
A Theorem Proving Approa
h to Analysis ofSe
ure Information Flow�Ad�am Darvas, Reiner H�ahnle, and David SandsChalmers University of Te
hnology & G�oteborg UniversityDepartment of Computing S
ien
eS-41296 G�oteborg, Swedenfdarvas,reiner,daveg�
s.
halmers.seAbstra
t. Most attempts at analysing se
ure information
ow in pro-grams are based on domain-spe
i�
 logi
s. Though
omputationally fea-sible, these approa
hes su�er from the need for abstra
tion and the high
ost of building dedi
ated tools for real programming languages. We re-
ast the information
ow problem in a general program logi
 rather thana problem-spe
i�
 one. We investigate the feasibility of this approa
h byshowing how a general purpose tool for software veri�
ation
an be usedto perform information
ow analyses. We are able to handle phenomenalike method
alls, loops, and obje
t types for the target language JavaCard. We are also able to prove inse
urity of programs.1 Introdu
tionMost attempts at analysing se
ure information
ow in programs have followedbasi
ally the same pattern: information
ow is modeled using a domain-spe
i�
logi
 (su
h as a type system or data
ow analysis framework) with a prede�neddegree of approximation, and this leads to a fully automated but approximateanalysis of information
ow. There are two problems stemming from this ap-proa
h. Firstly, the degree of approximation in the logi
 is �xed and thus se
ureprograms will be reje
ted unless they
an be rewritten. Se
ondly, implementinga domain-spe
i�
 tool for a real programming language is a substantial under-taking, and thus there are very few real-language tools available [11℄.This paper takes a �rst step towards an alternative approa
h based on ageneral theorem prover:{ We re
ast the information
ow problem in a general program logi
 ratherthan a problem-spe
i�
 one. Program logi
s based on simple safety and live-ness properties (e.g. Hoare logi
 or weakest pre
ondition
al
ulus) are inade-quate for this purpose, sin
e information
ow properties
annot be expressedas a simple
onjun
tion of safety and liveness properties1. Our approa
h isto use dynami
 logi
, whi
h admits a simple
hara
terisation of se
ure infor-mation
ow for deterministi
 programs.1 This
laim is not formal, sin
e it depends on pre
isely what one means by \safety"and \liveness"; for some
on
rete instan
es see [13, 9, 10℄.

{ We investigate the feasibility of the approa
h by showing how a generalpurpose tool for software veri�
ation (based on dynami
 logi
)
an be usedto perform information
ow analyses. So far, our examples are relativelysmall, but we are able to handle phenomena like method
alls, loops, andobje
t types. We are also able to prove inse
urity of programs.2 Modeling Se
ure Information Flow in Dynami
 Logi
2.1 A Dynami
 Logi
 for Java CardThe platform for our experiments is the KeY tool [1℄, an integrated tool fordevelopment and veri�
ation of obje
t-oriented programs. Among other things,it features an intera
tive theorem prover for formal veri�
ation of Java Cardprograms. In KeY, the target program to be veri�ed and its spe
i�
ation are bothmodeled in an instan
e of dynami
 logi
 (DL) [6℄
alled Java Card DL [3℄.Java Card DL generalizes variants of DL used so far for theoreti
al inves-tigations [6℄ or veri�
ation purposes [2℄, be
ause it handles su
h phenomena asside e�e
ts, aliasing, obje
t types, ex
eptions, as partly explained below. Otherprogramming languages than Java Card
ould be axiomatized in DL. On
ethis is done, the KeY tool
an then be used on them.Like other intera
tive theorem provers for software veri�
ation, the provingpro
ess in KeY is partially automated by heuristi

ontrol of appli
able rules.Dedu
tion in Java Card DL is based on symboli
 program exe
ution andsimple program transformations and is, thus,
lose to a programmer's under-standing of Java. It
an be seen as a modal logi
 with a modality hpi for everyprogram p, where hpi refers to the state (if p terminates) that is rea
hed byrunning program p.The program formula hpi� expresses that the program p terminates in astate in whi
h � holds. A formula �! hpi is valid if for every state s satisfyingpre-
ondition � a run of the program p starting in s terminates, and in theterminating state the post-
ondition holds.Thus, the DL formula �! hpi is similar to the total-
orre
tness Hoare triplef�g p f g or to � implying the weakest pre
ondition of p wrt . But in
ontrast toHoare logi
 and weakest pre
ondition
al
ulus (wp
), the set of formulas of DL is
losed under the usual logi
al operators and �rst order quanti�ers. For example,in Hoare logi
 and wp
 the formulas � and are pure �rst-order formulas,whereas in DL they
an
ontain programs. In general, program formulas
anappear anywhere in DL as subformulas.The programs in Java Card DL formulas are basi
ally exe
utable JavaCard
ode. Ea
h rule of the
al
ulus for Java Card DL spe
i�es how to exe
uteone parti
ular statement, possibly with additional restri
tions. When a loop ora re
ursive method
all is en
ountered, it is ne
essary to perform indu
tion overa suitable data stru
ture.In Java (like in other obje
t-oriented programming languages), di�erent ob-je
t variables
an refer to the same obje
t. This phenomenon,
alled aliasing,

auses serious diÆ
ulties for handling of assignments in a
al
ulus for JavaCard DL.For example, whether or not a formula \o1:a = 1;" still holds after the (sym-boli
) exe
ution of the assignment \o2:a = 2;", depends on whether or not o1and o2 refer to the same obje
t.Therefore, Java assignments
annot be symboli
ally exe
uted by synta
ti
substitution. In Java Card DL
al
ulus a di�erent solution is used, based onthe notion of (state) updates. These updates are of the form flo
 := valg and
an be put in front of any formula. The semanti
s of flo
 := valg� is the sameas that of hlo
 = val;i�. The di�eren
e between an update and an assignment issynta
ti
al. The expressions lo
 and val must be simple in the following sense:lo
 is either (i) a program variable var, or (ii) a �eld a

ess obj:attr, or (iii) anarray a

ess arr[i℄; and val is a logi
al term (that is free of side e�e
ts). More
omplex expressions are not allowed in updates.The synta
ti
al simpli
ity of lo
 and val has semanti
al
onsequen
es. Inparti
ular,
omputing the value of val has no side e�e
ts. The KeY system hassimpli�
ation rules to
ompute the result of applying an update to logi
al termsand program-free formulas. Computing the e�e
t of an update on any program p(that is, a formula hpi�) is delayed until p was symboli
ally exe
uted using otherrules of the
al
ulus. Thus,
ase distin
tions on obje
t identity are not merelydelayed, but
an often be avoided altogether, be
ause (i) updates are simpli�edbefore their e�e
t is
omputed and (ii) their e�e
t is
omputed when maximalinformation is available (after symboli
 exe
ution of the program).There is another important usage of updates. In Java Card DL there aretwo di�erent types2 of variables: program (lo
al) variables and logi
 variables.Program variables
an o

ur in program parts of a formula as well as outsideprogram parts. Synta
ti
ally, they are
onstants of the logi
. Their semanti
 in-terpretation depends on the program exe
ution state. Logi
 variables o

ur onlybound (quanti�ed) and never in programs. Synta
ti
ally, they are variables of thelogi
. Their semanti
 interpretation is rigid, that is, independent of the programstate. This is ne
essary for being able to store previous exe
ution states. Hen
e,in Java Card DL quanti�
ation over program variables like \ 8x: hp[x℄i [x℄" issynta
ti
ally illegal3.Updates remedy this problem. Suppose we want to quantify over x of typeinteger. We de
lare an integer program variable px, quantify over a logi
 variableof type integer lx, and use an update to assign the value of lx to px:hint px;i (8lx : int: fpx := lxghp[px℄i [lx; px℄) (1)2.2 Se
ure Information Flow Expressed in Dynami
 Logi
We use the greater expressivity of DL as
ompared to Hoare logi
 and wp
to give a very natural logi
 modeling of se
ure information
ow. Let l be the2 Ultimately, this distin
tion of variables is demanded by side e�e
ts in imperativeprogramming languages like Java. It is not present in \pure" DL [6℄.3 To stress o

uren
e of variables in formulas or programs, we use the notion p[x℄, et
.

low-se
urity variables of program p and h the high-se
urity ones. We want toexpress that by observing the initial and �nal values of l, it is impossible toknow anything about the initial value of h [5℄. In other words:\When starting p with arbitrary values l, then the value r of l afterexe
uting p, is independent of the
hoi
e of h."This
an be dire
tly formulated in standard DL:8l: 9r: 8h: hpi r := l (2)To illustrate our formulation in Java Card DL, assume that all variables are oftype integer and program variables and logi
 variables are pre�xed by \p" and\l", respe
tively. Using (1), we obtain the formula:hint pl; int ph;i (8 ll:int: 9 r:int:8 lh:int: fpl := llgfph := lhghpi r := pl) (3)For sake of readability we use the simpler DL notation (2) in the rest of thepaper, unless the a
tual Java Card DL formulation is of interest.With the
hoi
e of DL, we exploit that one
an quantify over variables o
-
urring anywhere in the assertions. Joshi and Leino [7, Cor. 3℄ arrive at a similarformulation in Hoare logi
, but there it is ne
essary to provide a
on
rete fun
tionfor the values of r. Moreover, their
hara
terization assumes that p terminates.In DL we
an easily express the additional requirement that no information onthe value of h shall be leaked by p's termination behaviour:8 l: (9 h: hpi true! 9 r:8 h: hpi r := l) (4)In addition to (2) this expresses that, for any
hoi
e of l, if p terminates forsome initial value of h, then it terminates for all values.3 Intera
tive Proving of Se
ure Information FlowIn our experiments, we
onsidered only problems of the form (2) (we
ould haveused form (4), but our examples are all terminating, so the ante
edent of theimpli
ation is true for all values of h).In this se
tion, we �rst show our approa
h on small programs taken from theliterature. Then a program
ontaining a while loop will be examined; �nallywe demonstrate with a somewhat bigger example how the approa
h works forprograms with obje
t types.3.1 Simple ProgramsWe demonstrate the feasibility of our approa
h with some examples taken frompapers [7, 11℄. Table 1 shows the example programs with the
orresponding num-ber of rules applied in the KeY system and the required user intera
tion, if any.Note that l, h, and r are single variables in ea
h
ase.

program rules applied user intera
tionsl=h; 7 {h=l; 10 instantiationl=6; 10 instantiationl=h; l=6; 11 instantiationh=l; l=h; 11 instantiationl=h; l=l-h; 12 instantiationif (false) l=h; 10 instantiationif (h>=0) l=1; else l=0; 21 {if (h==1) l=1; else l=0; l=0; 29 instantiationTable 1. Example programs.When evaluating the data one must keep in mind that we used the KeY proveras it
omes. The KeY system features so-
alled ta
lets, a simple, yet powerfulme
hanism by virtue of whi
h users
an extend the prover with appli
ationspe
i�
 rules and heuristi
s.The user intera
tion instantiation in Table 1 means a single quanti�er elim-ination by supplying a suitable instan
e term. In the KeY system, the user
ansimply drag-and-drop the desired term from any pla
e in the
urrent goal over arule appli
ation. In the examples, one mainly has to spe
ify a Skolem term or a
onstant (e.g., 6 in program \l = 6;") to instantiate the result value r in (2). Atthe time, when r must be instantiated, this kind of intera
tion
ould mostly beeliminated by heuristi
s that perform instantiation automati
ally, when there isonly one
andidate.Not
ounting the time for user intera
tions, all proofs are obtained withinfra
tions of a se
ond.If a program is se
ure, then the DL formula (2) is provable. For inse
ureprograms the proof
annot be
ompleted, and there will be one or more opengoal. Among our examples there are two inse
ure programs. Table 2
ontainsthe goals (in this
ase one for ea
h program) that remain open in an attempt toprove se
urity of these programs in KeY. It is easy to observe that these formulasare not provable. In fa
t, the open goals give a dire
t hint to the sour
e of these
urity brea
h.It is important to note that the number of applied rules and user intera
tionsdoes not in
rease more than linearly if we take the
omposition of two programs.For example, to verify se
urity of the program \h = l; l = 6;", one instantiationis required, and the prover applies 11 rules. By
omparison, to prove se
urity ofthe
onstituents \h = l;" and \l = 6;", one instantiation and 10 rule appli
ationsare used in ea
h
ase.3.2 Proving Inse
urityTo prove that the programs in Table 2 are inse
ure, the inse
urity property hasto be formalized. This
an be done by simply taking the negation of formula (2).

program open goall=h; 9r: 8h: r := hif (h>=0) l=1; else l=0; 9r: (8h: (!(h < 0)! r := 1)& 8h: (h < 0! r := 0))Table 2. Open goals for inse
ure programs.program rules applied user intera
tionsl=h; 13 instantiationif (h>=0) l=1; else l=0; 34 arithmeti
, instantiationTable 3. Proving inse
urity.The synta
ti

losure property of DL is
ru
ial again here. Negating (2) andstraightforward simpli�
ation yields:49 l:8 r: 9h: hpi r 6= l (5)The intuitive meaning of the formula is the following:\There is an initial value l, su
h that for any possible �nal value r of lafter exe
uting p, there exists an initial value h whi
h
an prevent l fromtaking that �nal value r."Table 3
ontains the
orresponding data of the proofs of inse
urity. The userintera
tion arithmeti
 means that the user has to apply (few) rules manually to
lose subgoals
ontaining arithmeti
 properties (e.g. 8 a: (a := 0 ! a 6= 1)). Atthe moment these
annot be handled automati
ally by the prover.3.3 LoopsIn this se
tion we report on an experiment with a program
ontaining a whileloop. The DL formula is the following:8 l: 9 r:8 h: (h > 0! hwhile (h > 0) fh��; l = h; gil := r) (6)The loop
ontains the inse
ure statement l = h; but the
ondition of exiting theloop is h := 0, thus the �nal value of l is always 0, independently of the initialvalue of h.To prove properties of programs
ontaining loops requires in general to per-form indu
tion over a suitable indu
tion variable. Finding the right indu
tionhypothesis is not an easy task, but on
e it is found,
ompleting the proof isusually a me
hani
al pro
ess; if one runs into problems, this is a hint, that the4 We do a
tually a little more than is required by proving termination of p. Formula (5)really is the negation of (4).

hypothesis was not
orre
t. Heuristi
 te
hniques to �nd indu
tion hypothesesare available in the literature and will be built into KeY in due time.After the indu
tion hypothesis is given to the prover, three open goals mustbe proven: (i) after exiting the loop, the post
ondition holds (indu
tion base),(ii) the indu
tion step, (iii) the indu
tion hypothesis implies the original subgoal.To prove se
urity of (6), the prover took 163 steps; in addition to establish-ing the indu
tion hypothesis, several kinds of user intera
tions were required:instantiation, unwinding the loop, and arithmeti
.The proof
annot be quite
ompleted with the
urrent version of the KeYtool, be
ause the update simpli�er is not (yet) powerful enough. In order to showthat this is in fa
t merely a te
hni
al problem, we outline the problem in detail.One must be able to prove that the following two program states (expressed bythe
orresponding updates) are identi
al:fpl :=
1 + 1g fpl :=
2gfph :=
1 + 1g fph :=
1 + 1gfpl := phgThe bottommost update is the most re
ent update (the sequen
e of updatesparallels the sequen
e of assignments that led to their
reation). The
i areSkolem
onstants.3.4 Using Obje
t TypesNext we demonstrate that our approa
h applies to an obje
t-oriented setting ina natural way. The example presented here is taken from [8, Fig. 5.℄, where anobje
t (spe
i�ed by its state
hart diagram) leaks information of a high variablethrough one of its operations. The
orresponding Java implementation is:publi

lass A

ount fint balan
e;boolean extraServi
e;publi
 void writeBalan
e(int amount) fif (amount>=10000) extraServi
e=true; else extraServi
e=false;balan
e=amount;gpubli
 int readBalan
e() freturn balan
e;gpubli
 boolean readExtra() freturn extraServi
e;ggThe balan
e of an A

ount obje
t
an be written by the method writeBalan
eand read by readBalan
e. If the balan
e is over 10000, variable extraServi
eis set to true, otherwise to false. The state of that variable
an be read by

readExtra. The balan
e of the a

ount and the return value of readBalan
eare se
ure, whereas the value of extraServi
e is not.The program is inse
ure, sin
e partial information about the high-se
urityvariable
an be inferred via the observation of a low-se
urity variable. That is,
alling writeBalan
ewith di�erent parameters
an lead to di�erent observationsof the return value of readExtra.To prove inse
urity of this program, we
ontinue to use (2,5). We give thea
tual Java Card DL formula of se
urity to show how naturally obje
ts arewoven into the logi
. Where ne
essary, we use variables with obje
t types in thelogi
 (a detailed a

ount on how to render obje
t types in �rst-order logi
 is [4℄).hA

ount o; int amount; boolean result;i8 lextraServi
e : boolean: 9 r : boolean:8 lamount : int:fo:extraServi
e := lextraServi
egfamount := lamountgho:writeBalan
e(amount); result = o:readExtra();ir := resultThe prover applies 62 rules and stops at the unprovable open goal:9 r : boolean: (8 lamount : int: (!(lamount < 10000)! r := TRUE) &8 lamount : int: (lamount < 10000! r := FALSE))Inse
urity of the program was proved in 82 steps with three user intera
tions.4 An Alternative Formulation of Se
ure InformationFlow in Dynami
 Logi
There is another approa
h whi
h
aptures the de�nition of se
ure information
ow in an even more natural way than (2):\Running two instan
es of p with equal low-se
urity values and arbitraryhigh-se
urity values, the resulting low-se
urity values are equal too."This
an be rendered in DL as follows:8 h:8 h0:8 l: (l := l0 ! hp[l; h℄; p[l0; h0℄il := l0) (7)It is easy to see the drawba
ks of this formulation:{ The number of se
urity-relevant program variables is doubled, therefore, thestate spa
e might in
rease
onsiderably.{ The approa
h
an be used as it is only when the two instan
es of p donot interfere, that is, p[l; h℄ uses only the variables l and h. Otherwise, theremaining environment must be preserved.{ Leakage via termination behaviour
annot be expressed in an obvious way.On the other hand, this approa
h potentially has important advantages:{ Instantiation of r is not required. Hen
e, all se
ure programs in Table 1
anbe proved se
ure without any user intera
tion.

{ In
ertain
ases programs need to leak some
on�dential information, in orderto serve their intended purpose [12℄. Formulations (2,4) would
lassify theseas inse
ure programs. This is too restri
tive when the leakage was intended.We
an extend (7) to express intended leakage via a suitable pre
ondition.For example, if the least signi�
ant bit of h is leaked intentionally, then weadd \hmod 2 := h0mod 2" to the pre
ondition.{ Exe
uting the two instan
es of p in parallel (lo
kstep), instead of sequentially�rst p[l; h℄ and then p[l0; h0℄, may lead to eÆ
ient proofs: after ea
h step,information that is irrelevant for the se
urity analysis at hand
an be deleted.{ Expressing inse
urity
an be easily done by taking the negation of (7). How-ever, instantiation will be needed on the variables.It is future work to investigate the possibilities and limitations of this ap-proa
h, but it seems likely that both formulations should be used in
ombinationfor di�erent types of problems and programs.5 Dis
ussion and Future WorkIn this paper we suggested an intera
tive theorem prover for program veri�
ationas a framework for
he
king se
ure information
ow properties. We showed thefeasibility of the approa
h by applying it to a number of examples taken fromthe literature. Even without any tuning of the prover, the examples
ould beme
hani
ally
he
ked with few user intera
tions. Within a short amount of time,we managed to handle non-trivial properties su
h as method
alls (with sidee�e
ts), loops, obje
t types. The method allows also to prove inse
urity.Most approa
hes to se
ure information
ow are based on stati
 analysis meth-ods using domain-spe
i�
 logi
s. These have the advantage of being usually de-
idable in polynomial time. On the other hand, they must ne
essarily abstra
taway from the target program. This be
omes problemati
 when dealing with
omplex target languages su
h as Java Card. By taking a theorem provingapproa
h and Java Card DL, whi
h fully models the Java Card semanti
s,we
an prove any property that is provable in �rst-order logi
. Our experimentsindi
ate that the penalty in terms of veri�
ation
ost might be tolerable.Joshi and Leino [7℄
onsider how se
urity
an be expressed in various logi
alforms, leading to a
hara
terisation of se
urity using a Hoare triple. This
hara
-terisation is similar to the one used here|with the
ru
ial di�eren
e that theirformula
ontains a Hoare triple, but it is not a statement in Hoare logi
, andthus
annot be plugged dire
tly into a veri�
ation tool based on Hoare logi
.Thus, the greater expressivity of dynami
 logi
 has important advantages overHoare logi
 in this
ontext. We
an provide me
hanized, partially automatedproofs for Java Card as target language.In order to treat more realisti
 examples, we plan a number of improvements:on the side of the logi
 modeling, it might be useful to avoid existential quanti�-
ation over the result values r in (2,4). In dynami
 logi
 there are possibilitiesto do this, but they make proof obligations more
ompli
ated. It is not
lear

whether quanti�er elimination over r will turn out to be a problem, be
ause one
an symboli
ally exe
ute the programs before quanti�er elimination. In addition,the KeY system will soon feature metavariables, by whi
h instantiation
an bedelayed and handed over to an automated theorem prover for �rst order logi
.An open question is how this approa
h would s
ale-up for more
omplexprograms with several high and low variables. To redu
e the number of variables(and thus the number of quanti�ers) the idea of abstra
t variables as \fun
tionsof the underlying program variables" proposed in [7℄ might be useful.The KeY system is
urrently used \as-is". It
an and should be tuned andadapted to se
urity analysis, for example, by the addition of proof rules akin tothe
ompositional rules o�ered by type systems.Referen
es1. W. Ahrendt, T. Baar, B. Be
kert, M. Giese, R. H�ahnle, W. Menzel, W. Mostowski,and P. H. S
hmitt. The KeY system: Integrating obje
t-oriented design and formalmethods. In R.-D. Kuts
he and H. Weber, editors, Fundamental Approa
hes toSoftware Engineering, volume 2306 of LNCS, pages 327{330. Springer-Verlag, 2002.2. M. Balser, W. Reif, G. S
hellhorn, K. Stenzel, and A. Thums. Formal system de-velopment with KIV. In T. Maibaum, editor, Fundamental Approa
hes to SoftwareEngineering, volume 1783 of LNCS. Springer-Verlag, 2000.3. B. Be
kert. A dynami
 logi
 for the formal veri�
ation of Java Card programs. InI. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Se
urity.Revised Papers, Java Card 2000, Cannes, Fran
e, volume 2041 of LNCS, pages6{24. Springer-Verlag, 2001.4. B. Be
kert, U. Keller, and P. H. S
hmitt. Translating the Obje
t Con-straint Language into �rst-order predi
ate logi
. In Pro
. VERIFY Workshopat FLoC, Copenhagen, Denmark, 2002. i12www.ira.uka.de/~key/do
/2002/Be
kertKellerS
hmitt02.ps.gz.5. E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo,D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Se
ure Com-putation, pages 297{335. A
ademi
 Press, 1978.6. D. Harel, D. Kozen, and J. Tiuryn. Dynami
 Logi
. MIT Press, 2000.7. R. Joshi and K. R. M. Leino. A semanti
 approa
h to se
ure information
ow.S
ien
e of Computer Programming, 37(1{3):113{138, 2000.8. J. J�urjens. UMLse
: Extending UML for se
ure systems development. In J.-M.J�ez�equel, H. Hussmann, and S. Cook, editors, UML 2002 { The Uni�ed ModelingLanguage, volume 2460, pages 412{425, 2002.9. J. M
Lean. A general theory of
omposition for tra
e sets
losed under sele
tiveinterleaving fun
tions. In Pro
. IEEE Symposium on Resear
h in Se
urity andPriva
y, pages 79{93, 1994.10. J. Rushby. Se
urity requirements spe
i�
ations: How and what? In Symposium onRequirements Engineering for Information Se
urity (SREIS), 2001.11. A. Sabelfeld and A. C. Myers. Language-based information-
ow se
urity. IEEE J.Sele
ted Areas in Communi
ation, 21(1), Jan. 2003.12. A. C. M. Steve Zdan
ewi
. Robust de
lassi�
ation. In Pro
. 14th IEEE ComputerSe
urity Foundations Workshop, Cape Breton, Canada, pages 15{23, 2001.13. D. M. Volpano. Safety versus se
re
y. In Stati
 Analysis Symposium, pages 303{311, 1999.

