Y(x)=Atpo (f:7)€A(A) W) =0 rotHoYr <7/
Srauzi=e=Y {U{np—ctUo@X}

b
(T-ASSF-2)

SktaS=Y {erri—01Q%, ... errp— 0, QX UL err; & domé)
Yi Fetvo; Si = X5, & i€ {l.n}

T-TRY
( ) ¥ Fe try S catch(erry) Sy ... catch(erry) Sn = [ e 0y 25 U S, ieqny &G UE
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Table 6. Statement Type Rules
the following program, allow it to change the underlying type of the variable. As
o . . seen in the type rule for variable assignmeTAESV), this
h2 := nil; if (h1l) then h2 :=newA{}; . .
ty {h2.f:= 1. 1 =11 catch (np) { | == 0} is enforced by the demand of type compatibility, expressed

by the predicatemp(-), defined as follows:
wherel = 1if hl # 0andl = 0if h1 = 0. This is where _ .
the context annotationy, is used — every statement (and cmp(int o1, int 02)
thus expressions) has to be typable in the security context cmp(AV* p1 01, AV? p2 02)
of the controlling expression or exception. . . .
In the statement sequence instruction this is expressed by Since the (security) types of variables may change on as-

typing the second statement in the context of the exceptionS'gnmem’ the sequencing ru.lg"géEQ' dema_nds that the

) second statement is correct in the type environment result-
level lwl(¢) of the first, wherelvl(§) = | {o | {(err) = ina from the first statement
(0,%),err € dom&)}. In theif and thewhile not only g i

. ) . Furthermore, the flow sensitivity is what forces us to tag
the security level of the guarding expression but also thethe exception tvpes with the environment tvpe in which the
exception level decides the context of their bodies. P yp typ

expression was thrown. As is seen in the type rule for the
However, there are more places where we have to con- ) ST
. . . . . try-catch(T-TRY), this annotation is used to make sure that
sider the effect of exceptions namely in the instructions that .
. . . . : we can safely transfer control from the location of the ex-
modify the environment, i.e., variable and field updates. If : . :
. . : - ception to the corresponding exception handler by demand-
an exception occurs in the expression providing the value. . : . .
o . ing that the exception handler is typable in the environ-
for the update this will prevent the update from occurring. . .
. . ment type carried by the exception type. To understand
For this reason the context of the actual write has to be at .
X . how thetry-catchstatement prevents succeeding statements
least as secret as the exception level of the expression. L .
. ) . oo from executing in the context of caught exceptions note how
As is the case with the field projection above, the type ; )
. . . those are removed from the exception type of the etrjre
rule for field update, -ASSF), gives us the possibility to . . d
. catch which will prevent them from being propagated to
use low parts of records even after secret allocation. the security context of the succeeding statement (if any)
From the variable assignment rulBASSV) we can see ity : 9 v).
I : Consider the following program wherg denotes any
that assigning a value to a variable may cause the the Seétatement andl is a pointer that could be nil
curity type of that variable to change (i.e., we havioav P '
sensitivetype system). However, as is standard we do nottry { h.f := 0; } catch (np) { skip; }; S
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Since thdry-catchis catching nil-pointer exceptions the nil-
pointer exception is removed from the exception type of the
try-catchstatement, which (in this case) results in the empty
exception type, the context ¢f will not be touched by the
sequence statement. Without the-catch S would execute

in the contexts of the nil-pointer exception i.e., the security
level of h.

5 Noninterference

The security condition that the type system aims to guar-
antee is phrased asreninterferenceroperty. Noninter-
ference is the prevailing formalization of absence of infor-
mation leaks. A program is secureneninterfering— if

whenever the program is run in environments that are indis-
tinguishable to the attacker, the results of running the pro-

gram are also indistinguishable. The key to the definition is
to define the notion of “indistinguishable” in an appropriate
way. Typically, indistinguishability is defined with respect

to a classification of the different parts of the environments
into secret and public information — the environment type.

Given that the attacker can inspect only the public parts of
the environment, two environments are indistinguishable to

the attacker if their public parts are equal. Hence the fre-
guently used namw-equivalencdor the indistinguisha-
bility relation.

Low-equivalence Informally, two values are low-

The use of a bijection (on the low-reachable sub-domains
of the heaps) in the formulation of low-equivalence was
pioneered by Banerjee and Naumann[3]. The bijection has
two purposes: firstly, it makes the low-equivalence relation
inductively definable in the presence of cycles on the heap
and, secondly, it has the beneficial side effect of allowing
equality comparisons of certain pointers with secret values
in addition to the ones with public values. Since the
work by Banerjee and Naumann abstracts away from the
values of the pointers, parameterizing the low-equivalence
relation is not strictly necessary — it would suffice to apply
a renaming before relating two values. In the present
work the bijection plays a more crucial role, since the
actual pointer valueare exposed, which prohibits us from
renaming values.

Let 5 be a bijection on some subset 8fr. Table[T
defines the meaning of the security types for valles:
equivalenceas a family of partial equivalence relations in-
dexed over the family of heap bijections and the value types.

Two public integers are low-equivalent if they are the
same integerLE-INT-L). Any two secret integers are low-
equivalent (E-INT-H), reflecting the fact that any two se-
cret integers look the same to the attacker. Pointers have
more than one security annotation. As with integers there
is a security level for the value of the pointers. Thus, two
(value-wise) public pointers are low-equivalent if they have
the same valueLE-PTR-L) and any two (value-wise) se-
cret pointers are low-equivalentg-PTR-H). The remaining
security annotations for pointers deals withinter related

equivalent with respect to a security type, if all their public object properties Two pointers are related with respect to
parts are low-equivalent with respect to their respective Oy, if the records pointed to in the respective heap have the
security types. In order to define this notion we need to same runtime type and the records are low-equivalent field
traverse the heap. In a setting where pointers are opaque wéor field (LE-PTR-OL). The reason for demanding that the

do not need to insist that pointer values are identical — it is records have the same runtime type is because the cast oper-
sufficient that there is a bijective renaming that relates them.ation can be used to distinguish between records of different
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runtime types. Pointers typ&dy pose no demands on the

records pointed ta.E-PTR-OH). Similar to above, demands oFm:into 0 bnil: AT po

of low-equivalence for records are carried by the bijection 6(p) <A p#nil

to the low-equivalence rule for the heap in which they are dFp:A¥po

enforced. Two heaps are low-equivalent with respect to the AA) ={fi T, fa:Tnt OFuvi:T
bijection if all records pointed to by pointers in the bijection SFAA fr= w1 fr—om) i A

are low-equivalent with respect to the record type.

Low-equivalence for pointers with respect to the entire vz € domI) . o F y(x) : I'(x)

pointer type demands low-equivalence with respect to the oFy:T
value and object security levelsg-PTR). Records, variable ok p
environments and environments are then related by point- Vp: A€ d.0F p(p): A SF~:T
wise extensionE-REC, LE-VENV, LE-ENV). dkp Ok vy pm:Tynt

F'inally, an impgrtant prope.rty ofs is'th.at itis apgrtial Shuv:r flerr)=0Q@Y
equivalence relatior(PER) — i.e., that it is transitive and y

. oFv:& T dkFerr: & T
symmetric.
— / . !

Lemma 5.1. (LE-ENV) is a partial equivalence relation., OFE:% flerr) =0 Q¥ R E:%
i.e.,ﬁ}_El ~y EQﬁﬂoP}_El ~y Egandﬂll_ 6|_E£’E 5'_GTT’E:£’E
By ~g Ea Aok By ~p B3 = f1of2 b By ~x Es Table 8. Well Formed Values
Proof. By induction on equivalence derivation. O

abnormal termination and the cause of the abnormal ter-
Low-equivalence with respect to Exceptions We define mination is considered observable but not non-termination.

the family of low-equivalence relations drul as the small- ~ Specifically, this means that we cannot consider a program
est family of symmetric relations satisfying: that causes secret exceptions as secure. Depending on what
is considered the result of running the program, we get dif-
B v~ vy Elerr)=HAQY ferent formulations of indistinguishability. The least we
BE v ~er o BFerr~erv must demand is that publicly observable actions are equal.
However, a formulation of noninterference that only con-
erry € dom(¢) erry € dom(¢) siders public observations, is frequently not compositfnal
ferr1) : L@ Xy A(err2) 1 LQ Xy = erry = err and, thus, hard to prove directly from a compositional type
B erry ~e - errg system. The solution is to find a stronger formulation of
. noninterference, which is compositional and a safe approx-
Similarly for Env: imation of the original formulation, typically by extending
the equality demand to the non-observable public parts, and
§(err) =H@3Y to show that well-typedness implies the stronger relation.
BFEi~s By PEE ~5 By Since our language is not equipped with any constructions
BEEL ~es By BEEL ~ex err, By for communication with the outside world we assume an ex-
ecution model where the public (low) parts of the final envi-
erry € domg) errz € dom() ronment as well as the te?minat(ion )stF;tus are observable to

g(err1) : L@y Ag(erra) : L@ Yy = erry = errp the attacker. From the compositionality argument above it
BE B ~wum, By should be clear that this does not impose any demands that
BEerry, By~ s erra, By are not needed by the proof.

Assume thafS is well-typed, i.e.X . S = ¥/ £ To
formulate a noninterference property applicable to such a
judgment we need to start computi§gn two low equiva-
lent environments with respect k

To do this we will need a simpleell-formednessela-
tion for type environments. The rules faell formed values
(including environments) are found in Table 8.

This makes the basic connection betweatuesand

We note that the resulting relation for environments is not
transitive. However, it is transitive on the distinct domain
of environments, which is what is needed in the proof of
correctness.

5.1 Soundness

Now, given the notion of low-equivalence, we formulate
the. I’IOt.IOI’I of secu r|t.yexpept|or_1-.sen5|tlv.e noninterference 4since we do not have any information about the non-observable public
which is a termination-insensitive noninterference, where values of the environment

11



types. To make the family of well-formedness relations in- of new identifiers for public data which can be used to form

ductively definable in the presence of cycles on the heapa safe coercion function, together with a type directed trans-
they are parameterized over a heap typarhich maps all ~ formation that transforms a program free from leaks other
reachablepointers to theuntime typeof the record pointed  than secret allocation to a program that is noninterfering.

to. The point of this transformation is that in a reasonable
A program is secure with respect to some initial and fi- language, this map can be expressed in the languileut
nal type environment® andX’ and the exception typé, extending the semantics. Consider the following example:

if whenever the program is run on environments that are
indistinguishable to the attacker, the results (modulo non-
termination) are also indistinguishable. Clearly, since it is - :
assumed that the attacker can distinguish between normal Nt L X int Lx;

original transformed

and abnormal termination we cannot allow secret excep- ~ PL = NEWA; Pl := newl A;
tions propagating to the top level. Thus, the following no- it (secret) it (secret)
' ’ { p2 == newA{}; } { p2 == newA{}; }

tion of non-interference is defined only for exception types p3 = NewB; p3 := newl B;
£s.t.i(§) = L. x = (p3 : int) x == (p3 :Lint)
Definition 5.1 (Noninterference). For lvl(§) =L

The left program would not be type correct (nor safe) but
the transformed program on the right would. In addition
. N ) to allocating a new object of typd, pl = newL A also
AN(E1,S) — By A (E2,S) — Ey = Ey ~xr ¢ By allocates a new unique identifier and associates the newly
i . , allocated pointer with this identifier. Again, both a pointer
With this we can formulate the main theorgm of the P38~ and an identifier is allocated B = newL B and it is this
per: that WeII-typgd programs are nonlnterferlng. A nonin- identifier, not the pointer representation, that is returned by
terfe_rence proof is _essentlally a preservation proof. We arey . .~ _ (p3 L int) instruction at the end of the program.
proving that executiopreserves type invariant. Because In contrast to the pointer representationpdfthe identifier

of the form of the noninterference definition, the proof is associated with the pointer is not affected by the allocation

a, merge betwegn two proofs.: one proof that prougs in the secret context, since that allocation does not allocate
dinary preservation of types, i.e., thatell-formednesss an identifier

preserved, together with one proof that proves that low- The correctness of such a transformation relies on that

equivalence is preserved. The reason for this is that the, i . .
) . . reasonable” programs using non-opaque pointers are not
well-formedness properties are needed in some cases in thg ) : . .
ependent on garticular allocation model, i.e., their se-

proof of preservation of low-equivalence. mantics is independent of the values of the allocated point-
Theorem 5.1. If ¥ . S = Y/ ¢ and i(¢) = L then ers. With this view one could see such a transformation as

Nlss¢(S) Y VB, By By S A By SAE, ~y By

NIs 50 ¢(S) a refinement of the original program.
Proof. By induction on the type derivation. The proof is _
omitted for space reasons. 7 Conclusion

O

This paper has presented the problem of information
6 Future Work: Security by Transformation leakage in the presence of non-opaque pointers, and pre-
sented a type-based analysis for a simple imperative lan-
The main topic of this paper has been how to deal with guage which tracks the use of opaque operations in order to
the indirect information leaks arising from allocation in se- eliminate a class of information flows not previously mod-
cret contexts, with the perspective that the allocation modeleled by either theoretical or practical systems. The type
is fixed and deterministic. system combines a humber of features, including separate
Another way of avoiding the covert channels caused by types for pointer value and record pointed to and value-flow
non-opague pointers issirong separatiorof the heap into  information about the initialisation status of pointers. On
apublicheap and aecretheap, for allocations in publicand the semantic side, we adopted an abstract and rather gen-
secret contexts respectively —in a style typical of “classical” eral model of allocation to represent many possible imple-
military message passing systems. mentations of non-opaque pointers, and were able to prove
In this section we present an idea on how to achieve thea noninterference result for the type system, demonstrating
same effect as a strongly separated heap within a singlehat key reasoning methods for opaque pointers can still be
heap system, with a combination of dynamically allocation applied in a non-opaque setting.
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